CO2压缩机技术及应用(源自冰轮)
- 格式:ppt
- 大小:8.98 MB
- 文档页数:57
二氧化碳跨临界循环制冷CO 2作为制冷剂的应用历史•CO 2作为最早的制冷剂之一,在19世纪末到20世纪30年代得到了普遍的应用,到1930年,80%的船舶采用CO 2制冷。
•但由于当时采用的CO 2亚临界循环制冷效率低,特别是当环境温度稍高时,CO 2的制冷能力急剧下降,且功耗增大。
•同时,以R12为代表的CFC 或氟氯烃制冷剂的出现,以其无毒、不可燃、不爆炸、无刺激性、适中的压力和较高的制冷效率等特点,很快取代了CO 2在安全制冷剂方面的位置。
•近年来,制冷剂对臭氧层的破坏和全球温室效应等环保问题日益突出,而CO 2跨临界制冷循环的提出,CO 2作为制冷剂开始重新得到重视•该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。
压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。
但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成。
CO作为制冷工质的优缺点2优点•良好的安全性和化学稳定性•具有与制冷循环和设备相适应的热物理性质•CO2优良的流动和传热特性•CO2制冷循环的压缩比较常规工质制冷循环低缺点•运行压力高•循环效率低带回热器和不带回热器的CO 2跨临界单级循环进行理论分析和实验性能测试2•典型的CO 2跨临界单级循环主要由压缩机、气体冷却器、节流阀和蒸发器组成.图1和图2分别给出了CO 2跨临界单级循环原理图和细图.图l 中:低压气态制冷剂经压缩机被压缩成高压气态制冷剂(过程l 一2),经气体冷却器进行定压放热(过程2—3),然后经节流阀进行节流降压(过程3—4),低压液态制冷剂在蒸发器内进行定压吸热(过程4一1),最后回到压缩机,从而完成一个循环.2•制冷循环增设回热器,可以减小节流损失、增大制冷量,从而提高系统性能.图3和图4分别给出了带回热器的CO 2跨临界单级循环原理图和细图.两个循环性能对比分析•图5给出了两个循环COP随蒸发温度的变化.随着蒸发温度的增加,两个循环COP均呈增加趋势,蒸发温度越高,系统性能越优;•在整个蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高4.55%左右;•对于理想压缩机循环,系统性能要比实际循环性能高33.3%以上,但这种理想循环是不存在的.•图6给出了两个循环COP 随气体冷却器出口温度的变化.•随着气体冷却器出门温度的增加,两个循环COP均呈下降趋势,温度越高,系统性能越差;•在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高5.23%左右.•两个循环COP 随压缩机排气温度的变化,见图7.•在排气温度变化范围内,相同对比条件下,带回热器CO 2跨临界单级循环系统COP 要高于不带回热器循环,且带回热器单级循环排气温度要稍高些.•无论带回热器还是不带回热器循环,随着压缩机效率提高,系统COP 均变大,压缩机排气温度均有所降低,不带回热器循环降低幅度较大.•由图7还可以看出,两个单级循环都存在一个最优排气温度,使得在此温度下系统COP 最大,带回热器循环对应最优排气温度要高于不带回热器循环最优排气温度.结论•(1)在蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约4.55%;在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约5.23%;相同对比条件下,带回热器CO跨临界单级循环系统COP高于不2带回热器循环的,且带回热器单级循环最优排气温度稍高些.•(2)两种单级循环的制热量、制冷量、制热COP和制冷COP,均随压缩机排气压力增加存在极值;随冷却水流量、冷冻水流量以及冷冻水进口温度增加而增加,随冷却水进口温度增加而下降.•(3)相同测试工况下,带回热器循环系统具有较高的性能.其中,制热量和制冷量分别比不带回热器的单级循环平均高约3.33%和5.35%,制热COP和制冷COP分别提高约11.36%和14.29%.CO2跨临界循环的应用前景与研究进展•1、汽车空调•2、热泵•3、食品冷藏•4、循环系统关键设备的研究进展•1、汽车空调•过去汽车空调中一般使用CFC12作为制冷工质,这使得汽车空调制冷剂的排放量在所有氟利昂的排放中占有相当大的比例。
CO2高压螺杆压缩机 性能实验研究赵兆瑞,高磊,于志强,邢子文西安交通大学能源动力与工程学院 烟台冰轮集团 2015年11月主要内容 CONTENTS1. 引言 2. CO2高压螺杆压缩机及其系统 3. 测试系统简介 4. 结果与讨论 5. 结论1. 引言CO2工质优点: 环保自然工质 传热传质性能好 单位制冷量大 CO2高压螺杆压缩机优势: 零部件少,稳定性高 容量较大 承压能力较强 较为适应冷库冷链行业的应用场合1. 引言1高工作压力,运动部件承载能力 机体抗变形能力32大压差小压比,内泄露影响大 压缩机体积小,加工难度大 绝热指数高4CO2工质对压 缩机的要求51. 引言本文研究内容亚临界CO2循环特点 双螺杆高压压缩机方案 系统 实验 分析 工况对压缩机性能、稳定性、 系统COP的影响 高压CO2双螺杆压缩机实验研究2. CO2高压螺杆压缩机及其系统1低工作温度制冷系统2复叠制冷系统低温级CO2亚临界系统 应用场合3低蒸发温度工况,取代CO2载冷系统2. CO2高压螺杆压缩机及其系统低蒸发温度系统 安全性 高效CO2复叠制冷系统2. CO2高压螺杆压缩机及其系统系统COP计算流程CO2系统的COP=蒸发器吸热量/CO2压缩机耗 功 CO2压缩机耗功=通过进出口焓差/压缩 机绝热效率CO2蒸发器吸热量=蒸发器进出口焓差压缩机进出口状况通过物性关系查得复叠制冷系统p-h图h1 = f (Teav , psuc )h2 = f ( pdis , S suc )2. CO2高压螺杆压缩机及其系统CO2压缩机的最高允许吸气压力应 不 小 于 -20℃ 对 应 的 饱 和 压 力 1.97MPa CO2压缩机 承压能力要求 最高允许CO2排气压力不应低于6 ℃ 对应的饱和压力4.07MPa3.测试系统简介被测机型: 烟台冰轮RCH系列 16S高压双螺杆压缩机 测试工况范围: 冷凝温度-15至15℃ 蒸发温度-54至-18℃测试实验系统3.测试系统简介测试内容油冷却器负荷测试 功耗与绝热 效率测试 运转稳定性及 振动噪声测试 极限工况测试 输气量与容 积效率测试4.结果与讨论(1) 输气量与容积效率 容积效率随蒸发温度的上升而近乎线 性的增加 冷凝温度的降低同样会使其线性提高 在小压差工况时,容积效率为90% 而在大压差工况,仅为67%左右。
单一C02跨临界压缩机运行制冷技术简况技术优势:该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。
压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。
但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成,此时高压换热器不再称为冷凝器,而称为气体冷却器。
在以空气为热源、热汇的制冷和热泵系统(主要是汽车空调以及家用空调)中,CO2循环在跨临界条件下运行,其工作压力虽然较高,但压比却很低,压缩机的效率相对较高;流体在超临界条件下的特殊热物理性质使它在流动和换热方面都具有无与伦比的优势,超临界流体优良的传热和热力学特性使得换热器的效率也很高,这就使得整个系统的能效较高,完全可与传统的制冷剂(如R12、R22等)及其现有的替代物(如R134a、R410A等)竞争。
加上CO2在气体冷却器中大的温度变化,使得气体冷却器进口空气温度与出口制冷剂温度可能非常接近,这自然可减少高压侧不可逆传热引起的损失。
由于CO2的临界温度低,为31, ℃因此, 制冷循环采用跨临界制冷循环时,其排热过程不是一个冷凝过程,压缩机的排气压力与冷却温度是两个独立的参数,改变高压侧压力将影响制冷量、压缩机耗工量及系统的COP。
研究分析表明,高压侧压力变化时,循环的COP 存在着一个最大值,因此,CO2跨临界制冷循环在对不同工况下,存在对应于最大COP 值的最佳排气压力。
CO2 在气体冷却器中较大的温度变化,正好适合于水的加热,从而使热泵的效率较高。
传统空调系统大多把冷凝热当作废热而直接排向大气,既造成能量的浪费又产生环境的局部热污染。
而对跨临界循环,由于超临界区工质密度在不断增加,循环的放热过程必将有较大的温度滑移,这种温度滑移正好与所需的变温热源相匹配,是一种特殊的劳伦兹循环,其用于热回收时,必将有较高的放热效率,因而用于较高温度和较大温差需要的热回收时具有独特的优势。
CO2制冷压缩机【摘要】CO2作为一种天然工质,是目前CFCs 工质替代的一个重点研究方向。
本文主要介绍了二氧化碳制冷压缩机的相关内容,并且主要进行了二氧化碳涡旋式制冷压缩机与其他压缩机的比较,分析了二氧化碳制冷剂的优势以及它与其他制冷剂的比较情况。
【关键词】CO2制冷压缩机制冷剂一、概述由于氯氟烃(CFCs )对于大气的重要影响,保护环境、替代CFCs已经成为全球共同关注的问题。
从1985年的《保护臭氧层的维也纳公约》到1987年的《蒙特利尔议定书》,以及1990年伦敦会议和1992年哥本哈根会议对《蒙特利尔议定书》的修正,世界范围内的CFCs 替代进程在不断加快。
1991年6月,我国在修改的《蒙特利尔议定书》上签字,成为缔约国之一。
1992年5~7月编制了《中国消耗臭氧层物质逐步淘汰国家方案》,并于1993年1月获国务院批准。
因此,逐步淘汰ODSs 已经成为一项国际责任。
替代工质应满足安全性、环境可接受性和装置适用性三方面的要求。
经过科学家们多年来的不懈努力,已经研制出大量的过渡性或长期的氯氟烃(CFCs )和氢氯氟烃(HCFCs)替代物,如R134a , R407C , R410A 和R290 等,并研究出相应的技术和设备,在制冷空调行业得到广泛的应用。
《蒙特利尔议定书》对于CFCs和HCFCs等物质强制要求限期逐步淘汰,并规定了发达国家和发展中国家的使用期限。
而目前使用的HFCs 制冷剂由于会导致明显的温室效应而被《京都议定书》列入温室气体的清单中。
在欧洲,有些国家已经在一些制冷空调领域禁止使用HFCs ,并且进一步提议从某些领域逐步淘汰HFCs。
有些国家立法将在21 世纪20 年代严格限制或淘汰使用R134a 制冷剂,这就使得制冷与空调行业在适应淘汰CFCs和HCFCs类制冷剂转向使用HFCs制冷剂时又必须寻求的替代物。
在环境保护与制冷剂替代的研究进程中,水,氨,碳氢化合物以及CO等自2然制冷剂成为人们关注的焦点,前国际制冷学会主席挪威的G.Lorentzen认为,具有其他制冷剂无法比自然制冷剂是解决环境问题的最终方案。
二氧化碳制冷压缩机结构和原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!二氧化碳制冷压缩机结构和原理一、引言在现代社会中,制冷技术被广泛应用于空调、冰箱、冷库等领域。
⼆氧化碳制冷系统运转操作指南11.13⼆氧化碳制冷系统运转操作指南⼆氧化碳复叠或载冷系统,管道或设备承受的压⼒在0.5MPa到5.2MPa,⽐氨制冷系统的压⼒⾼⼀些,但制冷系统承受的压⼒仍然属于中低压范畴,虽然⼆氧化碳⽆毒、安全,但如果操作不当,使制冷剂在⾮正常压⼒下循环,也有发⽣事故的可能。
因此,安全设计、操作、运⾏在⼆氧化碳制冷系统中具有重⼤的意义。
为了保证⼆氧化碳制冷系统的运⾏安全,操作⼈员不仅要熟悉⼆氧化碳制冷系统的构成和特点,⽽且要掌握⼆氧化碳制冷系统中每台设备的操作⽅法和根据系统负荷的变化正确调节设备运⾏参数,并且在操作中必须严格遵守制冷设备的安全操作规程以及有关技术规定。
⼆氧化碳制冷系统操作⼈员属特种作业⼈员,依据《安全⽣产法》、《特种设备安全监察条例》等法律法规,应经过专门的安全技术和操作技能培训,并按《特种作业⼈员安全技术培训考核标准》要求,考核合格、取得操作资格证后,⽅可上岗作业。
第⼀章、制冷系统的运转操作第⼀节、⼆氧化碳制冷系统运转操作⼀、⼆氧化碳制冷系统运转操作的基本要求1、要树⽴⾼度的责任感,据国家有关安全⽣产的规定,认真贯彻预防为主的⽅针,定期进⾏安全检查。
安全检查主要包括:查制度建⽴及执⾏,查设备的技术状况,各种设备的运⾏情况,查劳动保护⽤品和安全设施的配置情况。
2、要建⽴岗位责任制度,交接班制度,安全⽣产制度,设备维护保养制度和班组定额管理制度等各项标准。
3、⼆氧化碳制冷系统所⽤的仪器、仪表、衡器、量具都必须经过法定计量部门的鉴定;同时要按规定定期复查,确保计量器具的准确性。
4、操作⼈员要做到“四要”、“五勤”、“六及时”:“四要”:要确保安全运⾏;要保证库房温度;要尽量降低冷凝压⼒;要充分发挥制冷设备的效率,努⼒降低⽔、电、油、制冷剂的消耗。
“五勤”:勤看仪表;勤查机器温度;勤听机器运转有⽆杂⾳;勤调节阀门;勤查系统有⽆跑冒、滴漏现象。
“六及时”:及时加油放油;及时放空⽓;及时除霜;及时清洗或更换过滤器;及时排除故障隐患;及时清除冷凝器、⽔冷油冷却器⽔垢。