工程力学03章 静力学平衡问题
- 格式:ppt
- 大小:1.98 MB
- 文档页数:58
工程力学中的静力学平衡与结构平衡问题工程力学是研究物体静止或运动状态下受力和变形的学科。
而静力学平衡和结构平衡问题是工程力学的重要内容之一。
本文将探讨静力学平衡的基本原理和结构平衡的相关概念。
一、静力学平衡问题静力学平衡问题是指研究物体在不发生运动的情况下的受力平衡情况。
在静力学平衡问题中,物体所受外力和外力对物体的作用点位矢量之和为零,即∑F = 0。
这是基于牛顿第一定律的,物体处于静止或匀速直线运动状态时,所受合力为零。
在解决静力学平衡问题时,常使用力的合成与分解原理以及受力分析的方法。
通过分析物体所受的各个力的作用方向和大小,可以确定物体所处的平衡状态。
静力学平衡问题的应用很广泛,比如在建筑工程中,我们需要确保建筑物的稳定性。
通过分析各个构件所受的力和力矩,可以确定建筑物的结构是否平衡,从而保证其安全性。
二、结构平衡问题结构平衡问题是指研究物体内部各个构件的受力平衡情况。
在解决结构平衡问题时,需要考虑物体内部的各个节点和构件之间的相互作用关系。
结构平衡问题可以通过静力学平衡的原理来解决。
对于一个构件而言,其受力平衡要求总力合为零。
在力的合成与分解原理的帮助下,可以确定每个节点上的力的大小和方向,从而得到整个结构的受力平衡状况。
在实际工程中,结构平衡问题是保证建筑物和桥梁等工程结构稳定性的重要问题。
通过分析结构的受力平衡情况,可以确定结构的合理设计,并且预测结构在受到外力作用时的变形情况,从而确保结构的安全性。
三、应用实例为了更好地理解工程力学中的静力学平衡与结构平衡问题,我们举一个简单的桥梁的实例。
考虑一座桥梁,桥上有一辆汽车在通过。
我们需要确保桥梁的结构平衡以保证安全。
首先,我们可以将桥梁简化为若干个构件,比如桥墩、桥面等。
通过静力学平衡原理,我们可以分析每个构件所受的受力情况。
以桥墩为例,桥墩受到来自桥面和汽车的作用力。
通过力的合成与分解原理,我们可以确定桥墩所受力的大小和方向。
类似地,我们可以对桥面和其他构件进行受力分析。
第3章 静力学平衡问题 §3.1 平衡与平衡条件一、平衡的概念物体的平衡,在工程上是指物体相对于地面保持静止或作匀速直线运动的状态。
平衡是相对于确定的参考系而言的。
静力学所讨论的平衡问题可以是单个刚体,也可以是由若干个刚体组成的刚体系统。
刚体或刚体系统是否平衡取决于作用在其上的力系。
二、平衡条件要使物体保持平衡状态,作用在其上的力必须满足一定的条件,这种条件我们称为力的平衡条件。
从效应上看,物体保持平衡应是既不移动,又不转动。
因此,力系的平衡条件是,力系的主矢和力系对任一点的主矩等于零。
其解析表达式称为平衡方程。
§3.2 平面力系的平衡方程一、平面力系的平衡方程1)基本形式⎪⎩⎪⎨⎧=∑=∑=∑0)(000F M Y X2)二矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴3)三矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线特殊力系的平衡方程 1)共线力系:=∑i F2)平面汇交力系:⎩⎨⎧=∑=∑00Y X3)平面力偶系: 0i m =∑4)平面平行力系: )//( 0)(0轴y M Y i o F F ⎩⎨⎧=∑=∑§3.3 空间力系的平衡方程一、空间力系的平衡方程其基本形式的平衡方程为:ΣX=0 ΣM x(F)=0ΣY=0 ΣM y(F)=0ΣZ=0 ΣM z(F)=0必须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。
具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。
此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。
使计算更为简便。
几种特殊力系的平衡方程1)空间汇交力系ΣX=0ΣY=0ΣZ=02)空间力偶系ΣM x(F)=0ΣM y(F)=0ΣM z(F)=03)空间平行力系(若各力//z轴)ΣZ=0ΣM x(F)=0ΣM y(F)=04)平面任意力系(若力系在Oxy平面内)∑X==∑YM(=∑F)z§3.4 平衡方程的应用一、一般应用举例例3-1,例3-3,例3-4,例3-5(改求起重机不翻平衡块的重量就应是多少?),例3-6,例3-7 补充:已知:带轮D :D1=400 mm ,FT=2000 N ,Ft=1000 N ;齿轮C :D2=200 mm ,a=20° 求:齿轮C 的啮合力Fn ,轴承A 、B 的约束力FA 、FB轴承A 、B 的约束力FA 、FB 就是圆轴受支座中圆孔的约束力,圆孔销钉就是固定铰链两个分力 为说明两分力方向,建立空间直角坐标系Oxyz ?y 轮轴线,z 轴铅直,Oxy 是水平面,三轴垂直 轴承支座表示方法(下图),其约束两分力为xz 方向,用F Ax 、F Az 和F Bx 、F Bz ,或X A 、Z A 和X B 、Z B 侧视图(将轮轴及其受力投影到Oxz 平面上)受力图,没有画轴承A 、B 的约束力,因为没有解除这两个轴承约束=B M ∑02cos 2221t 1T =⨯⨯⨯D F D F D F n a --2000×200-1000×200-Fncos20°×100=0 Fn=2130 N主视图(将轮轴及其受力投影到Oyz 平面上)受力图,其中Fnz=Fncos20°=2130×0.9396=2000 N因主动力Fnz=2000 N 作用点到A 、B 两个支座距离相同,方向向上显然,与之平衡的两支座约束力大小相等,实际方向向下,和受力图所画的方向相反,所以N10002N 20002-====--nzB A F Z Z俯视图(将轮轴及其受力投影到Oxy 平面上) 受力图,其中Fnx=Fnsin20°=2130×0.3420=729 NΣMA=0 -(FT+Ft)×0.15+Fnx ×0.25-XB ×0.5=0 -(2000+1000)×0.15+729×0.25-XB ×0.5=0 XB=-536 NΣFx=0 -FT-Ft+XA-Fnx+XB=0 -2000-1000+XA-729+(-536)=0 XA=4265 N 结论:Fn=2130 NXA=4265 N ; XB=-536 N ZA=-1000 N ; ZB=-1000 N 小结:①轮轴类部件平面解法:1.侧视图求未知主动力 2.主视图求铅直向约束力 3.俯视图求水平向约束力在每一视图上,使用平面力系力的投影方程和力矩平衡方程求解未知力 ②皮带拉力,无论倾斜与否,总是和轮缘相切,对轮轴的力矩等于拉力乘以半径齿轮啮合力一定和其分度圆不相切,对轮轴的力矩=啮合力×cosa ×半径(啮合力×cosa=圆周方向分力)③侧视图上没有画轴承A 、B 的约束力,因为没有解除两个轴承约束(若画有XA 、ZA 和XB 、ZB 四力) 不能用ΣFx=0,-FT-Ft-Fnsina=0求Fn ,因为在x 方向,实际上还有XA 、XB 两力的投影 二、重心1、物体的重心物体的重量(力):物体每一微小部分地球引力的合力。
工程力学中的静力平衡问题解决方法探究工程力学作为一门基础学科,研究的是物体在受力作用下的平衡与运动规律。
其中,静力平衡问题是工程力学的一个基本概念。
本文将探究工程力学中的静力平衡问题解决方法,帮助读者更好地理解和应用。
一、平衡概念和条件在开始探究解决方法之前,我们首先了解一下平衡的概念和条件。
工程力学中,平衡指的是物体处于静止状态或者匀速直线运动状态,不受任何力的影响。
要使物体达到平衡状态,必须满足以下两个条件:1. 力合为零:物体所受的所有力的合力必须等于零,即ΣF = 0。
2. 力矩合为零:物体所受的所有力的力矩合必须等于零,即ΣM = 0。
只有同时满足力合为零和力矩合为零的条件,物体才能达到静力平衡状态。
二、静力平衡问题解决方法为了解决工程力学中的静力平衡问题,我们可以采用以下几种方法:1. 图解法图解法是解决静力平衡问题最常用的方法之一。
该方法通过绘制物体所受力的受力图,将力的大小和方向用矢量表示,以帮助我们分析和求解平衡状态。
在使用图解法时,我们需要按照力的大小和方向绘制受力图,并通过矢量相加法求出力的合力和力矩。
通过比较合力和力矩是否为零,判断物体是否处于静力平衡状态。
2. 分解法分解法是另一种解决静力平衡问题的常用方法。
该方法可以将力分解成两个或多个分力,使得每个分力的合力和合力矩等于原来的力和力矩。
通过分解法,我们可以将复杂的平衡问题简化为几个较为简单的子问题。
将物体所受力进行逐一分解,并分别求解每个分力的合力和合力矩,最终判断物体是否处于静力平衡状态。
3. 代数法除了图解法和分解法外,代数法也是解决静力平衡问题的一种有效方法。
该方法通过建立方程组,将平衡条件转化为求解方程的问题,进而求得物体所受力和力矩的解。
在使用代数法时,我们需要根据平衡条件建立方程组,并通过求解方程组得到未知力和力矩的数值。
通过比较计算结果是否满足平衡条件,判断物体是否处于静力平衡状态。
三、实际应用举例工程力学中的静力平衡问题经常应用于实际工程中。
工程力学(静力学与材料力学)习题第3章力系的平衡3-1 试求图示两外伸梁的约束反力F R A、F R B,其中(a)M = 60kN·m,F P = 20 kN;(b)F P = 10 kN,F P1 = 20 kN,q = 20kN/m,d = 0.8m。
(a)(b)习题3-1图3-2 直角折杆所受载荷,约束及尺寸均如图示。
试求A处全部约束力。
习题3-2图3-3 图示拖车重W = 20kN,汽车对它的牵引力F S = 10 kN。
试求拖车匀速直线行驶时,车轮A、B 对地面的正压力。
习题3-3图3-4 图示起重机ABC具有铅垂转动轴AB,起重机重W = 3.5kN,重心在D。
在C处吊有重W1 = 10kN 的物体。
试求滑动轴承A和止推轴承B的约束力。
习题3-4图习题3-5图 习题3-6图习题3-8图 习题3-7图 3-5 图示钥匙的截面为直角三角形,其直角边AB = d 1,BC = d 2。
设在钥匙上作用一个力偶矩为M 的力偶。
试求其顶点A 、B 、C 对锁孔边上的压力。
不计摩擦,且钥匙与锁孔之间的隙缝很小。
3-6 图示一便桥自由放置在支座C 和D 上,支座间的距离CD = 2d = 6m 。
桥面重321kN/m 。
试求当汽车从桥上面驶过而不致使桥面翻转时桥的悬臂部分的最大长度l 。
设汽车的前后轮的负重分别为20kN 和40kN ,两轮间的距离为3m 。
3-7 直解三角形平板OBC 的载荷,约束及尺寸(OB = d 1,OC = d 2)如图所示。
试求A 、O 处约束力。
3-8 起重机装有轮子,可沿轨道A 、B 移动。
起重机桁架下弦DE 的中点C 上挂有滑轮(图未画出),用来提起挂在索链CG 上的重物。
从材料架上提起的物料重W = 50 kN ,当此重物离开材料架时,索链与铅垂线成 = 20°角。
为了避免重物摆动,又用水平绳索GH 拉住重物。
设索链张力的水平分力仅由右轨道B 承受,试求当重物离开材料架时轨道A 、B 的受力。