一类有理逼近参数样条
- 格式:pdf
- 大小:141.91 KB
- 文档页数:2
计算机辅助几何设计含参数保形有理样条插值计算机辅助几何设计(Computer-Aided Geometric Design,简称 CAGD)是计算机科学、数学和工程的交叉学科,它的发展历程可以追溯到20世纪70年代。
CAGD主要是利用计算机帮助人们完成各种几何设计任务,如曲线拟合、曲面建模、数据可视化等等。
其中,参数保形有理样条插值是CAGD中的一种基本技术之一,下面我们将对其进行详细介绍。
一、CAGD简介计算机辅助几何设计是一种利用计算机技术进行几何建模、分析、验证和制造的方法。
CAGD的应用范围非常广泛,涵盖了工业设计、航空航天、汽车制造、医学医疗、艺术设计等领域。
通过CAGD的技术手段,可以在计算机上创建数学模型,并对其进行几何变换、仿真分析、优化求解等操作,从而提高设计效率和质量。
CAGD的发展历程可以追溯到20世纪70年代,当时计算机的性能和软件工具都比较有限,所以主要应用于科学计算和工程仿真领域。
随着计算机技术的飞速发展,CAGD的应用范围也越来越广泛,涌现出了许多优秀的方法和算法,如Bezier曲线、B样条曲线、NURBS曲面、三角网格模型等等。
二、参数保形有理样条插值有理样条曲线是一种常用的数学曲线,它可以用来表示各种形状的曲线和曲面。
和其他曲线表示方法相比,有理样条曲线具有重要的优点,如良好的几何性质、局部控制性能、优秀的逼近性能等等。
参数保形有理样条插值是有理样条曲线中的一种插值方法,它可以通过已知的插值点来构造一条参数保形的有理样条曲线。
插值问题是求解函数$f(x)$在一些已知点$x_i$处的函数值$f(x_i)$的问题。
对于一些简单的函数,这个问题可以直接求解。
但是对于复杂的函数,如曲线和曲面,这个问题并不容易解决。
在实际应用中,经常需要求解一条曲线通过已知点,并且曲线在每个插值点处具有特定的曲率、斜率等属性。
这个问题就可以通过参数保形有理样条插值方法来解决。
参数保形有理样条插值是一种基于控制点的插值方法。
习题2.1什么是感知机?感知机的基本结构是什么样的?解答:感知机是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的一种人工神经网络。
它可以被视为一种最简单形式的前馈人工神经网络,是一种二元线性分类器。
感知机结构:2.2单层感知机与多层感知机之间的差异是什么?请举例说明。
解答:单层感知机与多层感知机的区别:1. 单层感知机只有输入层和输出层,多层感知机在输入与输出层之间还有若干隐藏层;2. 单层感知机只能解决线性可分问题,多层感知机还可以解决非线性可分问题。
2.3证明定理:样本集线性可分的充分必要条件是正实例点集所构成的凸壳与负实例点集构成的凸壳互不相交.解答:首先给出凸壳与线性可分的定义凸壳定义1:设集合S⊂R n,是由R n中的k个点所组成的集合,即S={x1,x2,⋯,x k}。
定义S的凸壳为conv(S)为:conv(S)={x=∑λi x iki=1|∑λi=1,λi≥0,i=1,2,⋯,k ki=1}线性可分定义2:给定一个数据集T={(x1,y1),(x2,y2),⋯,(x n,y n)}其中x i∈X=R n , y i∈Y={+1,−1} , i=1,2,⋯,n ,如果存在在某个超平面S:w∙x+b=0能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,即对所有的正例点即y i=+1的实例i,有w∙x+b>0,对所有负实例点即y i=−1的实例i,有w∙x+b<0,则称数据集T为线性可分数据集;否则,称数据集T线性不可分。
必要性:线性可分→凸壳不相交设数据集T中的正例点集为S+,S+的凸壳为conv(S+),负实例点集为S−,S−的凸壳为conv(S−),若T是线性可分的,则存在一个超平面:w ∙x +b =0能够将S +和S −完全分离。
假设对于所有的正例点x i ,有:w ∙x i +b =εi易知εi >0,i =1,2,⋯,|S +|。
曲面造型(Surface Modeling)曲面造型(Surface Modeling)是计算机辅助几何设计(Computer Aided Geometric Design,CAGD)和计算机图形学(Computer Graphics)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。
它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理论基础。
如今经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(Rational B-spline S urface)参数化特征设计和隐式代数曲面(Implicit Algebraic Surface)表示这两类方法为主体,以插值(I nterpolation)、拟合(Fitting)、逼近(Approximation)这三种手段为骨架的几何理论体系。
1. 对曲面造型的简要回顾形状信息的核心问题是计算机表示,即要解决既适合计算机处理,且有效地满足形状表示与几何设计要求,又便于形状信息传递和产品数据交换的形状描述的数学方法。
1963年美国波音飞机公司的Ferguson首先提出将曲线曲面表示为参数的矢函数方法,并引入参数三次曲线。
从此曲线曲面的参数化形式成为形状数学描述的标准形式。
1964年美国麻省理工学院的Coons发表一种具有一般性的曲面描述方法,给定围成封闭曲线的四条边界就可定义一块曲面。
但这种方法存在形状控制与连接问题。
1971年法国雷诺汽车公司的Bezier提出一种由控制多边形设计曲线的新方法。
这种方法不仅简单易用,而且漂亮地解决了整体形状控制问题,把曲线曲面的设计向前推进了一大步,为曲面造型的进一步发展奠定了坚实的基础。
但Bezier方法仍存在连接问题和局部修改问题。
到1972年,de-Boor总结、给出了关于B样条的一套标准算法,1974年Gordon和Riesenfeld又把B样条理论应用于形状描述,最终提出了B样条方法。
有理[2m+1,2m]型分段插值样条
彭丰富;韩旭里
【期刊名称】《计算机工程与应用》
【年(卷),期】2006(042)016
【摘要】常见的较低次有理带单形状因子分段有理插值样条通过代数运算,可用Bemstein基函数等价表示,这类分段插值样条利用Hermite插值的方法推广到高次有理[2m+1,2m]型,样条的生成曲线满足Cm-连续,并给出了具体的Bern-stein 基函数表示方法的表达式,其形式较为简单,最后分别讨论了这类有理插值的逼近阶与约束域及保单调等方面的形状因子的选取情况,并给出了例子分析.
【总页数】4页(P92-95)
【作者】彭丰富;韩旭里
【作者单位】中南大学数学科学与计算技术学院,长沙,410083;中南大学数学科学与计算技术学院,长沙,410083
【正文语种】中文
【中图分类】TP391
【相关文献】
1.分段有理三次保形样条插值 [J], 黄日朋
2.基于三次样条插值的时滞GDM(1,2)模型构建及应用 [J], 党耀国;张娟;陈兴怡
3.代数曲线的分段有理二次B样条插值 [J], 胡斌;梁锡坤
4.函数的分段有理二次B样条插值 [J], 梁锡坤
5.函数的分段有理二次B样条插值 [J], 梁锡坤
因版权原因,仅展示原文概要,查看原文内容请购买。