数字图像处理第9章 数学形态学原理(2)
- 格式:ppt
- 大小:1.94 MB
- 文档页数:51
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
遥感数字图像处理-要点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(遥感数字图像处理-要点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为遥感数字图像处理-要点的全部内容。
遥感数字图像处理—要点1.概论遥感、遥感过程遥感图像、遥感数字图像、遥感图像的数据量遥感图像的数字化、采样和量化通用遥感数据格式(BSQ、BIL、BIP)遥感图像的模型:多光谱空间遥感图像的信息内容:遥感数字图像处理、遥感数字图像处理的内容遥感图像的获取方式主要有哪几种?如何估计一幅遥感图像的存储空间大小?遥感图像的信息内容包括哪几个方面?多光谱空间中,像元点的坐标值的含义是什么?与通用图像处理技术比较,遥感数字图像处理有何特点?遥感数字图像处理包括那几个环节?各环节的处理目的是什么?2。
遥感图像的统计特征2。
1图像空间的统计量灰度直方图:概念、类型、性质、应用最大值、最小值、均值、方差的意义2.2多光谱空间的统计特征均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义波段散点图概念及分析主要遥感图像的统计特征量的意义两个重要的图像分析工具:直方图、散点图3。
遥感数字图像增强处理图像增强:概念、方法空间域增强、频率域增强3.1辐射增强:概念、实现原理直方图修正,线性变换、分段线性变换算法原理直方图均衡化、直方图匹配的应用3。
2空间增强邻域、邻域运算、模板、模板运算空间增强的概念平滑(均值滤波、中值滤波)原理、特点、应用锐化、边缘增强概念方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点•计算图像经过下列操作后,其中心象元的值:–3×3中值滤波–采用3×3平滑图像的减平滑边缘增强–域值为2的3×1平滑模板–Sobel边缘检测–Roberts边缘检测–模板3.3频率域处理高频和低频的意义图像的傅里叶频谱频率域增强的一般过程频率域低通滤波频率域高通滤波同态滤波的应用3。
数字图像处理中的形态学(摘自某文献,因为贴图的数目有限制,后面的公式图片没有能够上,电脑重装后文档已经找不到了,囧)一引言数学形态学是一门建立在集论基础上的学科,是几何形态学分析和描述的有力工具。
数学形态学的历史可回溯到19世纪。
1964年法国的Matheron和Serra在积分几何的研究成果上,将数学形态学引入图像处理领域,并研制了基于数学形态学的图像处理系统。
1982年出版的专著《Image Analysis and Mathematical Morphology》是数学形态学发展的重要里程碑,表明数学形态学在理论上趋于完备及应用上不断深入。
数学形态学蓬勃发展,由于其并行快速,易于硬件实现,已引起了人们的广泛关注。
目前,数学形态学已在计算机视觉、信号处理与图像分析、模式识别、计算方法与数据处理等方面得到了极为广泛的应用。
数学形态学可以用来解决抑制噪声、特征提取、边缘检测、图像分割、形状识别、纹理分析、图像恢复与重建、图像压缩等图像处理问题。
该文将主要对数学形态学的基本理论及其在图像处理中的应用进行综述。
二数学形态学的定义和分类数学形态学是以形态结构元素为基础对图像进行分析的数学工具。
它的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。
数学形态学的应用可以简化图像数据,保持它们基本的形状特征,并除去不相干的结构。
数学形态学的基本运算有4个:膨胀、腐蚀、开启和闭合。
它们在二值图像中和灰度图像中各有特点。
基于这些基本运算还可以推导和组合成各种数学形态学实用算法。
(1)二值形态学数学形态学中二值图像的形态变换是一种针对集合的处理过程。
其形态算子的实质是表达物体或形状的集合与结构元素间的相互作用,结构元素的形状就决定了这种运算所提取的信号的形状信息。
形态学图像处理是在图像中移动一个结构元素,然后将结构元素与下面的二值图像进行交、并等集合运算。
基本的形态运算是腐蚀和膨胀。