牵连运动为转动时 加速度合成定理
- 格式:ppt
- 大小:564.50 KB
- 文档页数:17
牵连运动为转动时点的加速度合成定理一、教学设计教学标题:牵连运动为转动时点的加速度合成定理教学目的:掌握牵连运动为转动时点的加速度合成定理及其应用;掌握科氏加速度的概念及计算方法,理解其产生的原因;巩固刚体定轴转动时角速度和角加速度以及刚体内各点速度和加速度的矢量表示法。
培养学生的逻辑思维能力及发现问题、思考问题、灵活应用所学解决生产实践中和生活中类似的力学现象和问题的能力。
教学设想:课程开始时提出身边一些有趣的现象引发同学们学习的兴趣,课程最后再列举种种自然界和工程中的现象促进学生的思考,激发学生对科学探索的热情并和学生一起应用新学知识讨论分析问题。
希望借此培养学生对科学的热爱,因为“热爱是最好的老师”;培养学生发现问题、思考问题、应用所学解决问题的能力。
这是本节课程安排的两个兴奋点。
定理的证明和分析产生科氏加速度的原因是学生学习中的难点,故教学时注意分散难点,增强思维的逻辑性,使内容在逻辑上环环相扣,步步深入,学生较易理解和接受。
比如先提出问题:平动时点的加速度合成定理是否适用于转动的情况?通过例题给出结论,再从运动学角度产生科氏加速度的原因,后用数学的矢量法进行更严密地推证。
考虑到学生可能认为这门课程太抽象,不能和生产实际联系起来,不知道用处何在。
所以可以专门就本节内容安排了一个小论文,有兴趣的同学可以独立完成,也可以自由组合完成,内容体裁自定。
并在期末专门安排时间让同学上台做研究报告。
希望能培养学生收集资料、整理资料、从中提取有用信息和撰写科研论文的能力;培养学生们团结合作的团队精神以及交流表达能力。
教学环节:1.通过列举自然界和生活中的几个现象切入本堂课的主题并简单介绍基本内容;2.明确地提出问题:动系为转动和平动时是否有同样的加速度合成定理?用一个简单的例子说明牵连运动为平动时的加速度合成定理不再适用于转动的情况;3.分析科氏加速度产生的原因和解释它的物理意义;4.用矢量法推导加速度合成定理;5.讨论不同情况下科氏加速度的计算;6.应用科氏加速度解释前面列举的现象,再简单介绍科氏加速度的发现和在自然科学中的应用说明科氏加速度的存在及其影响;7.总结本堂课的基本内容;8.布置作业。
牵连运动为转动时点的加速度合成定理一、教学设计教学标题:牵连运动为转动时点的加速度合成定理教学目的:掌握牵连运动为转动时点的加速度合成定理及其应用;掌握科氏加速度的概念及计算方法,理解其产生的原因;巩固刚体定轴转动时角速度和角加速度以及刚体内各点速度和加速度的矢量表示法。
培养学生的逻辑思维能力及发现问题、思考问题、灵活应用所学解决生产实践中和生活中类似的力学现象和问题的能力。
教学设想:课程开始时提出身边一些有趣的现象引发同学们学习的兴趣,课程最后再列举种种自然界和工程中的现象促进学生的思考,激发学生对科学探索的热情并和学生一起应用新学知识讨论分析问题。
希望借此培养学生对科学的热爱,因为“热爱是最好的老师”;培养学生发现问题、思考问题、应用所学解决问题的能力。
这是本节课程安排的两个兴奋点。
定理的证明和分析产生科氏加速度的原因是学生学习中的难点,故教学时注意分散难点,增强思维的逻辑性,使内容在逻辑上环环相扣,步步深入,学生较易理解和接受。
比如先提出问题:平动时点的加速度合成定理是否适用于转动的情况?通过例题给出结论,再从运动学角度产生科氏加速度的原因,后用数学的矢量法进行更严密地推证。
考虑到学生可能认为这门课程太抽象,不能和生产实际联系起来,不知道用处何在。
所以可以专门就本节内容安排了一个小论文,有兴趣的同学可以独立完成,也可以自由组合完成,内容体裁自定。
并在期末专门安排时间让同学上台做研究报告。
希望能培养学生收集资料、整理资料、从中提取有用信息和撰写科研论文的能力;培养学生们团结合作的团队精神以及交流表达能力。
教学环节:1.通过列举自然界和生活中的几个现象切入本堂课的主题并简单介绍基本内容;2.明确地提出问题:动系为转动和平动时是否有同样的加速度合成定理?用一个简单的例子说明牵连运动为平动时的加速度合成定理不再适用于转动的情况;3.分析科氏加速度产生的原因和解释它的物理意义;4.用矢量法推导加速度合成定理;5.讨论不同情况下科氏加速度的计算;6.应用科氏加速度解释前面列举的现象,再简单介绍科氏加速度的发现和在自然科学中的应用说明科氏加速度的存在及其影响;7.总结本堂课的基本内容;8.布置作业。
※第四节 牵连运动为转动时点的加速度合成定理。
取动点为小球M ,动系固结于圆盘,定系固结于地面。
动点M 的的相对运动为匀速率圆周运动,相对速度为r v ,故相对加速度r a 的大小为r v a a rn r r 2== (a )方向指向圆心O 。
牵连运动是圆盘以匀角速度e ω绕O 轴转动,故动点M 的牵连速度e v 的大小为r v e e ω=,方向与r v 一致;牵连加速度e a 的大小为2e n e e r a a ω== (b )方向也指向圆心O 。
由于r v 和e v 方向相同,故点M 的绝对速度的大小为=+=+=r e r e a v r v v v ω常数可见,动点M 的绝对运动也是也是匀速圆周运动,于是M 的绝对加速度a a 的大小为()r e r e r e a n aa v r v r r v r r v a a ωωω22222++=+=== (c )方向也是指向圆心O 。
考虑到(a )、(b )两式,有r e r e a v a a a ω2++= (d ) 从上式可以看出,动点的绝对加速度除了牵连加速度和相对加速度两项外,还多了一项r e v ω2,可见牵连运动为转动时,动点的绝对加速度并不等于牵连加速度与相对加速度的矢量和,而多出的一项与牵连转动e ω和相对速度r v 有关,多出的这一项称为科氏加速度。
牵连运动为转动时点的加速度合成定理为:牵连运动为转动时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度、相对加速度与科氏加速度的矢量和。
即C r e a a a a a ++= (14-7)式中a c 为科氏加速度,它等于动系角速度矢与点的相对速度矢的矢积的两倍,即r e C v ωa ⨯=2 (14-8)刚体的角速度矢的模等于角速度的大小,其方位沿刚体的转轴,指向用右手螺旋法则来确定(右手四指代表角速度的转向,拇指表示角速度矢的指向)。
C a 的大小为θωsin 2r e C v a =其中θ为e ω与r v 两矢量间的最小夹角。