【真题】16年山东省潍坊市高密三中高三(上)数学期中试卷含答案(理科)(创新班)
- 格式:doc
- 大小:666.50 KB
- 文档页数:19
高三理科数学基础训练(一) 姓名_________1.向量1(,tan )3a α= ,(cos ,1)b α= ,且a ∥b ,则cos 2α=( ) A. 13- B. 13 C. 79- D. 79 2.在正项等比数列}{n a 中,369lg lg lg 6a a a ++=,则111a a 的值是 ( )A. 10000B. 1000C. 100D. 103.定义运算a b ad bc c d =-,若函数()123x f x x x -=-+在(,)m -∞上单调递减,则实数m 的取值范围是( )A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-4.设x ,y 满足0023x y x y a ≥⎧⎪≥⎨⎪+≤⎩,若目标函数11y z x +=+的最小值为12,则a 的值为( ) A .2B .4C .6D .8 5.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( ) A .332- B .332± C .1- D .1±6.等差数列{}n a 的公差0d >,若12320132013t a a a a a ++++= (*N t ∈),则t =( )A .2014 B .2013 C .1007 D .1006 7.设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b += 成立的是( ) A .13a b =- B .//a b C .2a b = D .a b ⊥ 8.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则一定成立的是( ) A .(cos )(cos )f A f B < B .(sin )(cos )f A f B <C .(sin )(sin )f A f B >D .(sin )(cos )f A f B > 9.(2013四川)从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )A B .12 C D 10.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于直线1x =对称,当[1,0]x ∈-时,()f x x =-,则(2013)(2014)f f += .11.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线()c x y +=3与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于__________12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =4, AB =2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .(1)求证:平面ABM ⊥平面PCD ;(2)求直线PC 与平面ABM 所成的角正弦值.。
潍坊中学2015-2016学年度高三期末自主练习数学试题(理) 第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若集合{}31,x x n n A ==-∈N ,{}4,1,0,2,5B =--,则集合A B =( )A .{}2,5B .{}4,1,2,5--C .{}1,2,5-D .{}1,0,2,5-2。
若0a b >>,则下列不等式正确的是( ) A .sin sin a b > B .22loglog a b < C .1122ab<D .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知()0,απ∈,若1tan 43πα⎛⎫-= ⎪⎝⎭,则sin 2α=( )A .45- B .45C .54- D .544。
已知函数()()1221,1log 3,1x x f x x x -⎧-≥⎪=⎨--<⎪⎩,若()1f a =,则()1f a -=()A .2B .2-C .1D .1-6。
已知C ∆AB 和点M 满足C 0MA +MB+M =,若C λAB +A =AM 成立,则实数λ的值为( )A .2B .3C .4D .57。
若中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y =,则该双曲线的离心率为( ) AB3 CD .3 8。
已知变量x ,y 满足线性约束条件3202010x y x y x y +-≤⎧⎪-+≥⎨⎪++≥⎩,则目标函数12z x y =-的最小值为( )A .54- B .0 C .2- D .1349。
已知函数()cos f x x x =,有下列4个结论: ①函数()f x 的图象关于y 轴对称;②存在常数0T >,对任意的实数x ,恒有()()f x f x +T =成立; ③对于任意给定的正数M ,都存在实数0x ,使得()0f x ≥M ;④函数()f x 的图象上存在无数个点,使得该函数在这些点处的切线与x 轴平行.其中,所有正确结论的序号为( )A .①③B .①④C .②④D .③④10。
2016年山东省潍坊市高考数学三模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x2﹣5x+6≥0},则∁U A=()A.{x|x>2}B.{x|x>3或x<2}C.{x|2≤x≤3}D.{x|2<x<3} 2.(5分)设复数z满足(2﹣i)z=5i(i为虚数单位),则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知a,b∈R,则“0≤a≤1且0≤b≤1”是“0≤ab≤1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)已知向量,的夹角为60°,且||=1,|2﹣|=,则||=()A.1 B.C.D.25.(5分)在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1﹣30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[77,90]内的学生人数为()A.2 B.3 C.4 D.56.(5分)如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S表示的值为()A.a0+a1+a2+a3B.(a0+a1+a2+a3)x3C.a0+a1x+a2x2+a3x3D.a0x3+a1x2+a2x+a37.(5分)已知函数f(x)=sin2ωx(ω>0),将y=f(x)的图象向右平移个单位长度后,若所得图象与原图象重合,则ω的最小值等于()A.2 B.4 C.6 D.88.(5分)给出以下四个函数的大致图象:则函数f(x)=xlnx,g(x)=,h(x)=xe x,t(x)=对应的图象序号顺序正确的是()A.②④③①B.④②③①C.③①②④D.④①②③9.(5分)在一次抽奖活动中,8张奖券中有一、二、三等奖各1张,其余5张无奖.甲、乙、丙、丁四名顾客每人从中抽取2张,则不同的获奖情况有()A.24种B.36种C.60种D.96种10.(5分)已知F1,F2为椭圆+=1(a>b>0)的左、右焦点,以原点O为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y轴右侧的两个交点为A,B,若△ABF1为等边三角形,则椭圆的离心率为()A.﹣1 B.﹣1 C.D.二、填空题:本大题共5小题,每小题5分,共计25分.11.(5分)若存在实数x使|x﹣a|+|x|≤4成立,则实数a的取值范围是.12.(5分)已知函数f(x)=+mx是定义在R上的奇函数,则实数m=.13.(5分)圆心在x轴的正半轴上,半径为双曲线﹣=1的虚半轴长,且与该双曲线的渐近线相切的圆的方程是.14.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为.15.(5分)已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}=,则min{h(0),h(1)}的取值范围为.三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.(1)求C(2)若△ABC的面积为5,b=5,求sinA.17.(12分)如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=AB=,平面PBC⊥平面ABCD.(1)求证:AC⊥PB;(2)若PB=PC=,问在侧棱PB上是否存在一点M,使得二面角M﹣AD﹣B的余弦值为?若存在,求出的值;若不存在,说明理由.18.(12分)某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X﹣Y,求随机变量ξ的分布列和数学期望E(ξ).19.(12分)如表是一个由n2个正数组成的数表,用a ij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.(1)求a n1和a4n;(2)设b n=+(﹣1)n•a(n∈N+),求数列{b n}的前n项和S n.20.(13分)在平面直角坐标系中内动点P(x,y)到圆F:x2+(y﹣1)2=1的圆心F的距离比它到直线y=﹣2的距离小1.(1)求动点P的轨迹方程;(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).①若=t,当t∈[1,2]时,求k的取值范围;②过A,B两点分别作曲线E的切线l1,l2,两切线交于点N,求△ACN与△BDN 面积之积的最小值.21.(14分)已知函数f(x)=lnx﹣x++1(a∈R).(1)讨论f(x)的单调性与极值点的个数;(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1,x2,证明:x1+x2>2.2016年山东省潍坊市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x2﹣5x+6≥0},则∁U A=()A.{x|x>2}B.{x|x>3或x<2}C.{x|2≤x≤3}D.{x|2<x<3}【解答】解:全集U=R,集合A={x|x2﹣5x+6≥0}={x|x≤2或x≥3},所以∁U A={x|2<x<3},故选:D.2.(5分)设复数z满足(2﹣i)z=5i(i为虚数单位),则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由(2﹣i)z=5i,得=,则复数z在复平面内对应的点的坐标为:(﹣1,2),位于第二象限.故选:B.3.(5分)已知a,b∈R,则“0≤a≤1且0≤b≤1”是“0≤ab≤1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若0≤a≤1且0≤b≤1”则“0≤ab≤1”成立.若“0≤ab≤1”,例如a=﹣1,b=﹣1,则不成立,∴“0≤a≤1且0≤b≤1”是“0≤ab≤1”成立的充分不必要条件.故选:A.4.(5分)已知向量,的夹角为60°,且||=1,|2﹣|=,则||=()A.1 B.C.D.2【解答】解:由|2﹣|=,得,又向量,的夹角为60°,且||=1,∴4×12﹣4×,整理得:,解得||=1.故选:A.5.(5分)在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1﹣30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[77,90]内的学生人数为()A.2 B.3 C.4 D.5【解答】解:由茎叶图可得30名学生的成绩如下:94,94,92,92,91;90,90,88,88,87;87,85,84,83,83;83,83,82,82,82;81,80,78,78,77;73,72,71,70,70.若用系统抽样,则需分6段,则第2,3,4,5区间段内抽取的学生成绩符合题意,有4人.故选:C.6.(5分)如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S表示的值为()A.a0+a1+a2+a3B.(a0+a1+a2+a3)x3C.a0+a1x+a2x2+a3x3D.a0x3+a1x2+a2x+a3【解答】解:当k=0,S=a0时,满足进行循环的条件,执行循环体后,k=1,S=a0x+a1,当k=1,S=a0x+a1时,满足进行循环的条件,执行循环体后,k=2,S=a0x2+a1x+a2,当k=2,S=a0x2+a1x+a2时,满足进行循环的条件,执行循环体后,k=3,S=a0x3+a1x2+a2x+a3,当k=3,S=a0x3+a1x2+a2x+a3时,不满足进行循环的条件,故输出结果为:a0x3+a1x2+a2x+a3,故选:D.7.(5分)已知函数f(x)=sin2ωx(ω>0),将y=f(x)的图象向右平移个单位长度后,若所得图象与原图象重合,则ω的最小值等于()A.2 B.4 C.6 D.8【解答】解:∵将f(x)向右平移个单位长度与原图象重合,∴f(x)=f(x﹣),即sin2ωx=sin2ω(x﹣)=sin(2ωx﹣),∴﹣=2kπ,解得ω=﹣4k,k∈Z.∵ω>0,∴当k=﹣1时,ω取得最小值4.故选:B.8.(5分)给出以下四个函数的大致图象:则函数f(x)=xlnx,g(x)=,h(x)=xe x,t(x)=对应的图象序号顺序正确的是()A.②④③①B.④②③①C.③①②④D.④①②③【解答】解:函数f(x)=xlnx,g(x)=,的定义域为:x>0;x=1时,两个函数y=0,x→+∞时,f(x)=xlnx→+∞,g(x)=→0,f(x)=xlnx的图象是②,g(x)=的图象是④.h(x)=xe x,x=0时,函数值为0,函数的图象为:③;t(x)=,的定义域x≠0,函数的图象为:①.故选:A.9.(5分)在一次抽奖活动中,8张奖券中有一、二、三等奖各1张,其余5张无奖.甲、乙、丙、丁四名顾客每人从中抽取2张,则不同的获奖情况有()A.24种B.36种C.60种D.96种【解答】解:分类讨论,一、二、三等奖,三个人获得,共有A43=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有C32A42=36种,共有24+36=60种.故选:C.10.(5分)已知F1,F2为椭圆+=1(a>b>0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y轴右侧的两个交点为A,B,若△ABF1为等边三角形,则椭圆的离心率为()A.﹣1 B.﹣1 C.D.【解答】解:由△ABF1为等边三角形,及椭圆的对称性可得:∠AF1F2=30°,又∠F1AF2=90°,∴AF2=c,AF1=c,∴c+=2a,可得==﹣1.故选:B.二、填空题:本大题共5小题,每小题5分,共计25分.11.(5分)若存在实数x使|x﹣a|+|x|≤4成立,则实数a的取值范围是[﹣4,4] .【解答】解:在数轴上,|x﹣a|表示横坐标为x的点P到横坐标为a的点A距离,|x|就表示点P到横坐标为0的点B的距离,∵(|PA|+|PB|)min=|a|,∴要使得不等式|x﹣a|+|x|≤4成立,只要最小值|a|≤4就可以了,∴﹣4≤a≤4.故实数a的取值范围是﹣4≤a≤4.故答案为:[﹣4,4].12.(5分)已知函数f(x)=+mx是定义在R上的奇函数,则实数m=1.【解答】解:由题意,f(0)==0,∴m=1,此时,满足f(﹣x)=﹣f(x).故答案为1.13.(5分)圆心在x轴的正半轴上,半径为双曲线﹣=1的虚半轴长,且与该双曲线的渐近线相切的圆的方程是(x﹣5)2+y2=9.【解答】解:双曲线﹣=1的虚半轴长为:3,所以圆的半径为3,双曲线的渐近线为:,3x±4y=0,设圆的圆心(m,0)m>0,该双曲线的渐近线与圆相切,可得,解得m=5.与该双曲线的渐近线相切的圆的方程是:(x﹣5)2+y2=9.故答案为:(x﹣5)2+y2=9.14.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为32π.【解答】解:由已知可得该几何体是一个以俯视图为底面的三棱柱,底面为直角三角形,故底面外接圆半径r=2,棱柱的高为4,故球心到底面的距离d=2,故棱柱的外接球半径R满足:R2=r2+d2=8,故棱柱的外接球表面积S=4πR2=32π,故答案为:32π15.(5分)已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}=,则min{h(0),h(1)}的取值范围为(0,).【解答】解:∵函数f(x)=x2+ax+b在(0,1)上有两个零点,∴,由题意作平面区域如下,,∵f(0)=b,f(1)=1+a+b,∴min{f(0),f(1)}=,结合图象可知,D(﹣1,),当﹣1≤a<0时,0<b<,当﹣2<a<﹣1时,0<1+a+b<,综上所述,min{f(0),f(1)}的取值范围是(0,);故答案为:(0,).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.(1)求C(2)若△ABC的面积为5,b=5,求sinA.【解答】(本题满分为12分)解:(1)∵3cosAcosB+1=3sinAsinB+cos2C,∴3(cosAcosB﹣sinAsinB)+1=cos2C,可得:3cos(A+B)+1=cos2C,…2分∴﹣3cosC+1=2cos2C﹣1,可得:2cos2C+3cosC﹣2=0,…4分可得:(2cosC﹣1)(cosC+2)=0,∴解得:cosC=或cosC=﹣2(舍去),…5分∵0<C<π,∴C=…6分(2)∵S=absinC=5,b=5,C=,可得:a=4,…8分△ABC∵由余弦定理可得:c2=a2+b2﹣2abcosC=16+25﹣2×=21,可得:c=,…10分∴由正弦定理可得:sinA===…12分17.(12分)如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=AB=,平面PBC⊥平面ABCD.(1)求证:AC⊥PB;(2)若PB=PC=,问在侧棱PB上是否存在一点M,使得二面角M﹣AD﹣B的余弦值为?若存在,求出的值;若不存在,说明理由.【解答】证明:(1)取AB的中点E,连结CE,∵AB∥CD,DC=AB,∴DC AE,∴四边形AECD是平行四边形,又∵∠ADC=90°,∴四边形AECD是正方形,∴CE⊥AB,∴△CAB是等腰三角开有,且CA=CB=2,AB=2,∴AC2+CB2=AB2,∴AC⊥CB,又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴AC⊥平面PBC,又PB⊂平面PBC,∴AC⊥PB.解:(2)设BC的中点为F,连结PF,∵PB=PC,∴PF=BC,∴PF⊥平面ABCD,∴PF⊥AC,连结EF,则EF∥AC,∴PF⊥FE,EF⊥BC,分别以FE、FB、FP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,∵AD=PB=PC=,则F(0,0,0),A(2,﹣1,0),B(0,1,0),D(1,﹣2,0),P(0,0,1),∴=(0,1,﹣1),=(﹣1,﹣1,0),=(0,0,1),若在线段PB上存在一点M,设=,(0≤λ<1),∵,∴=λ(0,1,﹣1)+(0,0,1)=(0,λ,1﹣λ),∴M(0,λ,1﹣λ),,设平面MAD的一个法向量=(x,y,z),则,取x=1,得=(1,﹣1,),平面ABCD的法向量=(0,0,1),∵二面角M﹣AD﹣B的余弦值为,∴|cos<>|===,解得或λ=2(舍).∴存在点M,使得二面角M﹣AD﹣B的余弦值为,且=.18.(12分)某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X﹣Y,求随机变量ξ的分布列和数学期望E(ξ).【解答】解:(1)从选出的10名学生中选修数学1的人应为10×=1人,选修数学2的人应为10×=3人,选修数学3的人应为10×=3人,选修数学4的人应为10×=1人,选修数学1的人应为10×=1人.从选出的10名学生中随机抽取3人共有=120种选法,选出的这3人中至少有2人选择数学2的有+=22种,∴这3人中至少有2人选择数学2的概率P==.(2)X的可能取值为0,1,2,3.Y的可能取值为0,1.ξ的可能取值为﹣1,0,1,2,3.P(ξ=﹣1)=P(X=0,Y=1)==.P(ξ=0)=P(X=0,Y=0)+P(X=1,Y=1)==.P(ξ=1)=P(X=1,Y=0)+P(X=2,Y=1)==.P(ξ=2)=P(X=2,Y=0)==.P(ξ=3)=P(X=3,Y=0)==.ξ的分布列为:∴Eξ=﹣1×+0×+1×+2×+3×=.19.(12分)如表是一个由n2个正数组成的数表,用a ij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.(1)求a n1和a4n;(2)设b n=+(﹣1)n•a(n∈N+),求数列{b n}的前n项和S n.【解答】解:(1)设第1列依次组成的等差公差为d,设第1行依次组成的等比数列的公比为q,根据题意a31+a61=(1+2d)+(1+5d)=9,∴d=1,∴a n1=a11+(n﹣1)d=1+(n﹣1)×1=n,∵a31=a11+2d=3,∴a35=a31•q4=3q4=48,∵q>0,∴q=2,∵a41=4,∴a4n=a41q n﹣1=4×2n﹣1=2n+1;(2)由b n=+(﹣1)n•a(n∈N+)=+(﹣1)n•n=+(﹣1)n•n=﹣+(﹣1)n•n,前n项和S n=1﹣+﹣+…+﹣+[﹣1+2﹣3+4﹣5+(﹣1)n•n],当n为偶数时,S n=1﹣+;当n为奇数时,S n=S n﹣1+b n=1﹣++﹣﹣n=1﹣﹣=﹣.20.(13分)在平面直角坐标系中内动点P(x,y)到圆F:x2+(y﹣1)2=1的圆心F的距离比它到直线y=﹣2的距离小1.(1)求动点P的轨迹方程;(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).①若=t,当t∈[1,2]时,求k的取值范围;②过A,B两点分别作曲线E的切线l1,l2,两切线交于点N,求△ACN与△BDN 面积之积的最小值.【解答】解:(1)由题意,动点P(x,y)到F(0,1)的距离比到直线y=﹣2的距离小1,∴动点P(x,y)到F(0,1)的距离等于它到直线y=﹣1的距离,∴动点P的轨迹是以F(0,1)为焦点的抛物线,其方程为x2=4y;(2)①由题意知,直线l方程为y=kx+1,代入抛物线得x2﹣4kx﹣4=0,设(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=﹣4,∵=t,∴t=﹣,∴=﹣t﹣+2=﹣4k2,∴t+=4k2+2∵f(t)=t+在[1,2]上单调递增,∴2≤t+,∴;②y=,y′=,∴直线AN:y﹣x12=x1(x﹣x1),BN:y﹣x22=x1(x﹣x2),两式相减整理可得x=(x1+x2)=2k,∴N(2k,﹣1),N到直线AB的距离d=2,∵|AC|=|AF|﹣1=y1,|BD|=|BF|﹣1=y2,∴|AC||BD|=1∴△ACN与△BDN面积之积===1+k2,当且仅当k=0时,△ACN与△BDN面积之积的最小值为0.21.(14分)已知函数f(x)=lnx﹣x++1(a∈R).(1)讨论f(x)的单调性与极值点的个数;(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x 1,x2,证明:x1+x2>2.【解答】解:(1)f′(x)=﹣1﹣=,x>0方程﹣x2+x﹣a=0的判别式为△=1﹣4a,①当a≥时,f′(x)≤0,f(x)在(0,+∞),为减函数,无极值点,②当0≤a<时,令f′(x)=0,解得x1=>0,x2=,当f′(x)<0,解得0<x<,x>,此时f(x)在(0,),(,+∞)为减函数,当f′(x)>0时,解得<x<,此时f(x)在(,)为增函数,此时f(x)有一个极大值点x=,和一个极小值点x=,③当a<0,令f′(x)=0,解得x1=<0,x2=>0,当f′(x)>0,解得0<x<,此时f(x)在(0,),为增函数,当f′(x)<0时,解得x>,此时在(,+∞)为减函数,此时f(x)有一个极大值点x=;(Ⅱ)由题意知f(x1)=m,f(x2)=m,故f(x1)=f(x2),∵x1≠x2,不妨设x1<x2,∴lnx1﹣x1+1=lnx2﹣x2+1,∴ln=x2﹣x1,令=t,则x2=tx1,∴lnt=(t﹣1)x 1,∴x1=,x2=tx1=,故要证x1+x2=lnt>2,t>1,即证(t+1)lnt>2(t﹣1),令g(t)=(t+1)lnt﹣2t+2,∴g′(t)=+lnt﹣2=,令h(t)=tlnt﹣t+1,t>1,则h′(t)=lnt>0,∴h(t)在t∈(1,+∞)上为增函数,∴h(t)>h(1)=0,∴g(t)在(1,+∞)为增函数,∴g(t)>g(1)=0,∴(t+1)lnt>2(t﹣1),即lnt>2,∴x1+x2>2赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2023-2024学年山东省潍坊市高三(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣22.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣13.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .34.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .86.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .18.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√21212.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 .14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 .15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为;在Ω中,异面直线AB与DE的距离为.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式;(2)求函数y=f(x+5π12)+f(x)在[−π3,π2]上的值域.19.(12分)在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AD=2CD=2,AA1=A1D=√5,A1C=√6.(1)证明:平面AA1D1D⊥平面ABCD;(2)求二面角A1﹣CD﹣D1的余弦值.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD (道路的宽度忽略不计),已知CD 把三角形空地分成两个区域,△ACD 区域为儿童娱乐区,△BCD 区域为休闲健身区.经测量,AC =BC =100米,AB =100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元. (1)若∠ADC =π4,求景观道路CD 的长度;(2)求∠ADC 为何值时,口袋公园的造价最低?21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32.(1)求{a n }的通项公式; (2)若数列{S 2n +15a n}的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132.22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若f (x )在定义域上存在极值,求a 的取值范围; (3)若f (x )≥1﹣sin x 恒成立,求a .2023-2024学年山东省潍坊市高三(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣2解:因为a →=(1,k ),b →=(2,1),且a →∥b →,所以2k ﹣1=0,解得k =12.故选:A .2.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣1解:“∃x ∈R ,sin x <a ”,故a >(sin x )min ,a >﹣1. 故选:D .3.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .3解:A ∪B =A ,则B ⊆A ,当a +2=3,即a =1时,集合A 不满足元素的互异性,舍去, 当a +2=a 2,即a =2或a =﹣1,当a =2时,A ={1,3,4},B ={1,4},满足题意, 当a =﹣1时,集合B 不满足元素的互异性,舍去, 综上所述,a =2,故满足A ∪B =A 的实数a 的个数为1. 故选:B .4.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π解:由题意得,S 侧=π(3+4)×√32+(4−3)2=7√10π,V =13π×(42+32+4×3)×3=37π.故选:C .5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .8解:等差数列{a n }的前n 项和为S n ,且公差d 不为0,若a 4,a 5,a 7构成等比数列,S 11=66, 故S 11=11(a 1+a 11)2=11a 6=66,解得a 6=6,故{a 6=6a 52=a 4⋅a 7,整理得{a 1+5d =6(a 1+4d)2=(a 1+3d)(a 1+6d),解得{a 1=−4d =2,故a 7=a 1+6d =8. 故选:D .6.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a解:因为a =20.5=√2,c =log 410=log 2√10<log 25,所以b >c ,c =log 410=log 2√10>log 22√2=32>√2,所以 c >a ,所以a <c <b .故选:B .7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .1解:令t =f (x ),则方程f (f (x ))=0,即f (t )=0, 当t ≤0时,t +1=0,∴t =﹣1; 当t >0时,√t −1=0,∴t =1;当t =﹣1时,若x ≤0,则x +1=﹣1,∴x =﹣2,符合题意; 若x >0,则√x −1=−1,∴x =0,不合题意; 当t =1时,若x ≤0,则x +1=1,∴x =0,符合题意;若x >0,则√x −1=1,∴x =4,符合题意,即方程f (f (x ))=0的实根个数为3. 故选:B .8.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17解:cos(π4−α)=35,∵α∈(π4,3π4),∴π4−α∈(−π2,0),∴sin (π4−α)=−√1−cos 2(π4−α)=−45,sin (α−π4)=45,cos α=cos[(α−π4)+π4]=cos (α−π4)cos π4−sin (α−π4)sin π4=35×√22−45×√22=−√210,则sin α=√1−(√210)2=7√210,则tan α=sinαcosα=−7, sin(5π4+β)=−1213,∵β∈(0,π4),∴5π4+β∈(5π4,3π2), ∴cos (5π4+β)=−√1−sin 2(5π4+β)=−513,sin β=sin [(5π4+β)−5π4]=sin(5π4+β)cos 5π4−cos(5π4+β)sin 5π4=−1213×(−√22)−513×√22=7√226,cos β=√1−(7226)2=17√226,则tan β=sinβcosβ=717,则tanαtanβ=−7717=−17. 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面解:如图,当l 为BB 1,m 为BC ,n 为CD 时,满足直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,l ,m ,n 两两相交且垂直,当l 为A 1B ,m 为B 1C 1,n 为AC 时,三条直线两两异面,故ACD 正确; 三条直线不可能两两平行,若l ∥n ,则l ∥AB ∥n ,而AB 与平面BCC 1B 1相交,则AB 与M 不平行,故B 错误. 故选:ACD .10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z解:由题意g (x )=2sin[2(x +π3)+π3]=2sin (2x +π)=﹣2sin2x ,A 中,可得g (x )为奇函数,所以A 正确;B 中,函数g (x )的对称轴方程满足2x =π2+k π,k ∈Z , 解得x =π4+k 2π,k ∈Z ,当k =﹣1时,x =−π4,所以函数g (x )的图象关于x =−π4对称,所以B 正确; C 中,x ∈[0,π2],则2x ∈[0,π],显然g (x )不单调,所以C 不正确;D 中,令g (x )≤0,则2k π≤2x ≤π+2k π,k ∈Z ,解得k π≤x ≤π2+k π,k ∈Z ,即x ∈[k π,π2+k π],k ∈Z ,所以D 不正确. 故选:AB .11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√212解:因为已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根, 所以Δ=64﹣8m ≥0,即m ≤8,又因为m >0,所以0<m ≤8, 由韦达定理可得:a +b =4,ab =m2>0,所以a >0,b >0. 对于选项A ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:a 2+b 2≥8,当且仅当a =b 时等号成立,故A 正确;对于选项B ,由a +b =4≥2√ab ,当且仅当a =b 时等号成立可得:ab ≤4,当且仅当a =b 时等号成立,故B 不正确;对于选项C ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:√a+√b2≤√a+b 2,即√a +√b ≤2√2,当且仅当a =b 时等号成立,故C 正确;对于选项D ,1a+2+12b =(1a+2+12b)[(2a +4)+2b ]×112=112(2+2b a+2+a+2b +1)≥112(3+2√2b a+2⋅a+2b )=112(3+2√2),当且仅当2b a+2=a+2b,即a =√2b ﹣2时等号成立,故D 正确. 故选:ACD .12.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k解:由a 1=1,a n =na n+12na n+1+1,可得a 1=a 22a 2+1=1,解得a 2=1+√52(负的舍去),故A 错误;由a n +1﹣a n =na n+12+a n+1−na n+12na n+1+1=a n+1na n+1+1>0,即a n +1>a n ,则{a n }是递增数列,故B 正确;由a n+1na n+1+1−1n+1=a n+1−1(n+1)(na n+1+1)>0,则a n +1﹣a n >1n+1,故C 正确;由a n+1na n+1+1−1n=−1n(na n+1+1)<0,则a n +1﹣a n <1n ,所以a n +1=a 1+(a 2﹣a 1)+(a 3﹣a 2)+...+(a n +1﹣a n )<1+1+12+...+1n,故D 正确.故选:BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 (1,﹣2) .解:点A (2,1),向量OA →绕原点O 顺时针旋转π2后等于OB →,则OA →=(2,1),OB →=(1,﹣2),则点B 的坐标为(1,﹣2). 故答案为:(1,﹣2).14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 12 . 解:由题意可知:彗星出现的年份构成一个公差为d =83,首项为a 1=1740的等差数列,所以a n=a1+(n﹣1)d=1740+83(n﹣1)=83n+1657,令2023≤a n≤3000,即2023≤83n+1657≤3000,解得36683≤n≤134383,又n∈N*,所以n=5、6、 (16)所以从现在开始到公元3000年,人类可以看到这颗彗星的次数为16﹣5+1=12次.故答案为:12.15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=﹣1.解:f(x+2)是奇函数,故f(x+2)=﹣f(﹣x+2)且f(2)=0,因为f(x)为偶函数,故f(x+2)=﹣f(﹣x+2)=﹣f(x﹣2),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数周期为8,因为f(x+2)=﹣f(﹣x+2),故f(3)+f(1)=0,f(4)+f(0)=0,即f(4)=﹣1,f(5)=﹣f(1),f(6)=﹣f(2)=0,f(7)=﹣f(3),f(8)=f(0)=1,故f(1)+f(2)+…+f(8)=0,f(1)+f(2)+…+f(2023)=﹣f(8)=﹣1.故答案为:﹣1.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为2π;在Ω中,异面直线AB与DE的距离为√63.解:把平面展开图还原为空间几何体为正八面体,如图所示:球表面积最小,则正八面体的八个顶点在球面上,∴正八面体外接球的球心为正方形ACFD的中心O,半径R=OA=12AF=12√12+12=√22,∴S表=4πR2=4π×12=2π;∵平面ABC∥平面DEF,∴异面直线AB与DE的距离为平面ABC与平面DEF的距离,又∵O到平面ABC的距离与O到平面DEF的距离相等,∴直线AB与DE的距离为O到平面ABC的距离2倍,∵V O﹣ABC=V B﹣AOC,∴13S△ABC•h=13S△AOC•OB,∴√34h=12×√22×√22×√22,∴h=√66,∴异面直线AB与DE的距离为√6 3.故答案为:2π;√6 3.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.解:(1)F(x)为偶函数;证明:∵f(x)=log12x,由{x+1>01−x>0,得x∈(﹣1,1),∴F(x)=f(x+1)+f(1﹣x)=log12(x+1)+log12(1−x)的定义域为(﹣1,1),又F(﹣x)=log12(1−x)+log12(x+1)=F(x),∴F(x)为偶函数;(2)∵F(x)=log12(x+1)+log12(1−x)=log12(1−x2)≥log121=0,∴|F(x)|≤1⇔0≤F(x)=log12(1−x2)≤1,∴1≥1﹣x2≥12,解得−√22≤x≤√22,∴原不等式的解集为[−√22,√22].18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)求函数y =f(x +5π12)+f(x)在[−π3,π2]上的值域.解:(1)由图知A =3−02=32,B =3+02=32, 且{ω⋅(−π3)+φ=−π2+2kπ,k ∈Z ω⋅π2+φ=π2+2kπ,k ∈Z ,|φ|<π2,解得ω=65,φ=−π10, 所以f (x )=32sin (65x −π10)+32; (2)y =f (x +5π12)+f (x )=32sin[65(x +5π12)−π10]+32+32sin (65x −π10)+32=32[sin (65x −π10+π2)+32sin (65x x −π10)+3=32 [cos (65x x −π10)+sin (65x x −π10)]+3=3√22 s in (65x x −π10+π4)+3=3√22 s in (65x x +3π20)+3, 因为x ∈[−π3,π2],所以65x +3π20∈[−π4,3π4], 所以sin (65x +3π20)∈[−√22,1], 所以y ∈[3√22•−√22+3,3√22×1+3]=[32,3√22+3]. 即函数y 的值域为[32,3√22+3]. 19.(12分)在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,AD =2CD =2,AA 1=A 1D =√5,A 1C =√6.(1)证明:平面AA 1D 1D ⊥平面ABCD ;(2)求二面角A 1﹣CD ﹣D 1的余弦值.(1)证明:取AD 的中点O ,连接OC ,因为AA 1=A 1D =√5,得A 1O ⊥AD ,因为A 1D =√5,OD =1,所以A 1O =2,又OD =DC =1,所以OC =√2,在△A 1OC 中,OC =√2,A 1C =√6,A 1O =2,所以A 1C 2=A 1O 2+OC 2,故△A 1OC 为直角三角形,A 1O ⊥OC ,因为OC ∩AD =O ,故A 1O ⊥平面ABCD ,因为A 1O ⊂平面AA 1D 1D ,所以平面AA 1D 1D ⊥平面ABCD ;(2)解:如图,以O 为坐标原点,分别以DC →,OD →,OA 1→的正方向为x 轴,y 轴,z 轴正方向, 建立如图所示空间直角坐标系:故A 1(0,0,2),C (1,1,0),D (0,1,0),D 1(0,2,2),则CD →=(−1,0,0),A 1C →=(1,1,﹣2),DD 1→=(0,1,2),设平面A 1CD 的一个法向量为m →=(x 1,y 1,z 1),则{m →⋅CD →=−x 1=0m →⋅A 1C →=x 1+y 1−2z 1=0,令y 1=2,则m →=(0,2,1),设平面CDD 1C 1的一个法向量为n →=(x 2,y 2,z 2),则{n →⋅CD →=x 2=0n →⋅DD 1→=y 2+2z 2=0,令y 2=2,则n →=(0,2,﹣1),所以cos <m →,n →>=|m →⋅n →||m →||n →|=3√5×√5=35, 由图可知二面角A 1﹣CD ﹣D 1为锐角,所以二面角A1﹣CD﹣D1的余弦值为3 5.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD(道路的宽度忽略不计),已知CD把三角形空地分成两个区域,△ACD区域为儿童娱乐区,△BCD区域为休闲健身区.经测量,AC=BC=100米,AB=100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元.(1)若∠ADC=π4,求景观道路CD的长度;(2)求∠ADC为何值时,口袋公园的造价最低?解:(1)在△ABC中,AC=BC=100,AB=100√3,所以AC2+AB2﹣BC2=1002﹣(100√3)2﹣1002=30000,则cosA=AC2+AB2−BC22AC⋅AB=√32,A∈(0,π),所以A=B=π6,在△ACD中,∠ADC=π4,由正弦定理得ACsin∠ADC=CDsinA,即CD=AC⋅sinAsin∠ADC=10Osinπ6sinπ4=50√2,所以景观道路CD的长度为50√2米.(2)设∠ADC=θ(π6<θ<5π6),在△ACD中,CD=50sinθ,所以S△ADC=12AC⋅CD sin∠ACD=12×100×50sin(5π6−θ)sinθ=2500sin(5π6−θ)sinθ,又S△ABC=12AC⋅AB•sin A=12×100×100√3×12=2500√3,所以S△BCD=2500√3−2500sin(5π6−θ)sinθ,所以投资总额y=2500CD+100S△ACD+50S△BCD=2500×50sinθ+100×2500sin(5π6−θ)sinθ+50[2500√3−2500sin(5π6−θ)sinθ]=2500×50[√3+1+sin(5π6−θ)sinθ]=2500×50(3√32+2+cosθ2sinθ),因为2+cosθ2sinθ=3cos2θ2+sin2θ24sinθ2cosθ2=34tanθ2+tanθ24≥2√34tanθ2⋅tanθ24=√34,当且仅当tan θ2=√3,即θ=2π3时取等号, 此时y 取得最小值,即公园造价最低,所以∠ADC =2π3,口袋公园的造价最低. 21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32. (1)求{a n }的通项公式;(2)若数列{S 2n +15a n }的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132. (1)解:当n =1时,a 1=S 1=32−32=3; 当n ≥2时,a n =S n ﹣S n ﹣1=3n+1−32−3n−32=3n , 因为a 1=3满足上式,所以a n =3n .(2)解:S 2n +15a n =32n+1−32+153n =32n+1+272⋅3n =32•(3n +93n )≥32•2√3n ⋅93n =9, 当且仅当3n =93n ,即n =1时,等号成立, 所以m =1. (3)证明:b n =2a n (a n −2)2=2⋅3n(3n −2)2, 当n =1时,b 1=2⋅31(31−2)2=6; 当n ≥2时,b n =2⋅3n 32n −4⋅3n +4<2⋅3n 32n −4⋅3n +3=2⋅3n (3n −1)(3n −3)=3n 3n −3−3n 3n −1=11−3−n+1−11−3−n , 所以T n =b 1+b 2+b 3+…+b n <6+(11−3−1−11−3−2)+(11−3−2−11−3−3)+…+(11−3−n+1−11−3−n )=6+11−3−1−11−3−n =152−11−3−n <152−1=132,命题得证. 22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在定义域上存在极值,求a 的取值范围;(3)若f (x )≥1﹣sin x 恒成立,求a .解:(1)当a =﹣2时,f (x )=e x ﹣2ln (x +1),可得f ′(x)=e x −2x+1,此时f′(0)=e0−21=−1,又f(0)=e0﹣2ln1=1,曲线y=f(x)在点(0,f(0))处的切线方程为y﹣1=﹣(x﹣0),即x+y﹣1=0;(2)易知f′(x)=e x+ax+1(x>−1),当a≥0时,f′(x)≥0恒成立,此时函数f(x)在(﹣1,+∞)上单调递增,不符合题意;当a<0时,f′(x)=e x−a(x+1)2>0,所以当a<0时,f′(x)在定义域上单调递增,又f′(a2)=e a2+aa2+1,因为aa2+1≥−12,e a2>1,所以f′(a2)>0;当a<﹣1时,易知f′(0)=1+a<0,所以函数f(x)在(0,a2)上存在极值点;当a=﹣1时,f′(x)=e x−1x+1,易知f′(0)=0,所以x=0为f(x)的极值点;当﹣1<a<0时,f′(a2−1)=e a2−1+1 a ,因为e a2−1<1,1a<−1,所以f′(a2﹣1)<0,则函数f(x)在(a2﹣1,a2)上存在极值点,综上所述,满足条件的a的取值范围为(﹣∞,0);(3)若f(x)≥1﹣sin x恒成立,即sin x+e x+aln(x+1)≥1恒成立,不妨设g(x)=sin x+e x+aln(x+1),函数定义域为(﹣1,+∞),可得g′(x)=cosx+e x+ax+1,不妨设h(x)=cos x+e x+ax+1,函数定义域为(﹣1,+∞),可得h′(x)=﹣sin x+e x−a(x+1)2,若a=﹣2,当x∈(﹣1,0]时,cosx+e x≤2,−2x+1≤−2,所以g'(x)≤0,当x∈[0,+∞)时,e x≥1,h′(x)≥0,所以g′(x)≥g′(0)=cos0+e0﹣2=0,则x=0时,函数g(x)在x∈(﹣1,+∞)上取得唯一极小值点,此时g(x)≥g(0)=1,所以a=﹣2时,f(x)≥1﹣sin x恒成立;若a<﹣2,易知e x﹣sin x>0,−a(x+1)2>0,所以h′(x)>0,即函数g'(x)单调递增,又g′(−a)=e−a+cos(−a)+a−a+1>e2−1−1>0,因为g'(0)=2+a<0,所以存在x1∈(0,﹣a),使得g'(x1)=0,当0<x<x1时,g′(x1)<0,g(x)单调递减,所以g(x1)<g(0)=1,不符合题意;若﹣2<a<0,由(2)知g′(x)单调递增,当﹣1<x<﹣1−a2<0时,ax+1<−2,g′(x)<1+1+ax+1<0,又g′(0)=2+a>0,所以存在x2∈(﹣1,0),使得g′(x2)=0,当x2<x<0 时,g′(x)>0,g(x)单调递增,所以g(x2)<g(0)=1,不符合题意;若a≥0,易知cos x+e x>0,ax+1≥0,所以g′(x)>0,g(x)单调递增,又g(0)=1,所以当﹣1<x<0时,g(x)<g(0)=1,不符合题意,综上所述,满足条件的a的值为﹣2.。
高三数学试题(理科)注意事项:1.本试卷分4页,本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡及答题纸上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷写在答题纸对应区域内,严禁在试题卷或草纸上答题. 5.考试结束后,将答题卡和答题纸一并交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一个符合题目要求的选项.) 1.设x ∈Z ,集合A 为偶数集,若命题p :∀x ∈Z ,2x ∈A,则 p ⌝A .∀x ∈Z ,2x ∉AB .∀x ∉Z ,2x ∈AC .∃x ∈Z ,2x ∈AD .∃x ∈Z ,2x ∉A2. 设集合A={1,2,3},B={4,5},C={x |x =B b A a a b ∈∈-,,},则C 中元素的个数是A .3B .4C .5D . 63.已知幂函数)(x f y =的图像过点(21,22),则)2(log 2f 的值为A .21 B .-21C .-1D .1 4.在△ABC 中,内角A 、B 的对边分别是a 、b ,若abB A =cos cos ,则△ABC 为A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形5.若当x ∈R 时,函数0()(||>=a a x f x 且1≠a )满足)(x f ≤1,则函数)1(log +=x y a 的图像大致为6.已知011<<ba ,给出下列四个结论:①b a < ②ab b a <+ ③||||b a > ④2b ab < 其中正确结论的序号是A .①②B .②④C .②③D .③④7.等差数列{n a }的前20项和为300,则4a +6a +8a +13a +15a +17a 等于A .60B .80C .90D .1208.已知函数⎩⎨⎧>-≤-=0,120,2)(x x x a x f x (R a ∈),若函数)(x f 在R 上有两个零点,则a 的取值范围是A .)1,(--∞B . ]1,(-∞C .)0,1[-D . ]1,0(9.已知数列{n a }的前n 项和为n s ,且n s +n a =2n (n ∈N *),则下列数列中一定是等比数列的是A .{n a }B .{n a -1}C .{n a -2}D .{n a +2}10.已知函数)3sin()(πω+=x x f (0>ω)的最小正周期为π,将函数)(x f y =的图像向右平移m (m >0)个单位长度后,所得到的图像关于原点对称,则m 的最小值为A .6πB .3π C .125π D .65π11.设函数x x x x f sin )(2+=,对任意),(,21ππ-∈x x ,若)()(21x f x f >,则下列式子成立的是A .21x x >B .2221x x > C .||21x x > D .||||21x x <12.不等式222y axy x +-≤0对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是A .a ≤22B .a ≥22C .a ≥311 D .a ≥29 二、填空题(本大题共4小题,每小题4分,共16分) 13.=⎰2123dt t .14.若21)4tan(=-θπ,则=θθcos sin .15.已知一元二次不等式0)(<x f 的解集为{}221|<<x x ,则0)2(>xf 的解集为 。
高三数学(理科)基础训练四1. 已知全集,U =R 集合2{|37},{|7100},()A x x B x x x A B =≤<=-+<R I 则ð=A .(),3(5,)-∞+∞UB .()[),35,-∞+∞UC .(][),35,-∞+∞UD .(],3(5,)-∞+∞U2.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是( ) A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a3. 若平面向量(2,3)a =r和(2,2)b x =+-r 垂直,则||a b +=r r ( )A. 26B.5C.26D. 234. 已知直线y kx b =+与曲线22010ln y ax x =+-相切于点(1,2012)P ,则b 的值为 A .2010 B .2011 C .2009 D .2012 5. 在等差数列{}n a 中,前n 项和为n S ,且520S =,76a =,则9S 等于( ) A .35 B .90 C .45 D .70 6.已知直线,l m 平面α,β且l α⊥,m β⊂,给出下列四个命题:①若//αβ,则l m ⊥;②若l m ⊥,则//αβ;③若αβ⊥,则//l m ;④若//l m ,则αβ⊥. 其中真命题是( ) A.①② B.①③ C.①④ D.②④ 7.已知2()sin f x x x =,则()f x 在[,]ππ-上的图象为( )A B C D8. 设z x y =+,其中,x y 满足20,0,0.x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩若z 的最大值为6,则z 的最小值为( )A.3-B.3C.2D.2- 10. 已知()cos()(0)3f x x πωω=+>的图象相邻两个对称中心的距离为2π,要得到 ()y f x =的图像,只须把sin y x ω=的图象( )A.向左平移512π个单位B. 向右平移512π个单位C. 向左平移1112π个单位D. 向右平移1112π个单位9. 如图为某几何体的三视图,则该几何体的表面积是( )A. (22)π+B.223π++ 121112C. (32)π+D.3232π++ 10. 一个正方形内接于椭圆,并有两边垂直于椭圆的长轴且分别经过它的焦点,则椭圆的离心率为A .12B. 22C. 512- D 312-12.设函数()f x 定义在实数集上,(2)(),1,()ln f x f x x f x x -=≥=且当时,则有( )A .11()(2)()32f f f <<B .11()(2)()23f f f <<C .11()()(2)23f f f <<D .11(2)()()23f f f <<13. 已知24log log 1a b +=,则12a b +的最小值为 .14. 从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则一条切线长的最小值为15.已知函数⎩⎨⎧=xx x f 3log )(2)0()0(≤>x x ,且关于x 的方程0)(=-+a x x f 有且只有一个实根,则实数a 的范围是 .16. 若c b a ,,是ABC ∆三个内角的对边,且sin 3sin 3sin c C a A b B =+,则圆22:9M x y +=被直线:0l ax by c -+=所截得的弦长为 .17. 设椭圆:C 22221(0)x y a b a b +=>>离心率32e =,左顶点为M 到直线1x ya b+=的距离455d =,O为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线:l y kx m =+与椭圆C 相交于A 、B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;。
高三上学期期中客观题强化训练(三)一、选择题(本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集R U =,集合{}|22M x x =-≤≤,{}2|30N x x x =-≤,则()U M N ð=( )A.[2,0]-B. [2,0)-C.[0,2]D. (0,2]2.已知,,O A B 是平面上的三点,直线AB 上有一点C ,满足2AC CB =-,则OC 等于( )A. 32OA OB -B. 23OA OB -+C. 2OA OB -D. 2OA OB -+ 3.已知{}n a 是公比为q 的等比数列,且1a ,3a ,2a 成等差数列. 则q =( ) A .1或12-B .1C .12- D .2- 4.已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且115a b +=,11a b >,11,a b N *∈,则数列{}n b a 的前10项的和等于( )A .65B .75C .85D .955.若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状为( ) A.等腰三角形 B.正三角形 C. 直角三角形 D.钝角三角形6. ABC ∆中,︒=∠==30,1,3B AC AB ,则ABC ∆的面积等于( )A .23 B .43 C .323或 D .4323或 7. 已知ABC ∆的三个顶点,,A B C 及平面内一点P ,且PA PB PC AB ++=,则点P 与ABC ∆的位置关系是 ( )A.P 在ABC ∆内部B.P 在ABC ∆外部C.P 在AB 边上或其延长线上D.P 在AC 边上 8.设函数ax x x f m+=)(的导函数12)(+='x x f ,则数列*)}()(1{N n n f ∈的前n 项和是( ) A .1+n nB .12++n n C .1-n n D .nn 1+ 9.已知nn a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A =( ) A.9331)( B.9231)( C.9431)( D.11231)(10.已知函数)(x f 的定义域为[2,)-+∞,部分对应值如下表,()f x '为)(x f 的导函数,函数)('x f y =的图象如右图所示:若两正数,a b 满足(2)1f a b +<,则33b a ++的取值范围是( ) A .)34,76(B .)37,53(C .)56,32(D .)3,31(-第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中横线上。
2015-2016学年山东省潍坊市高密市高二(上)期中数学试卷(理科)一、选择题.本大题10个小题,每小题5分,共50分,在每个小题给出的四个选项装,只有一项是符合题目要求的.1.(5分)数列1,,,,的一个通项公式a n是()A.B.C.D.2.(5分)命题“∀x∈R,x2+1>0”的否定是()A.∀x∈R,x2+1≤0 B.∀x∈R,x2+1<0C.∃x0∈R,x02+1<0 D.∃x0∈R,x02+1≤03.(5分)命题“若α=,则tanα=”的逆否命题是()A.若α≠,则tanα≠B.若α=,则tanα≠C.若tanα≠,则α≠D.若tanα≠,则α=4.(5分)设x∈R,则“x>”是“2x2+x﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)若a、b、c∈R,且a>b,则下列不等式一定成立的是()A.ac>bc B.>0 C.(a﹣b)c2≥0 D.<6.(5分)设等差数列{a n}的前n项和为S n,若a3=﹣11,a6+a10=﹣2,则当S n 取得最小值时,n的值为()A.7 B.8 C.9 D.107.(5分)若变量x,y满足约束条件,则的最大值是()A.B.1 C.D.28.(5分)如图,为测得对岸塔AB的高,先在河岸上选一点C,使C在塔底B 的正东方向上,测得点A的仰角为60°,再由点C沿北偏东方向是15°方向走30m 到位置D,测得∠BDC=30°,则塔高是()A.15m B.5m C.10m D.15m9.(5分)在△ABC中,若sin(B﹣C)=1+2sin(A+B)cos(A+C),则△ABC的形状一定是()A.等边三角形B.直角三角形C.钝角三角形D.不含60°的等腰三角形10.(5分)已知正项等比数列{a n}满足:a8﹣a7﹣2a6=0,若存在两项a m,a n,使得=4a 2,则+的最小值为()A.2 B.3 C.4 D.1二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上. 11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a﹣b+c)=ac,则B=.12.(5分)公比为2的等比数列{a n}的各项都是正数,且a4a12=36,则a6=.13.(5分)设等差数列{a n},{b n}的前n项和分别为S n,T n,且=,则=.14.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且cosB=,cosC=,c=3,则a=.15.(5分)某小型餐馆一天装要购买A,B两种蔬菜,A,B蔬菜每千克的单价分别为2元和3元,根据需要,A蔬菜至少要买6千克,B蔬菜至少要买4千克,而且一天中购买这两种蔬菜的总费用不能超过60元,如果这两种蔬菜加工后全部卖出,A,B两种蔬菜交工后每千克分别为2元和1元,则该餐馆的最大利润最大为元.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)已知命题P:关于x的方程x2﹣(a+3)x+a+3=0有两个不等正实根;命题Q:不等式ax2﹣(a+3)x﹣1<0对任意实数x均成立.若P∨Q是真命题,求实数a的取值范围.17.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足bsin (A+B)﹣ccosB=0.(1)求B;(2)若b=,c=2,求△ABC的面积.18.(12分)解关于x的不等式:mx2﹣(4m+1)x+4>0(m∈R)19.(12分)已知等差数列{a n},a1+a5=10,a4=7,等比数列{b n}中,b3=4,b6=32.(1)求数列{a n}、{b n}的通项公式;(2)若c n是a n、b n的等比中项,求数列{c}的前n项和T n.20.(13分)根据政府的要求,某建筑公司拟用1080万购一块空地,计划在该空地上建造一栋每层1500平方米的高层经济适用房,经测算,如果将适用房建为x(x∈N*)层,则每平方的平均建筑费用为800+50x(单位:元).(1)写出拟建适用房每平方米的平均综合费用y关于建造层数x的函数关系式;(2)改适用房应建造多少层时,可使适用房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)21.(14分)已知数列{a n}中a n>0,其前n项和为S n,且对任意的n∈N*,都有S n=(a+2a n+1),等比数列{b n}的通项公式为b n=3n.(1)求数列{a n}的通项公式;(2)求数列{(﹣1)n a n+b n}的前n项和T n;(3)设c n=2+(﹣1)n t•b n(t为非零整数,n∈N*),若对任意n∈N*,c n+1>c n恒成立,求t的取值范围.2015-2016学年山东省潍坊市高密市高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题.本大题10个小题,每小题5分,共50分,在每个小题给出的四个选项装,只有一项是符合题目要求的.1.(5分)数列1,,,,的一个通项公式a n是()A.B.C.D.【解答】解:将原数列写成:,,,,.每一项的分子是正整数数列,分母是正奇数数列,∴数列1,,,,的一个通项公式a n是.故选:B.2.(5分)命题“∀x∈R,x2+1>0”的否定是()A.∀x∈R,x2+1≤0 B.∀x∈R,x2+1<0C.∃x0∈R,x02+1<0 D.∃x0∈R,x02+1≤0【解答】解:∵命题“∀x∈R,x2+1>0”∴命题“∀x∈R,x2+1>0”的否定是“∃x0∈R,x02+1≤0”故选:D.3.(5分)命题“若α=,则tanα=”的逆否命题是()A.若α≠,则tanα≠B.若α=,则tanα≠C.若tanα≠,则α≠D.若tanα≠,则α=【解答】解:命题“若α=,则tanα=”的逆否命题是“若tanα≠,则α≠”.故选:C.4.(5分)设x∈R,则“x>”是“2x2+x﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由2x2+x﹣1>0,可知x<﹣1或x>;所以当“x>”⇒“2x2+x﹣1>0”;但是“2x2+x﹣1>0”推不出“x>”.所以“x>”是“2x2+x﹣1>0”的充分而不必要条件.故选:A.5.(5分)若a、b、c∈R,且a>b,则下列不等式一定成立的是()A.ac>bc B.>0 C.(a﹣b)c2≥0 D.<【解答】解:A.当c=0时,ac>bc不成立;B.当c=0时,=0,故>0不成立;C.∵a>b,∴a﹣b>0,又c2≥0,∴(a﹣b)c2≥0,成立.D.当a,b异号时,a>b⇔⇔<⇔>,故D不成立综上可知:只有C成立.故选:C.6.(5分)设等差数列{a n}的前n项和为S n,若a3=﹣11,a6+a10=﹣2,则当S n 取得最小值时,n的值为()A.7 B.8 C.9 D.10【解答】解:由题意a3=﹣11,a6+a10=﹣2,∴a1+2d=﹣11,2a1+14d=﹣2解得a1=﹣15,d=2,∴S n=﹣15n+=n2﹣16n=(n﹣8)2﹣64.∴当S n取最小值时,n=8.故选:B.7.(5分)若变量x,y满足约束条件,则的最大值是()A.B.1 C.D.2【解答】解:设k=,则k的几何意义为区域内的点到原点的斜率,作出不等式组对应的平面区域如图:由图象知直线OA的斜率最大,由得,即A(2,3),此时k=,故选:C.8.(5分)如图,为测得对岸塔AB的高,先在河岸上选一点C,使C在塔底B 的正东方向上,测得点A的仰角为60°,再由点C沿北偏东方向是15°方向走30m 到位置D,测得∠BDC=30°,则塔高是()A.15m B.5m C.10m D.15m【解答】解:设塔高AB为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,从而有BC=x,AC=x在△BCD中,CD=30,∠BCD=105°,∠BDC=30°,∠CBD=45°由正弦定理可得BC==15∴x=15∴x=15故塔高AB为15m故选:D.9.(5分)在△ABC中,若sin(B﹣C)=1+2sin(A+B)cos(A+C),则△ABC的形状一定是()A.等边三角形B.直角三角形C.钝角三角形D.不含60°的等腰三角形【解答】解:△ABC中,∵sin(B﹣C)=1+2sin(A+B)cos(A+C),即sin(B﹣C)=1﹣2sinCcosB,即sinBcosC﹣cosBsinC=1﹣2sinCcosB,即sin(B+C)=1.再结合0<B+C<π,可得B+C=,∴A=,故△ABC的形状一定是直角三角形,故选:B.10.(5分)已知正项等比数列{a n}满足:a8﹣a7﹣2a6=0,若存在两项a m,a n,使得=4a 2,则+的最小值为()A.2 B.3 C.4 D.1【解答】解:设正项等比数列{a n}的公比为q:∵a8﹣a7﹣2a6=0,∴=0,化为q2﹣q﹣2=0,q>0.解得q=2,,a n,使得=4a2,∵存在两项a∴=4a1q,q=2.化为:m+n=8,则+==≥(10+2)=2,当且仅当n=3m=6时取等号.∴+的最小值为2.故选:A.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上. 11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a﹣b+c)=ac,则B=.【解答】解:△ABC的内角A,B,C的对边分别为a,b,c,∵(a+b+c)(a﹣b+c)=ac,即a2+c2﹣b2=﹣ac,又cosB==﹣,∴B=,故答案为:.12.(5分)公比为2的等比数列{a n}的各项都是正数,且a4a12=36,则a6=.【解答】解:∵公比为2的等比数列{a n}的各项都是正数,且a4a12=36,∴,化为=6,∴a1=.∴a6==.故答案为:.13.(5分)设等差数列{a n},{b n}的前n项和分别为S n,T n,且=,则=.【解答】解:由等差数列的性质可得===,又=,∴==.故答案为:.14.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且cosB=,cosC=,c=3,则a=.【解答】解:∵△ABC中,cosB=,cosC=,∴sinB=,sinC=,∵c=3,∴由正弦定理=得:b===,由余弦定理得:c2=a2+b2﹣2abcosC,即9=a2+﹣2a,解得:a=,故答案为:15.(5分)某小型餐馆一天装要购买A,B两种蔬菜,A,B蔬菜每千克的单价分别为2元和3元,根据需要,A蔬菜至少要买6千克,B蔬菜至少要买4千克,而且一天中购买这两种蔬菜的总费用不能超过60元,如果这两种蔬菜加工后全部卖出,A,B两种蔬菜交工后每千克分别为2元和1元,则该餐馆的最大利润最大为52元.【解答】解:依题意,A蔬菜购买的公斤数x和B蔬菜购买的公斤数y之间的满足的不等式组如下:…(3分)画出的平面区域如图.…(6分)设餐馆加工这两种蔬菜利润为z元,则目标函数为z=2x+y…(7分)∵y=﹣2x+z∴z表示过可行域内点斜率为﹣2的一组平行线在y轴上的截距.联立解得即B(24,4)…(9分)∴当直线过点B(24,4)时,在y轴上的截距最大,即z max=2×24+4=52…(11分)答:餐馆应购买A蔬菜24公斤,B蔬菜4公斤,加工后利润最大为52元.…(12分),故答案为:52三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)已知命题P:关于x的方程x2﹣(a+3)x+a+3=0有两个不等正实根;命题Q:不等式ax2﹣(a+3)x﹣1<0对任意实数x均成立.若P∨Q是真命题,求实数a的取值范围.【解答】解:(Ⅰ)∵命题P:关于x的方程x2﹣(a+3)x+a+3=0有两个不等正实根,∴,解得:a>1,又∵命题Q:不等式ax2﹣(a+3)x﹣1<0对任意实数x均成立,当a=0时:不等式变为:﹣3x﹣1≤0,解得:x≥﹣,显然不符合题意,当a≠0时:,解得:﹣9<a<﹣1,若P∨Q是真命题,则实数a的范围是:﹣9<a<﹣1或a>1.17.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足bsin(A+B)﹣ccosB=0.(1)求B;(2)若b=,c=2,求△ABC的面积.【解答】解:(1)∵bsin(A+B)﹣ccosB=0.∴bsin(π﹣C)﹣ccosB=0.可得:bsinC﹣ccosB=0.∴由正弦定理可得:sinBsinC=sinCcosB,∵sinC≠0,可得:tanB=,∵0<B<π,解得:B=…6分(2)∵由余弦定理可得:b2=a2+c2﹣2accosB,b=,c=2,B=,∴7=a2+4﹣2a,即a2﹣2a﹣3=0,∵a>0,解得:a=3,=acsinB=…12分∴S△ABC18.(12分)解关于x的不等式:mx2﹣(4m+1)x+4>0(m∈R)【解答】解:当m=0时,不等式化为﹣x+4>0,解得x<4;当m<0时,不等式化为(mx﹣1)(x﹣4)>0,即(x﹣)(x﹣4)<0,解得<x<4;当m>0时,不等式化为(x﹣)(x﹣4)>0,令=4,解得m=,此时原不等式化为(x﹣4)2>0,解得x≠4;当<4,即m>时,解不等式得x<或x>4;当>4,即0<m<时,解不等式得x<4或x>;综上,m=0时,不等式的解集是{x|x<4};m<0时,不等式的解集是{x|<x<4};0<m<时,不等式的解集是{x|x<4或x>};m=时,不等式的解集是{x|x≠4};m>时,不等式的解集是{x|x<或x>4}.19.(12分)已知等差数列{a n},a1+a5=10,a4=7,等比数列{b n}中,b3=4,b6=32.(1)求数列{a n}、{b n}的通项公式;(2)若c n是a n、b n的等比中项,求数列{c}的前n项和T n.【解答】解:(1)设等差数列{a n}的公差为d,∵a1+a5=10,a4=7,∴,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.设等比数列{b n}的公比为q,∵b3=4,b6=32.∴,解得b1=1,q=2.∴b n=2n﹣1.(2)∵c n是a n、b n的等比中项,∴=a n b n=(2n﹣1)•2n﹣1.∴数列{c}的前n项和T n=1+3×2+5×22+…+(2n﹣1)•2n﹣1,2T n=2+3×22+…+(2n﹣3)•2n﹣1+(2n﹣1)•2n,∴﹣T n=1+2×2+2×22+…+2n﹣(2n﹣1)•2n=﹣1﹣(2n﹣1)•2n=(3﹣2n)×2n﹣3,∴T n=(2n﹣3)×2n+3.20.(13分)根据政府的要求,某建筑公司拟用1080万购一块空地,计划在该空地上建造一栋每层1500平方米的高层经济适用房,经测算,如果将适用房建为x(x∈N*)层,则每平方的平均建筑费用为800+50x(单位:元).(1)写出拟建适用房每平方米的平均综合费用y关于建造层数x的函数关系式;(2)改适用房应建造多少层时,可使适用房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)【解答】解(1)依题意得y=(800+50x )+=800+50x +(x ∈N *);(2)由y=800+50x +≥800+1200=2000,当且仅当50x=,即x=12时取得等号,故该公寓应建造12层时,可使公寓每平方米的平均综合费用最少,最小值为2000元.21.(14分)已知数列{a n }中a n >0,其前n 项和为S n ,且对任意的n ∈N *,都有S n =(a+2a n +1),等比数列{b n }的通项公式为b n =3n .(1)求数列{a n }的通项公式;(2)求数列{(﹣1)n a n +b n }的前n 项和T n ;(3)设c n =2+(﹣1)n t•b n (t 为非零整数,n ∈N *),若对任意n ∈N *,c n +1>c n 恒成立,求t 的取值范围.【解答】解:(1)∵对任意的n ∈N *,都有S n =(a +2a n +1),当n=1时,,解得a 1=1.当n ≥2时,S n ﹣1=,∴4a n =,化为(a n +a n﹣1)(a n ﹣a n ﹣1﹣2)=0,∵a n >0,∴可得:a n ﹣a n ﹣1=2.∴数列{a n }是等差数列,首项为1,公差为2. ∴a n =1+2(n ﹣1)=2n ﹣1.(2)设数列{(﹣1)n a n },{b n }的前n 项和分别为A n ,B n .B n ==.当n=2k (k ∈N *)为偶数时,A n =﹣a 1+a 2﹣a 3+a 4+…﹣a 2k ﹣1+a 2k =(3﹣1)+(5﹣3)+…+[2k ﹣(2k ﹣1)]=2k=n .T n =n +.当n=2k ﹣1(k ∈N *)为奇数时,A n =A n ﹣1﹣a n =(n ﹣1)﹣(2n ﹣1)=﹣n .T n =﹣n +.∴T n=.(3)c n=2+(﹣1)n t•b n =4n +(﹣1)n t•3n .c n +1>c n 即:4n +1+(﹣1)n +1t•3n +1>4n +(﹣1)n t•3n . 当n 为偶数时,可得4n +1﹣t•3n +1>4n +t•3n ,化为t <,∴.当n 为奇数时,可得4n +1+t•3n +1>4n ﹣t•3n ,化为,∴t >﹣1.综上可得:,∵t 为非零整数,∴t=1.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
高三数学上学期期中模拟(二)一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若全集为实数集R ,集合A =12{|log (21)0},R x x C A ->则=( )A .1(,)2+∞B .(1,)+∞C .1[0,][1,)2+∞ D .1(,][1,)2-∞+∞2.若,2παπ⎛⎫∈ ⎪⎝⎭,1tan ,sin ()47παα⎛⎫+== ⎪⎝⎭则A35 B 45 C 35- D 45- 3.等差数列{}n a 的前n 项的和为n S ,且201320132013a S ==,则1a =( )A. 2012B. -2012C. 2011D. -2011 4. 下列有关命题的说法正确的是A .命题 “若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“6x =”是“2560x x --=”的必要不充分条件.C .命题“对任意,R x ∈均有210x x -+>”的否定是:“存在,R x ∈使得012<+-x x ”. D .命题“若x y =,则cos cos x y =”的逆否命题为真命题.5.非零向量,a b 使得||||||a b a b -=+成立的一个充分非必要条件是( ) A . //a b B. 20a b += C.||||a ba b =D. a b = 6.若}{n a 为首项为1的等比数列,n S 为其前项和,已知2,,2432+a S a 三个数成等差数列,则数列2{}n a 的前5项和为( )A .341B .10003C .1023D .1024 7.已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为32,则a =A.14B.12C.1D.28. ABC ∆三个内角A ,B ,C 所对边分别为a A b B A a c b a 3cos sin sin ,,,2=+,则=ab( ) A.2 B.3 C.22 D.32 9. 设函数()()()sin cos f x x x ωϕωϕ=+++0,||2πωϕ⎛⎫>< ⎪⎝⎭的最小正周期为π, 且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 10.如图,函数()y f x =的图象为折线ABC ,设()(g x f f x =⎡⎣ 则函数()y g x =的图象为( )AC二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上11.等比数列{}n a 中,已知1,214321=+=+a a a a ,则87a a +的值为 . 12.不等式|21||1|2x x ++-<的解集为13.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,30B ∠=,△ABC 的面积为23,那么b 等于_____________ 14.()y f x =是定义在R 上的偶函数且在[)0,+∞上递增,不等式112x f f x ⎛⎫⎛⎫<- ⎪ ⎪+⎝⎭⎝⎭的解集为15.下列命题中,正确的是(1)平面向量a 与b 的夹角为060,)0,2(=a ,1=b ,则=+b a (2)已知()()sin ,1cos ,1,1cos a b θθθ=+=-,其中θ∈⎝⎛⎭⎪⎫π,3π2,则a b ⊥ (3)对于,x R ∈绝对值不等式|10||2|8x x +--≥的解集为[0,)+∞;(4)在Rt ABC ∆中,090C ∠=,AC=4,则16AB AC =-三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)向量(sin cos ,1)a x x ωω=+,((),sin )b f x x ω=,其中0<ω<1,且a ∥b ,将()f x 的图象沿x 轴向左平移4π个单位,沿y 轴向下平移12个单位,得到()g x 的图象,已知()g x 的图象关于(,0)4π对称。
高三数学(理科)基础训练四1. 已知全集,U =R 集合2{|37},{|7100},()A x x B x x x A B =≤<=-+<R 则ð= A .(),3(5,)-∞+∞B .()[),35,-∞+∞C .(][),35,-∞+∞D .(],3(5,)-∞+∞2.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是( )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a3. 若平面向量(2,3)a =和(2,2)b x =+- 垂直,则||a b += ( )A. 26B.5C.26D. 234. 已知直线y kx b =+与曲线22010ln y ax x =+-相切于点(1,2012)P ,则b 的值为 A . 2010B .2011C .2009D .20125. 在等差数列{}n a 中,前n 项和为n S ,且520S =,76a =,则9S 等于( )A .35B .90C .45D .706.已知直线,l m 平面α,β且l α⊥,m β⊂,给出下列四个命题:①若//αβ,则l m ⊥;②若l m ⊥,则//αβ;③若αβ⊥,则//l m ;④若//l m ,则αβ⊥. 其中真命题是( ) A.①②B.①③C.①④D.②④7. 已知2()sin f x x x =,则()f x 在[,]ππ-上的图象为( )A B C D8. 设z x y =+,其中,x y 满足20,0,0.x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩若z 的最大值为6,则z 的最小值为( )A.3-B.3C.2D.2-10.已知()cos()(0)3f x x πωω=+>的图象相邻两个对称中心的距离为2π,要得到 ()y f x =的图像,只须把sin y x ω=的图象( )A.向左平移512π个单位 B. 向右平移512π个单位 C. 向左平移1112π个单位 D. 向右平移1112π个单位 9. 如图为某几何体的三视图,则该几何 体的表面积是( )A. (22)π+B.2232π++ C. (32)π+ D.3232π++ 10. 一个正方形内接于椭圆,并有两边垂直于椭圆的长轴且分别经过它的焦点,则椭圆的离心率为 A .12 B. 22C. 512- D 312- 12.设函数()f x 定义在实数集上,(2)(),1,()ln f x f x x f x x -=≥=且当时,则有( )A .11()(2)()32f f f << B .11()(2)()23f f f << C .11()()(2)23f f f <<D .11(2)()()23f f f <<13. 已知24log log 1a b +=,则12a b+的最小值为 .14. 从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则一条切线长的最小值为15.已知函数⎩⎨⎧=xx x f 3log )(2)0()0(≤>x x ,且关于x 的方程0)(=-+a x x f 有且只有一个实根,则实数a 的范围是 .16. 若c b a ,,是ABC ∆三个内角的对边,且sin 3sin 3sin c C a A b B =+,则圆22:9M x y +=被直线:0l ax by c -+=所截得的弦长为 .17. 设椭圆:C 22221(0)x y a b a b +=>>离心率32e =,左顶点为M 到直线1x y a b +=的距离455d =,O为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线:l y kx m =+与椭圆C 相交于A 、B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;12111。
2015-2016学年山东省潍坊市高密三中高三(上)期中数学模拟试卷(理科)(创新班)(一)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.[﹣1,3]B.{﹣1,3}C.{﹣1,1}D.{﹣1,1,3}2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.85.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.[1,+∞)B.(﹣∞,1]C.[﹣1,1]D.[﹣2,2]8.(5分)已知函数f(x)=sin2x+cos2x﹣m在[0,]上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.[1,2) C.(﹣1,2]D.[1,2]9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.310.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)“凸函数“;已知f(x)=x4﹣x3﹣x2在(1,3)上为“凸函数”,则实数取值范围是()A.(﹣∞,)B.[,5]C.(﹣∞,﹣2)D.[2,+∞)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.13.(5分)如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为m.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈[0,1]时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[4,5]是单调递递增;④若方程f(x)=m在[﹣3,﹣1]上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是.(请把所有正确命题的序号都填上)三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知函数f(x)=Asin(ωx+)(A>0,ω>0)的振幅为2,其图象的相邻两个对称中心之间的距离为.(Ⅰ)若f(α+)=,0<α<π,求sinα;(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k是在[0,π]上有零点,求实数k的取值范围.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S=,求b+c的值.△ABC18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a 2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(1)求函数f(x)的单调区间;(2)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(3)若g(x)=ln(e x﹣1)﹣lnx,当0<a≤1时,求证:f[g(x)]<f(x).2015-2016学年山东省潍坊市高密三中高三(上)期中数学模拟试卷(理科)(创新班)(一)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.[﹣1,3]B.{﹣1,3}C.{﹣1,1}D.{﹣1,1,3}【解答】解:由B中不等式变形得:(x+1)(x﹣3)≤0,且x﹣3≠0,解得:﹣1≤x<3,即B=[﹣1,3),∵A为奇数集合,∴A∩B={﹣1,1},故选:C.2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>【解答】解:A.c=0时不成立;B.∵a<b<0,∴a2>ab>b2,正确;C.取a=﹣1,b=﹣2时,=﹣1,=﹣,则>不成立;D.若a>b>0,则<,因此不正确.故选:B.3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:f(x)=2sin(x+)=2cosx,其图象对称轴是x=kπ,k∈Z,“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的充分不必要条件,故选:A.4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.8【解答】解:由等差数列的性质得,2a5=a3+a7=﹣6,则a5=﹣3,又a1=﹣11,所以d==2,所以a n=a1+(n﹣1)d=2n﹣13,S n==n2﹣12n,所以当n=6时,S n取最小值,故选:B.5.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.【解答】解:由图象可知0<a<1且0<f(0)<1,即即解②得log a1<log a b<log a a,∵0<a<1∴由对数函数的单调性可知a<b<1,结合①可得a,b满足的关系为0<a<b<1,由指数函数的图象和性质可知,g(x)=a x+b的图象是单调递减的,且一定在x 轴上方.故选:B.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.【解答】解:由题意得AB=2,△ABC是等腰直角三角形,•=()•=0+=×=1.故选:B.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.[1,+∞)B.(﹣∞,1]C.[﹣1,1]D.[﹣2,2]【解答】解:∵f(1)=﹣3,∴f(a)﹣f(﹣a)≤﹣6,a≥0时,﹣a2﹣2a﹣[(﹣a)2+2a]≤﹣6,整理得:a2+2a﹣3≥0,解得:a≥1,a<0时,a2﹣2a﹣[﹣(﹣a)2+2a]≤﹣6,整理得:a2﹣2a+3≤0,无解,故选:A.8.(5分)已知函数f(x)=sin2x+cos2x﹣m在[0,]上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.[1,2) C.(﹣1,2]D.[1,2]【解答】解:由题意可得函数g(x)=2sin(2x+)与直线y=m在[0,]上两个交点.由于x∈[0,],故2x+∈[,],故g(x)∈[﹣1,2].令2x+=t,则t∈[,],函数y=h(t)=2sint 与直线y=m在[,]上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤m<2,故选:B.9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.3【解答】解:约束条件为,由,解得A(2,)是最优解,直线x+2y﹣a=0过点A(2,),∴a=3,故选:D.10.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)“凸函数“;已知f(x)=x4﹣x3﹣x2在(1,3)上为“凸函数”,则实数取值范围是()A.(﹣∞,)B.[,5]C.(﹣∞,﹣2)D.[2,+∞)【解答】解:∵f(x)=x4﹣x3﹣x2,∴f′(x)=x3﹣x2﹣3x,∴f″(x)=x2﹣mx﹣3,∵f(x)为区间(1,3)上的“凸函数”,则有f″(x)=x2﹣mx﹣3<0在区间(1,3)上恒成立,∴,解得m≥2故选:D.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.【解答】解:已知数列{a n}的前n项和S n=a n+,①根据递推关系式:(n≥2)②所以:①﹣②得:整理得:数列{a n}是以a1为首项,公比为的等比数列.当n=1时,解得:a1=1所以:=故答案为:12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.【解答】解:设与的夹角为θ,则由题意可得4﹣4+=10,即4﹣4×1×3×cosθ+18=10,求得cosθ=,再结合θ∈[0,π),可得θ=,故答案为:.13.(5分)如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为3.【解答】解:设幂函数解析式为y=x a,∵曲线经过点B(,2),∴a=3,y=x3,∴长方形部分面积S==4,=4﹣=4﹣x4|=3;阴影部分面积S阴影故答案为:3.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为30m.【解答】解:如图所示,依题意可知∠PCB=45°,∠PBC=180°﹣60°﹣15°=105°∴∠CPB=180°﹣45°﹣105°=30°由正弦定理可知BP=•sin∠BCP=20米∴在Rt△BOP中,OP=PB•sin∠PBO=20×=30米即旗杆的高度为30米故答案为:30.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈[0,1]时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[4,5]是单调递递增;④若方程f(x)=m在[﹣3,﹣1]上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是①②④.(请把所有正确命题的序号都填上)【解答】解:对于①,∵f(x+2)=f(x)+f(1),∴f(﹣1+2)=f(﹣1)+f(1),∴f(﹣1)=0,又f(x)为偶函数,∴f(﹣1)=f(1)=0,故①正确;且当x∈[0,1]时,y=f(x)单调递减,对于②,由①知f(1)=0,∴f(x+2)=f(x),∴y=f(x)为周期为2的偶函数,∴f(﹣2﹣x)=f(2+x)=f(﹣2+x),∴y=f(x)关于x=﹣2对称,故②正确;对于③,∵f(x+2)=f(x),∴y=f(x)为周期为2的函数,又x∈[0,1]时,y=f(x)单调递减,∴函数y=f(x)在[4,5]是单调递减函数,故③错误;对于④,∵偶函数y=f(x)在区间[0,1]上单调递减,∴y=f(x)在区间[﹣1,0]上单调递增,又y=f(x)为周期为2的函数,∴y=f(x)在区间[﹣3,﹣2]上单调递增,在区间[﹣2,﹣1]上单调递减,又y=f(x)关于x=﹣2对称,∴当方程f(x)=m在[﹣3,﹣1]上的两根为x1,x2时,x1+x2=﹣4,故④正确.综上所述,①②④正确.故答案为:①②④.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知函数f(x)=Asin(ωx+)(A>0,ω>0)的振幅为2,其图象的相邻两个对称中心之间的距离为.(Ⅰ)若f(α+)=,0<α<π,求sinα;(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k是在[0,π]上有零点,求实数k的取值范围.【解答】解:(Ⅰ)依题意,A=2,T==,∴ω=3,∴f(x)=2sin(3x+) (2)分又f(α+)=2sin[3(+)+]=2sin(2α+)=2cos2α=,∴cos2α=…4分∴sin2α==,又0<α<π,∴sinα=…6分(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)=2sin[3(x﹣)+]=2sin(3x﹣)的图象,…8分则函数y=g(x)﹣k=2sin(3x﹣)﹣k,∵x∈[0,π],∴3x﹣∈[﹣,],∴﹣≤2sin(3x﹣)≤2…11分∵函数y=g(x)﹣k在[0,π]上有零点,∴y=g(x)与y=k在[0,π]上有交点,∴实数k的取值范围是[﹣,2]…12分17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S=,求b+c的值.△ABC【解答】解:(Ⅰ)解:f(x)=sinx(cosx+sinx)+cos2x﹣=sinxcosx+cos2x=sin(2x+)+由2x+∈(﹣+2kπ,+2kπ),可得函数f(x)的单调递增区间(﹣+kπ,+kπ)(k∈Z);(Ⅱ)由题意f(A)=sin(2A+)+=,化简得sin(2A+)=,∵A∈(0,π),∴A=;在△ABC中,根据余弦定理,得a2=b2+c2﹣2bccos =(b+c)2﹣3bc=3,∵S==bc•,∴bc=2△ABC∴b+c=3.18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.【解答】解:由已知条件知ln(x+1)<恒成立,即:恒成立,即:a在x∈(﹣1,2)上恒成立;函数在(﹣1,2)上的最大值为;∴;即p:a;设f(x)=x2+(1﹣a)x+1,则由命题q:,解得3;即q:3;若p∨q为真命题,p∧q为假命题,则p,q一真一假;①若p真q假,则:,∴;②若p假q真,则:,∴a∈∅;∴实数a的取值范围为.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)设数列{a n}的公比为q,已知S n是等比数列{a n}的前n项和,a1>0,S4,S2,S3成等差数列,则:2S2=S3+S4解得:q=﹣2或1(舍去)由于:16是a2和a8的等比中项解得:a1=1所以:(Ⅱ)等差数列{b n}中,设公差为d,b1=1,前9项和等于27.则:解得:d=所以:令c n=2a n b n==(n+1)(﹣2)n﹣1T n=c1+c2+…+c n﹣1+c n=2•(﹣2)0+3•(﹣2)1+…+(n+1)(﹣2)n﹣1①﹣2T n=2•(﹣2)1+3•(﹣2)2+…+(n+1)(﹣2)n②①﹣②得:3]﹣(n+1)(﹣2)n解得:20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?【解答】解:(Ⅰ)P(x)=[50x+7500+20x+x(x+﹣30)]÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(1)求函数f(x)的单调区间;(2)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(3)若g(x)=ln(e x﹣1)﹣lnx,当0<a≤1时,求证:f[g(x)]<f(x).【解答】解:(1)函数的定义域为(﹣∞,+∞),f′(x)=(e x﹣ax﹣1)′=e x﹣a.当a≤0时,f′(x)>0恒成立,即有f(x)在R上递增;当a>0时,由f′(x)<0,得e x﹣a<0,e x<a,∴x<lna,由f′(x)>0,得e x﹣a>0,e x>a,∴x>lna,所以函数的单调减区间为(﹣∞,lna),单调增区间是(lna,+∞).(2)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得a=﹣lnx(x>0),令h(x)=﹣lnx(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,2]上单调递增,故h(x)≥h(1)=e﹣1.又h(2)=﹣ln2,当a=1时,对∀x>0,有f(x)>f(lna)=0,即e x﹣1>x,即>1,当e﹣1<a<﹣ln2时,函数F(x)有两个不同的零点;当a=e﹣1或a≥﹣ln2时,函数F(x)有且仅有一个零点;当a<e﹣1时,函数F(x)没有零点;(3)由(1)知,当0<a≤1时f(x)在(0,+∞)上单调递增,且f(0)=0;∴对x>0时,有f(x)>0,则e x﹣1>ax;故对任意x>0,ln(e x﹣1)﹣ln(ax)>g(x)=ln(e x﹣1)﹣lnx>0;所以,要证f[g(x)]<f(x),只需证:∀x>0,g(x)<x;只需证:∀x>0,ln(e x﹣1)﹣lnx<x;即证:ln(e x﹣1)<lnx+lne x;即证:∀x>0,xe x>e x﹣1;所以,只要证:∀x>0,xe x﹣e x+1>0,令H(x)=xe x﹣e x+1,则H′(x)=xe x>0,故函数H(x)在(0,+∞)上单调递增.∴H(x)>H(0)=0;∴对∀x>0,xe x﹣e x+1>0成立,即g(x)<x,∴f[g(x)]<f(x).赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x=的定义域为I,如果存在实数M满足:(1)对于任意的x I∈,都有()f x M≤;yxo(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。