化工热力学解析
- 格式:ppt
- 大小:3.50 MB
- 文档页数:347
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。
4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。
化工热力学的名词解释引言:化工热力学是化学工程中非常重要的一门学科,它研究的是化学反应过程中的能量转化、传递和平衡等热力学原理与方法。
以下将对化工热力学中的一些关键名词进行解释,帮助读者更好地理解和应用这些概念。
一、焓(Enthalpy):焓是化工热力学中一个非常重要的量,它表示系统的内能和对外界做的功之间的总和。
焓的变化是化学反应或物质相变等过程中的重要参量。
在常温常压下,焓通常使用标准焓表示,记为ΔH°。
通过计算物质的吸热或放热量,可以用来确定反应的热效应。
二、熵(Entropy):熵是表示系统无序程度或混乱程度的物理量。
化工热力学中的熵是指系统能量的一种度量,常用符号为S。
熵的变化是系统在吸热或放热过程中的重要参量。
熵增定律是指孤立系统熵总是增加的规律,可用来描述自然界中的很多过程。
三、自由能(Free Energy):自由能是一个系统在恒定温度下能做的最大可逆功的最大减值。
它是描述系统在恒定温度和压力下它达到一个平衡状态的程度的一个非常重要的物理量。
自由能的变化可用来预测反应是否会自发进行以及反应的方向。
四、热力学平衡(Thermodynamic Equilibrium):热力学平衡是指系统的各种宏观性质在连续不断的时间变化之后趋于稳定的状态。
对于化学反应的热力学平衡,反应物和生成物的浓度或物相的比例保持不变,且反应速率达到一种动态平衡,正反应速率相等。
热力学平衡状态是实现可持续化学反应的重要条件。
五、化学势(Chemical Potential):化学势是描述物质在一定温度、压力和组分条件下的自由能变化的关键物理量。
化学势的变化可以预测化学反应的趋势以及化学平衡的位置。
通过研究化学势的变化可以探索最佳反应条件和反应过程的优化。
六、热容(Heat Capacity):热容是指系统在吸收或释放一定量热量时温度变化的情况。
它是描述物质对热能的存储和释放能力的物理量。
热容可以分为等压热容和等容热容,分别对应恒定压力和恒定体积条件下的热容。
化工热力学化工热力学是研究化工、炼油、石油化工等生产中的热效应和热过程规律的一门科学。
它以大量实验数据为基础,用定性和半定量的方法,阐明化工单元操作中的能量转化和转移的本质及其与化学平衡的关系,从而建立起反映各种物理现象之间联系的基本理论。
在合成氨工业生产中具体应用的为动量传递理论、反应热计算和放热反应计算,其中动量传递理论还用于设计合成塔内件,以控制气体的流速和返回动量;反应热计算可为动量传递过程和计算热力学反应器提供依据。
这里面包括了各种类型的单相反应,主要涉及反应热和化学反应热两个方面的问题。
反应热的求取:反应热通常指由一个单元反应的能量变化所引起的其他单元反应的能量变化。
在确定了反应条件后,为了获得足够的信息以利于控制,可根据经验公式或由实验数据推导出反应热的经验式。
反应热的计算与表示:反应热与反应级数有着密切的联系,并且与温度的高低有一定的比例关系。
因此,正确地表示和求取反应热的过程称为反应热的计算。
在反应过程中,只有正确地求出每一步反应的反应热,才能准确地知道反应进行到什么阶段,即是在哪一步完成的。
然后根据每一步的反应热值就可以求出该步反应在该温度下完全反应所需要的热量。
对化学反应来说,当前者(如在常压下进行)和后者(如在较高的压力下进行)的温度不同时,则必须先分别求出前者和后者的反应热,再由前者和后者的反应热求得前者的反应热。
因此,通过反应热的计算,可以知道化学反应所经历的步骤,也可以通过反应热的计算,估算出反应所经历的温度范围。
反应热计算对设计和安装合成塔和催化剂、使反应器有最佳工作状态等都是必不可少的。
在动量传递理论中也涉及到反应热的问题,但不直接考虑反应热,而把热量视为分子传递的作用力,通过作用力的相互作用传递热量。
2化工热力学分析在实际工作中也有重要意义。
例如,在合成氨工业生产中具体应用的为动量传递理论、反应热计算和放热反应计算,其中动量传递理论还用于设计合成塔内件,以控制气体的流速和返回动量;反应热计算可为动量传递过程和计算热力学反应器提供依据。
化工热力学2笔记
一、化工热力学
1、什么是化工热力学
化工热力学是研究能量变化和物质变化的关系的理论,是化工学的一个重要的分支。
物理化学是研究物质的组成、性质和变化的规律以及影响它们变化的因素,而化工热力学则是研究物质变化的能量关系,通过研究物质的能量变化,了解物质的变化规律,从而应用到化学工程上。
2、化工热力学的基本概念
(1)热量:热量(Q)是指系统物质的能量总量,能够表示物质的温度、压力、体积等能量。
(2)热力学量:热力学量(U)是指系统物质的有效能量,它在物质内部发生变化时不发生改变。
(3)物质的焓:焓(H)是指物质或系统的可以源的热量,也可以说是物质的内能,它在物质的变化过程中不发生改变。
(4)焓的热力值:热力值(L)是指物质或系统的热量变化引起的焓变化,它在物质变化过程中不发生改变。
(5)物质的熵:熵(S)是指物质或系统的混乱程度,表示系统热量的分布状态,也表示系统物质的均匀度。
它在物质变化过程中不发生改变。
3、化工热力学的基本原理
(1)热力学第一定律:热力学第一定律(或热力学不等式)是
指物质系统的焓减小到极限时,其系统热量内热力值ulp(U)的增加是这种减小的最大值。
(2)热力学第二定律:热力学第二定律是指当一个热力学系统在恒定温度和压力下的熵总量是一定的,它永远不会自行组织、结构化,从而发生“反常”变化的现象。
化工热力学的特点化工热力学是研究化学反应与能量转化之间关系的学科,它是化学工程学科中的一个重要分支。
化工热力学的特点主要表现在以下几个方面:1. 热力学基础:化工热力学是建立在热力学基础上的,它包括了热力学原理、热力学方程等基本知识。
热力学是研究能量转化与能量传递规律的科学,它研究的对象不仅包括化学反应过程中的能量变化,还包括物质的相变、传热、传质等过程。
化工热力学通过运用热力学的基本原理和方程,来研究化学反应与能量转化之间的关系。
2. 系统分析:化工热力学研究的对象是化学反应系统,这个系统可以是一个单一的物质,也可以是多个物质之间的反应体系。
化工热力学通过对系统的分析和描述,可以揭示系统中的能量变化规律和物质转化规律,为化学工程的设计和优化提供理论依据。
3. 能量平衡:化工热力学中的一个重要概念是能量平衡。
能量平衡是指在化学反应过程中,系统所吸收和释放的能量之间的平衡关系。
通过能量平衡的分析,可以确定化学反应的放热或吸热性质,从而对反应过程进行控制和调节。
4. 热力学参数:化工热力学研究中常常涉及到一些热力学参数的计算和测定。
例如,焓变、熵变、自由能变等参数,它们可以通过实验测定和计算来获得。
这些参数的计算和测定对于研究化学反应的热力学特性和能量转化效率具有重要意义。
5. 热力学分析方法:化工热力学研究中使用了一系列的分析方法和工具。
例如,热力学平衡分析法、热力学循环分析法、热力学图等。
这些方法和工具可以帮助研究人员对化学反应系统进行全面的热力学分析,揭示系统中的能量转化规律和热力学特性。
6. 应用广泛:化工热力学的研究成果在化学工程领域具有广泛的应用价值。
例如,在化学反应工程中,热力学分析可以用来确定反应的最适温度、最适压力等条件,从而提高反应的效率和产率。
在能源工程中,热力学分析可以用来优化能源转换过程,提高能源利用效率。
在环境工程中,热力学分析可以用来研究废气处理过程中的热能回收和利用等。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学知识点框架总结热力学是一门研究能量转化和能量传递规律的自然科学。
在化工领域,热力学是一门重要的基础学科,它不仅是理论研究的基础,也是工程设计和实践的重要依据。
本文将对化工热力学的相关知识点进行总结,包括热力学基本概念、热力学系统与过程、物态方程、热力学第一定律、热力学第二定律、熵和热力学函数等内容。
1. 热力学基本概念热力学是研究能量转化和能量传递的规律的一门科学,它是人们认识能源转化过程的基础。
热力学基本概念包括系统、边界、环境、状态、过程等。
系统是研究对象的一部分,可以是封闭系统、开放系统或闭合系统;边界是系统与环境之间的分界面;环境是系统外部的一切事物;状态是系统在一定条件下所处的特定状态,可以通过状态方程描述;过程是系统从一个状态变为另一个状态的行为。
2. 热力学系统与过程根据热力学研究对象的不同,系统可以分为孤立系统、封闭系统和开放系统。
孤立系统与外界无能量和物质的交换;封闭系统能与外界进行能量交换但不能与物质交换;开放系统能与外界进行能量和物质的交换。
根据系统的体积和质量的变化,热力学过程可以分为等体过程、等压过程、等温过程和绝热过程。
等体过程中系统的体积不变,等压过程中系统的压强不变,等温过程中系统的温度不变,绝热过程中系统与外界无热交换。
3. 物态方程物态方程描述了气体的状态参数之间的关系,最常用的气体状态方程是理想气体状态方程。
理想气体状态方程描述了理想气体的压强、体积、温度之间的关系,可以表示为P*V=n*R*T,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体的特定常数,T为气体的温度。
除了理想气体状态方程,还有范德瓦尔斯方程等描述气体状态的方程。
在实际工程中,通过物态方程可以描述气体在不同条件下的状态参数,为工程设计和生产提供基础数据。
4. 热力学第一定律热力学第一定律是能量守恒定律的表达,在闭合系统中能量不会自发减少或增加。
热力学第一定律可以表达为系统内能的变化等于系统所做的功与系统所吸收的热的代数和。