生物分析---重金属离子检测
- 格式:pptx
- 大小:1.03 MB
- 文档页数:20
edta的液相检测方法EDTA的液相检测方法EDTA是一种广泛应用于生物化学和分析化学的螯合剂。
它可以与金属离子形成稳定的络合物,这种性质使得EDTA在金属离子分析中得到广泛应用。
EDTA的液相检测方法是一种常用的金属离子分析方法,本文将对其原理、步骤、优点和应用进行介绍。
一、EDTA的原理EDTA是一种多羟基有机酸,它能够与金属离子形成稳定的络合物。
当EDTA与金属离子形成络合物时,会释放出多个负电荷,这些负电荷会与阳离子结合,形成带电离子对。
这些带电离子对可以在液相中通过离子交换色谱或其他技术进行分离和检测。
二、EDTA的步骤EDTA的液相检测方法包括样品制备、反应和检测三个步骤。
下面分别对这三个步骤进行介绍。
1. 样品制备:样品制备是EDTA液相检测的第一步。
样品制备的方法取决于被分析样品的性质。
通常情况下,样品制备包括样品的预处理、固相萃取和溶解等步骤。
2. 反应:反应是EDTA液相检测的核心步骤。
在反应中,EDTA与被测金属离子形成络合物,形成的络合物可以在液相中分离和检测。
反应需要满足一定的条件,包括温度、pH值和反应时间等。
通常情况下,反应的温度为25℃,pH值为8.5-9.5,反应时间为5-10分钟。
3. 检测:检测是EDTA液相检测的最后一步。
检测方法包括离子交换色谱、紫外分光光度法和原子荧光光谱法等。
这些方法可以根据不同的样品特性和分析要求进行选择。
三、EDTA液相检测的优点EDTA液相检测具有以下优点:1. 灵敏度高:EDTA可以与大多数金属离子形成络合物,因此EDTA 液相检测的灵敏度很高。
2. 选择性强:EDTA可以选择性地与某些金属离子形成络合物,因此EDTA液相检测的选择性很强。
3. 操作简便:EDTA液相检测的操作简便,可以通过简单的仪器和设备进行实现。
4. 稳定性好:EDTA络合物具有很好的稳定性,可以在液相中长时间保持稳定。
四、EDTA液相检测的应用EDTA液相检测在环境监测、食品安全、生物医学等领域都得到了广泛应用。
一、实验目的与要求1、掌握水的前处理和消解技术。
2、了解水中重金属的测定方法,掌握原子吸收分光光度计的测定技术。
2+。
3、了解利用AAS测定水的硬度和测定废水中SO44、了解水中重金属的种类、危害及有关知识,掌握水中重金属污染分析与评价的方法。
5、掌握水样的处理方法技术,并小结以前的处理方法。
通过测定水中Cr、Pb 的含量分析所取水样的污染程度二、实验方案1、原理〔1〕火焰原子吸收光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。
将试样溶液喷入空气乙炔火焰中,被测的元素化合物在火焰中离解形成原子蒸汽,由锐线光源〔元素灯〕发射的某元素的特征普线光辐射通过原子蒸汽层的时候,该元素的基态原子对特征普线产生选择性吸收。
在一定的条件下,特征普线与被测元素的浓度成正比。
通过测定基态原子对选定吸收线的吸光度,确定试样中元素的浓度。
原子吸收法具有很高的灵敏度。
每种元素都具有自己为数不多的特征吸收普线,不同元素的测定采用相应的元素灯,因此普线干扰在原子吸收光度法中是少见的。
影响原子吸收光度法准确度的主要是基体的化学干扰。
由于试样和标准溶液的基体不一样,试样中存在的某种基体常常影响被测元素的原子化效率,如在火焰中形成难离解的化合物,这时就会发生干扰作用。
一般说来Cu,Zn,Pb,Cd的基体干扰不是很严重。
〔2〕干扰及消除。
共存元素的干扰受火焰状态和观测高度的影响很大,在实验的时候应该特别注意。
因为铬的化合物在火焰中易生成难以熔融和原子化的氧化物,因此一般在试液中加入适量的助熔剂和干扰元素的抑制剂,如NH4Cl〔K2S2O7,NH4F,NH4ClO2〕。
加入NH4Cl可以增加火焰中的氯离子,使铬生成易于挥发和原子化的氯化物,而且NH4Cl还可以抑制Fe,Co,Ni,V,Al,Pb,Mg的干扰。
〔3〕适用范围。
本方法可以适用于地表水和废水中总铬的测定,用空气-乙炔火焰的最正确定量分析范围是0.1-5mg/L。
10种重金属检测方法通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。
日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。
阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。
X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品。
1. 原子吸收光谱法(AAS)原理:原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。
这种方法根据被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。
AAS法检出限低,灵敏度高,精度好,分析速度快,应用范围广(可测元素达70多个),仪器较简单,操作方便等。
火焰原子吸收法的检出限可达到10的负9次方级(10ug/L),石墨炉原子吸收法的检出限可达到10ug/L,甚至更低。
原子吸收光谱法的不足之处是多元素同时测定尚有困难。
分析过程:1、将样品制成溶液(空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。
进展:现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。
用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。
现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域。
2. 原子荧光法(AFS)原理:原子荧光光谱法是通过待测元素的原子蒸气在特定频率辐射能激发下所产生的荧光发射强度来测定待测元素含量的一种分析方法。
用ICP-MS测定土壤重金属的注意事项1. 引言1.1 ICP-MS技术简介ICP-MS(电感耦合等离子体质谱)是一种高灵敏度、高选择性的分析技术,广泛应用于环境、地质、生物、医药等领域。
ICP-MS通过将样品离子化并进入等离子体,再通过质谱进行元素检测和定量分析,具有快速、精确、灵敏的特点。
ICP-MS技术主要包括样品离子化、离子分离、检测、数据处理等步骤。
首先,样品被转化为离子形式,然后进入等离子体中,不同元素的离子被分离并进入质谱进行检测。
ICP-MS的灵敏度通常在ppb至ppt级别,可同时检测多种元素,具有极高的分辨力和准确性。
ICP-MS在土壤重金属测定中应用广泛,可检测铅、镉、铬、镍等多种重金属元素,有助于评估土壤环境质量和土壤污染程度。
在实际应用中,需要注意样品前处理、仪器操作、数据处理、质控和安全等方面的注意事项,以确保测试结果的准确性和可靠性。
通过合理使用ICP-MS技术,可以为土壤重金属污染的监测和防治提供重要的数据支持。
2. 正文2.1 样品前处理注意事项样品前处理是进行ICP-MS测定土壤重金属分析的重要步骤,正确的处理可以确保准确的测试结果。
以下是一些样品前处理注意事项:1. 采样及保存:在采集土壤样品时,避免污染和混杂其他物质。
采样工具要清洁,并且避免使用金属工具,以免引入干扰物质。
采集后,样品需要储存在干燥、阴凉的地方,避免光照和高温。
2. 样品预处理:在进行ICP-MS测定前,通常需要对样品进行预处理,如干燥、研磨、筛分等处理。
确保这些处理过程的准确性和一致性,可以减少误差发生的可能性。
3. 样品溶解:将固态样品溶解为溶液是ICP-MS分析的前提。
选择合适的溶解剂和溶解方法,避免溶解过程中造成重金属的损失或干扰。
4. 样品稀释:有时土壤样品中重金属的浓度可能过高,需要进行适当的稀释。
在稀释过程中,需注意稀释倍数、溶剂的选择和混匀均匀等细节,避免造成稀释误差。
5. 样品标准品的添加:在进行ICP-MS测定时,需要添加标准品进行质量控制和校准。
重金属检测方法汇总重金属检测方法及应用一、重金属的危害特性从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。
我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。
(一)自然性:长期生活在自然环境中的人类,对于自然物质有较强的适应能力。
有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。
但是,人类对人工合成的化学物质,其耐受力则要小得多。
所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。
铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。
(二)毒性:决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。
例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。
在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L 之间。
(三)时空分布性:污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。
(四)活性和持久性:活性和持久性表明污染物在环境中的稳定程度。
活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。
如汞可转化成甲基汞,毒性很强。
与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。
(五)生物可分解性:有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。
gb14233.1-2008重金属测定实验方法的选择与应用一、常用各重金属电感耦合等离子体原子发射光谱测定的基本步骤1.样品固体化:根据被测品而定(常用烘烤、还原熔炼、焙烧等);2.样品与介质分离:利用提取液将重金属从样品中抽提出;3.样品分离:利用细胞膜、离子交换树脂等材料将重金属样品进行分离;4.发射光谱分析测定:利用ICP-MS技术,以等离子体体积(V)谱形,将重金属各元素发射出来,直接用其吸光度(A)测定样品含量;二、各种重金属测定实验方法的选择与应用要点(1)ICP-MSICP-MS是Inductively Coupled Plasma Mass Spectrometry(感应耦合等离子体质谱法)的简称。
此法是检测重金属分析的最佳方法,具有质量分辨率高、检出限低、准确性好、测定空间广等特点,是一种广泛应用的重金属检测技术,尤其适用于现场、地下水、土壤、空气、食物等和生物体的监测,如水产、淡水鱼类、海洋生物体等的污染物的重金属测定及定量分析。
(2)原子吸收光谱法原子吸收光谱法(AAS)是一种测定痕量元素的方法,它使用原子吸收的原理,可以将原子的量转化成为一个显著的吸收吸光度,方便确定样品中重金属的含量。
此法廉价、灵敏度高、实验简单、操作方便,是日常分析实验室中常用的重金属测定方法,适用于分析水中、园林保洁中、制药及药物合成过程中、污水处理中等重金属的测定。
火焰原子吸收光谱法(FAAS)是一种分析重金属的常用方法,是将样品加热、还原、湿化,将重金属通过质谱仪分析出来,即能测量样品中重金属含量。
该法具有检出限低、准确性高,可用于各类样品的测定,如土壤、水、煤、金属合金和植物中重金属的测定。
生物技术在重金属检测中的应用摘要:对生物传感器、酶分析法、免疫分析法在重金属中的应用进行了介绍,分析了它们的优缺点,指出了生物检测技术的不足点和未来发展前景。
在环境污染严重的今天,生物检测技术一定会有一个好的发展前景。
关键词:生物检测技术,重金属,酶分析,免疫分析,生物传感器引言随着科技的进步,环境污染问题日益严重,尤其是重金属问题尤为突出,严重威胁着人类的身体健康。
通常,重金属先污染空气、水和土壤,然后经过生物链的循环或饮用水进入人体,对人体的生物大分子造成破坏,导致人们出现畸变、癌变等严重后果。
自然生态难以对重金属污染进行自我修复,因此重金属污染对生态环境将会造成长期的恶性影响。
这是众多发展中国家都要面对的环境问题。
为了尽可能的降低重金属对人类健康的威胁,对饮用水、农产品等进行检测是减少人类摄入重金属的唯一方法。
常用的重金属检测方法有:质谱法、电化学分析法、原子光谱法。
通常将这类检测方法称为物理化学方法,这类方法的优点是检测结果准确率高、灵敏度高、可以进行多种类重金属检测。
但是,利用该类方法进行重金属检测需要依赖大型设备、检测过程复杂、检测周期长、无法现场进行检测等。
为此,以生物技术为基础,结合纳米技术、传感技术的生物检测技术为重金属的检测带来了便捷。
本文将对生物传感器、酶分析技术、免疫分析法等生物检测技术的原理、优缺点进行综述。
二、重金属常用的生物检测方法1.生物传感器生物传感器[1,2]是指利用固定化的生物敏感材料为识别元件,同时结合特殊的换能器和信号放大器构成的一种仪器,将重金属的浓度转换为电信号进行检测。
该方法是以生物反应为基础,结合物理学的一种检测方法,见表1。
表1 生物传感器在重金属检测中的应用利用传感器对重金属进行检测,具有易携带、检测速度快等优点,还能够实现多样品检测,为将来的在线检测提供了基础。
但是,该方法的缺点是生物传感器制备过程复杂、生产成本高。
未来生物传感器的发展方向是加强生物传感器的稳定性研究,使其能够实现多种重金属检测。