实验五、数学形态学
- 格式:doc
- 大小:212.00 KB
- 文档页数:2
数学形态学的基本运算一. 引言随着计算机技术的发展,图像及信号处理技术越来越为大众所需求。
经典的信号处理方法主要是基于线性系统的理论、传统的信号与系统的概念及Fourier 分析,并广泛地运用于不同的科学与技术领域中。
然而,对于图像的形态特征和几何结构等非线性因素的分析和描述却由于系统的线性特征而受到限制。
近几十年发展起来的数学形态学[1]从理论和方法上弥补了这一缺憾,数学形态学不仅提供了描述和分析图像几何及形状特征的多种技术和方法,同时它对于经典的信号处理技术也产生了极大的影响并扩展了原有的技术。
基于数学形态学的图像处理技术是一种采用集合的概念表示图像、非线性叠加方式描述图像的非线性系统技术,称之为形态系统[2],它广泛地应用于生物医学和电子显微镜图像的分析以及数字图像处理和计算机视觉等领域,并已发展成为一种新型的图像处理方法和理论。
用于图像处理的形态系统,具有完备的结构和理论体系,是进行非线性性态分析和描述的有力工具。
二. 形态学的相关理论1.图像的表示方法如同信号处理中线性时不变系统的建立和描述基于信号的多频表示一样,形态系统的描述和分析方法的建立则是基于图像的集合表示以及相应的集合变换。
用R 和Z 分别表示实数集合和整数集合,E=R d 或Z d (d=1、2、…)分别表示连续的或离散的d 维空间,则一个d 维图像可表示为E 上的一个函数,其取值范围为R 或Z 。
如果函数仅取两个不同的值,则图像可用E 中的集合表示。
如二值图像可表示为取值为1和0的函数)(x f ,图像的前景可表示为}1)(:{==x f x X ,背景可表为余集}0)(:{==x f x X c ,或简单地用X 的特征函数来表示。
对于多值(灰度)图像)(x f 可以通过阀值变换[1,2]获得其二值图像,采用阀值的方法还可以实现对于灰值图像的集合表示。
为此,若引入图像)(x f 的阀集: ,},)(:{)(+∞≤≤-∞≥=a a x f x f T a这里幅值a 取值于R 或Z ,取决于f(x)是模拟还是数字图像。
数学形态学
数学形态学是一种新兴的研究领域,它旨在分析几何图形的结构,形状和功能之间的关系。
它的研究,使用广义的概念,为许多不同的问题提供解决方案,其中包括拓扑、图像处理、科学可视化、结构生物学和信号处理等。
数学形态学是一个综合性的学科,它运用多种数学工具和科学原理来描述和分析图形学中出现的复杂形状,是形状和几何的综合科学。
它的本质是把复杂的形状分解成不同的形状元素,再利用数学中的手段将这些元素组合起来,以描述和揭示形状结构之间的联系。
数学形态学是一门基于计算机的学科,它使用计算机技术,通过对几何图形和形状的像素分析,捕捉形状中各种特征,分析不同形状间的关系,建立并匹配形状,以及重建和综合形状信息。
同时,它也旨在将计算机技术与形状分析结合起来,用于解决计算机的实际应用问题,如机器视觉和图像处理。
数学形态学广泛地应用于各种领域,如机器人系统,空间科学,图形学,地理和空间信息,甚至分子生物学等。
它还可以用于将几何图形可视化,以及应用于工程设计,以更直观的方式表示几何形状,并为设计者和设计家提供视觉上的参考。
数学形态学的研究不仅仅局限于几何图形,同时也研究自然现象中出现的结构,并尝试描述和表述自然界中出现的复杂形状。
从自然现象中抽象出来的形状,往往能够帮助科学家们更好地理解现象,并最终基于研究结果,为实际应用研发有效的算法或具备一定属性的形
状。
总的来说,数学形态学是一种立足于数学的研究领域,它涉及到多层次的形状分析,以及形状和空间之间的关系,研究和分析丰富多彩的形状属性。
它旨在更好地理解形状,并为许多实际问题提供解决方案,同时也为计算机视觉和机器人系统提供支撑及应用。
数学形态学及其应用数学形态学及其应用数学形态学是一种数学方法和理论,最早由法国数学家乌戈尔·乔尔丹(Ugo Cerletti)在20世纪60年代提出。
它基于拓扑学、代数学和概率论等学科的基本原理,研究对象是图像和信号等离散数据的形状和结构,并利用数学统计的方法对它们进行分析和处理。
随着计算机技术的发展和应用需求的增加,数学形态学已经成为图像处理、模式识别和计算机视觉等领域中的重要工具。
数学形态学的基本概念包括结构元素、腐蚀、膨胀、开运算和闭运算等。
结构元素是一个小的图像或信号,用来描述和刻画对象的特征。
腐蚀和膨胀是两种基本的形态学操作,它们可以对图像或信号进行形状的变化和结构的调整。
开运算和闭运算是由腐蚀和膨胀组合而成的操作,用来改善图像的质量和特征。
在数学形态学的基础上,还发展了很多衍生的操作和算法,如基本重建、灰度形态学和形态学滤波等。
数学形态学在图像处理中的应用非常广泛。
例如,在图像分割中,可以利用数学形态学的方法提取目标的边界和内部结构;在图像增强中,可以利用形态学处理方法去除图像中的噪声和不规则部分;在模式识别中,可以利用形态学算法提取和描述对象的特征;在计算机视觉中,可以利用形态学方法实现图像的匹配和配准等等。
数学形态学的应用不仅仅局限在图像领域,它还可以应用于信号处理、文本分析、医学影像等其他领域。
以图像分割为例,数学形态学可以通过结构元素的逐步腐蚀或膨胀操作来准确地提取目标的轮廓。
首先,选择合适的结构元素,使其大小和形状适应目标的尺寸和形态特征。
然后,通过不断的腐蚀操作,可以逐渐消除目标周围的无关细节,最终得到目标的边界。
类似地,通过不断的膨胀操作,可以填补和连接目标内部的空洞,并得到目标的内部结构。
通过这种方式,数学形态学可以实现对复杂图像的准确分割,为图像识别和分析提供了可靠的基础。
总之,数学形态学是一种重要的数学方法和理论,它在图像处理、模式识别和计算机视觉等领域中具有广泛的应用和深远的意义。
摘要论文研究了数学形态学理论,对基本形态学算子的几何意义与性质进行了归纳与总结,阐述了数学形态学用结构元素“探测”信号的本质。
论文对数学形态学的应用进行了研究,主要成果是:(1)将数学形念学应用于纺织工业纱线疵点检测中,提出了数学形态学广义结构元素的概念,并构造了形态学“梯形塔式”广义结构元素,丰富了数学形态学理论。
广义结构元素的概念和构造广义结构元素的方法是本文的创新点;(2)研究了数学形态学在红外序列图象弱小目标自动检测中的应用,提出了基于狄值形态重构丌的红外序列图象弱小目标自动检测算法,并利用形态学运算进行红外图象增强,进~步提高了算法的硷测性能,丰富了数学形态学在红外目标检测中的应用知识;(3)提出了应用数学形态学对闭环控制系统反馈信号进行滤波的方法,并成功地应用于实际系统巾.填补了数学形态学在这一应用领域中的空白。
以上应用算法无论在理论研究还址实际应用方面都具有重要价值。
论文研究了形念金字塔理论,主要成果是:(1)构造出了可以精确重构的多Jt度平形态闭会字塔,并成功地将其应用于图象的多分辨率分割。
该分割算法可以区别暗背景中的亮成分与亮背景中的暗成分,这对遥感等图象领域处理具有重要意义。
(2)构造了多尺度平形态混合金字塔,并成功地应用于扫描图象的滤波I—p。
以上研究对形态金字塔理论和应用研究都具有很高的参考价值。
论文研究了形态小波理论,主要成果是:(1)首次详细论述了非线性形念Haar小波构造方法,并将形态Haar小波成功地应用于图象分解中。
形态Haar小波具有非线性、尺度信号的取值范围同原始信号相同、信号局部最大(小)很好地保留在多个分辨率空怕J和可保证精确重构等优点,更适合应用于压缩编码、模式识别等领域;(2)提出了一种新的基于更新提升构造非冗余的、可完备重构的形态小波的方法,首次提出了广义更新算子的概念,阐述了构造了广义更新算子的方法,进一步发展了数学形态学理论。
广义更新算子的概念和广义更新算予的孛f=J造办法是本文的创新点;(3)提出了一种更新提升小波闽值去噪算法,对比实验表明该,J法比传统小波闽值去噪算法具有明显的优势,峰值信噪比提高2~5dB,信噪比约提高4~7dB,尤其在低信噪比情况下性能更加优越。
《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。
二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。
其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。
此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。
频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。
常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。
假定原图像为f(x,y),经傅立叶变换为F(u,v)。
频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。
四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。
摘要摘要数学形态学兴起于20世纪60年代,是一种新型的非线性算子,它着重研究图像的几何结构,由于视觉信息理解都是基于对象几何特性的,因此它更适合视觉信息的处理和分析,这类相互作用由两种基本运算腐蚀和膨胀及它们的组合运算来完成。
为了跟踪国际前沿,发展我国的非线性信号处理技术,进一步研究形态学理论和应用技术及非常必要而有实际意义的。
本文首先深入地讨论了数学形态学的基本理论,详细介绍了数学形态学的起源、发展;从二值形态学推广到灰度形态学,并分析和介绍了数学形态学在图像处理中的具体应用,并对数学形态学的现状和未来发展方向进行总结。
具体论述步骤分为以下几个方面:1>学习和总结了数学形态学的基本理论。
2>研究了二值形态学、灰度形态学、彩色形态学的算法理论。
3>列举并总结数学形态学在图像分割、边缘检测及图像滤波等方面的应用。
4>对两种图像的边缘检测进行简单的MATLAB实现。
5>对数学形态学的现状及发展方向进行总结和展望。
关键词:数学形态学二值图像灰度图像彩色形态学边缘检测图像分割形态滤波ABSTRACTABSTRACTMathematics morphology rose in the sixties of the 20th century, it was a kind of new-type non-linear operator.It studies the geometry structure of the image,because vision information is comprehended based on geometry characteristics of the target,so it is suitable for the information processing and analyse of the vision.This kind of interaction is accomplished by two kinds of basic operation; erosion and dilation. In order to follow the international front and develop the non-linear signal processing technology of our country, study the morphology theory and application technology are very necessary and have actual meaning further.Above all in this paper the basic theory of mathematical morphology is discussed,then we introduce origin of mathematics morphology from binary morphology to gray morphology and extensively study lts diffent operators and quality. Its application in image processing is analysed and introduced as well. Then it tally up the present condition and develop direction of the mathematics morphology. Concrete discuss a step to is divided into a few aspects as follows:1>Study and summary the basic theories of mathematics morphology.2>Investigate the theories of binary morphology. grayscale morphology and color morphology.3>Enumerate and tally up the applied in image segmentation. edge detection and morphological filter.4>Carry out the edge detection of two kinds of image with matlab.5>Summary and outlook the present condition and developing direction of mathematics morphology.Keywords:Mathematics morphology. Binary image. Grayscale inage. Color morphology. Edge detection. Image segmentation. Morphological filter.目录i目录第一章绪论 (1)1.1 引言 (1)1.2 数学形态学发展简史 (1)第二章数学形态学基本理论 (5)2.1 引言 (5)2.2 二值形态学 (5)2.2.1 二值腐蚀 (5)2.2.2 二值膨胀 (6)2.2.3 二值开运算 (7)2.2.4 二值闭运算 (8)2.3 灰值形态学 (9)2.3.1 灰值腐蚀 (9)2.3.2 灰值膨胀 (10)2.3.3 灰值开运算 (11)2.3.4 灰值闭运算 (12)2.3.5 灰值形态学梯度 (14)2.4 彩色形态学 (15)2.4.1 彩色形态学简介 (15)2.4.2 分量法 (16)2.4.3 HLS法 (16)2.4.5 彩色形态学总结 (18)2.5 本章小结 (18)第三章数学形态学的应用 (20)3.1 引言 (20)3.1.1 数学形态学在图像处理中的主要应用 (20)3.1.2 图像边缘检测 (20)ii 数学形态学的发展及应用研究3.1.3 图像分割 (21)3.1.4 噪声滤除 (22)3.2 数学形态学应用于图像边缘检测 (22)3.2.1 图像边缘定义 (22)3.2.2 基本的形态学边缘检测算子 (22)3.2.3 抗噪型形态学边缘检测因子 (23)3.2.4 基于多结构元的图像边缘检测 (24)3.2.5 基于多尺度的形态学边缘检测 (27)3.3数学形态学应用于图像分割 (28)3.3.1 图像分割定义 (28)3.3.2 并行边界分割技术 (30)3.3.3 串行边界分割技术 (30)3.3.4 并行区域分割技术 (31)3.3.5 串行区域分割技术 (32)3.4 基于分水岭变换的彩色细胞图像分割 (33)3.4.1 k-均值聚类和分水岭变换 (33)3.4.2 分割方法统筹 (33)3.4.3 图解细胞均值聚类 (34)3.4.4 图解细胞分割过程 (36)3.4.5 结果与讨论 (38)3.5 数学形态学应用于图像噪声滤波 (38)3.5.1 滤波基本原理 (38)3.5.2 对噪声污染的颗粒图像滤波 (39)3.5.3 对差、并噪声同存图象的滤波 (40)3.5.4 总结 (42)3.6 本章小结 (42)第四章两种图像边缘检测的MATLAB仿真实现 (44)4.1结构元素的选择 (44)4.2 算法实现 (45)4.3 MATLAB仿真实验 (46)目录iii4.4 图像的滤波及边缘检测的MATLAB实现 (48)第五章总结与展望 (56)5.1数学形态学学习总结 (56)5.2 数学形态学发展过程中存在的问题 (57)5.3 数学形态学发展方向 (57)致谢 (58)参考文献 (60)iv 数学形态学的发展及应用研究第一章绪论 1第一章绪论1.1 引言1965年法国巴黎地质学家G.Matheron和J.Serra创立数学形态学理论,这是一门新兴的图象分析科学。
实验六、形态学图像处理
一.实验目的及要求
1.利用MATLAB研究二值形态学图像处理常用算法;
2.掌握MATLAB形态学图像处理基本操作函数的使用方法;
3.了解形态学的基本应用。
二、实验原理
1.编程实现二值图像的基本形态学处理(腐蚀、膨胀、开运算和闭运算);选择不同结构元素筛选图像目标。
2.用形态学运算实现灰度图像的噪声平滑和图像边缘提取。
三、实验原理
数学形态学图像处理的基本思想是利用一个称作结构元素的“探针”收集图像的信息。
当探针在图像中不断移动时,便可考察图像各个部分间的相互关系,从而了解图像各个部分的结构特征。
作为探针的结构元素,可直接携带知识(形态、大小、以及灰度和色度信息)来探测所研究图像的结构特点。
二值形态学中的运算对象是集合,通常给出一个图像集合和一个结构元素集合,利用结构元素对图像进行操作。
其基本运算有四种:腐蚀、膨胀、开运算和闭运算。
基于这些基本运算和组合来进行图像形状和结构的分析及处理。
如果 A是图像集合,B是结构元素( B本身也是一个图像集合),形态学运算将使用B 对A进行操作。
结构元素往往比图像小得多。
基本运算将遵循这个原则。
●膨胀和腐蚀
膨胀是在二值图像中“加长”或“变粗”的操作。
这种特殊的方式和变粗的程度由一个称为结构元素的集合控制。
腐蚀“收缩”或“细化”二值图像中的对象。
像在膨胀中一样,收缩的方式和程度由一个结构元素控制。
●开运算和闭运算
在图像处理的实际应用中,更多地以各种组合的形式来使用膨胀和腐蚀,它们可以级连结合使用。
膨胀后再腐蚀,或者腐蚀后再膨胀,通常不能恢复成原来图像(目标),而是产生一种新的形态变换,这就是开运算和闭运算。
当处理二值图像时,采用上述的形态学变换组合,主要应用于提取某一区域的边界线、图像边缘轮廓、物体骨架特征和目标识别等众多的实际应用。
更多内容青参考教材p402有关内容。
三、实验内容
1、二值图像的形态学变换
需要编写的二值图像形态学变换函数:
function newbuf=BwFilter(oldbuf,select)
该函数调用MATLAB关于膨胀、腐蚀和图像筛选算法的相关函数,对二值图像进
行相应的处理,最后结果存放在newbuf数组中。
用于二值图像形态学变换的MATLAB函数有:
Strel 构造结构元素函数
Imdilate 膨胀函数
Imerode 腐蚀函数
Imcrop 裁剪函数
Imopen 开运算函数
用help查看相关函数的使用方法,编程实现BwFilter()函数的功能。
结构元素也
可以用ones函数和zeros函数创建。
2、对输入图像进行形态学操作,即腐蚀、膨胀、开运算和闭运算,改变结构元素形状、大小,重做上述实验,比较实验结果,分析结构元素对运算的影响;
3、以下图为例:(1)提取与图像边界融合的颗粒
(2)提取彼此交叠的颗粒
(3)提取不交叠的颗粒
提示:(1)可利用区域填充算法。
如图所示为源图像,可将图像先转换为二值图像,然后对其进行取反,这样进行区域填充的结果将为与边界相连的颗粒,再与源图像进行比较,即可得出在源图像中与边界相连的颗粒图像。
(2)可利用图像的腐蚀与膨胀操作。
先用模板对图像进行腐蚀操作,由于相交叠的颗粒面积必然比独立的颗粒大,因此腐蚀操作之后剩下的部分为交叠颗粒的部分,再对其进行膨胀,将其与源图像进行比较操作,则可得出交叠的颗粒图像。
(3)得出交叠的颗粒之后,用源图像对其相减,则得出的为独立分布的颗粒图像。
原图。