转子串电阻调速
- 格式:doc
- 大小:12.00 KB
- 文档页数:1
一课题背景21启动前的准备32启动控制33制动控制34调速控制过程4二任务要求4三设计思路51主电路52.PLC接线图63. I/O分配64.程序梯形图75.程序调试86.调试完成错误!未定义书签。
总结10一课题背景绕线式异步电动机转子串电阻的调速控制线路,对调速无特殊要求的生产机械,可以采用绕线式异步电动机拖动,绕线式转子异步电动机转子串电阻调速控制电路,按照时间原则启动、能耗制动的控制线路如图所示:工作原理分析如下1启动前的准备先讲主令控制器SA的手柄置到“0”位,再合上电源开关QS1,QS2,则有:(1)零位继电器KV线圈通电并自锁。
(2)KT1,KT2线圈得电,其延时闭合的动断触点瞬时打开,确保KM1,KM2线圈断电。
2启动控制将SA的手柄推向3位,SA的触点SA1,SA2,SA3,均接通,KM线圈通电。
则有:(1)KM的主触点闭合,电动机接入交流电源,电动机在转子串两段电阻的情况下启动。
同时,KT线圈得电,KT延时断开的动合触点闭合。
(2)KM的动断触点打开,KT1线圈断点开始延时,当延时结束时,KT1动断触点闭合,KM1线圈通电,KM1的动合触点闭合切除一段电阻R1,同时KM1的动断触点断开,KT2线圈断电开始延时,当延时结束时,KT2的动断触点闭合,KM2线圈通电切除电阻R2,启动结束。
3制动控制进行制动时,将主令控制器SA的手柄扳回“0”位,KM,KM1,KM2线圈均断电,电动机切除交流电源。
同时,KT1,KT2线圈得电。
则有:(1)KM的动断触点闭合,KM3线圈通电,电动机接入直流电源进行能耗制动;同时,KM2线圈通电,电动机在转子短接全部电阻的情况下进行能耗制动。
(2)KM的动合辅助触点断开,KT线圈断电开始延时,当延时结束时,KT延时断开的动合触点断开,KM2,KM3线圈均断电,制动结束。
4调速控制过程当需要电动机在低速下运行时,可将主令控制器SA手柄推向“1”位或“2”位,则电动机的转子在串入一段电阻或不串入电阻的情况下以较高速度运转二任务要求绕线式转子异步电动机转子串电阻调速控制电路的PLC程序设计。
三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
异步电动机转子回路串电阻调速—归于改动转差率调速Sm改动
这种调速办法只适用于绕线式异步电动机。
从图1可见,当恒转矩负载时,因为转子回路串入调速电阻Rt,使sm增大,机械特性变软,从曲线1成为曲线2,所以电动机从a点作业到b点,其转速由n1(1-s1)降到n1(1-s2),然后到达调速的意图。
带恒转矩负载调速时,因为Tem=TL为常值,即坚持不变,转子电流I2不变,功率因数不变,则有:
(1)
式(1)阐明,绕线式异步电动机选用转子回路串电阻办法带恒转矩负载调速时,其转差率将跟着转子回路总电阻(R2+Rt)成正比改动,而且调速前后,定转子电流、输入功率、气隙磁场和电磁功率皆不改动。
转子回路串入电阻越大,转子铜耗越大,电动机作业功率越低。
故这种调速办法又称为能耗调速,功率低。
此法调速虽不经济,但简略便当,带必定负载时调速计划也较好(空载时用此法调速,计划小;重载时,电机特性太“软”,易不安稳),故在中、小型电机中运用较广泛。
1。
绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
属有级调速,机械特性较软.1、串电阻启动增加起动转矩,降低起动电流,起动达速后切除启动电阻(就是短接转子回路)全速运行.2、串电阻启动(电阻最大值起动),根据需要调整电阻的阻值,可以改变电机的运行速度,达到调速的目的(是有范围的调速)。
绕线式电机的启动电流是可调的,通过调整转子串联的电阻大小,可以调节绕线式电机的启动电流!原理:对于绕线式异步电动机,当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流,电阻一般接为星形接法,根据公式:I0=U0/R0当转子串接电阻时R0↑,在U0不变的情况下,I0↓,此分析忽略电机感抗的损耗.启动前将电阻全部接入转子回路,随着启动过程的结束,启动电阻被逐级短接,KM1,KM2,KM3逐级吸合,保证始终有较大的起动转矩,短接方式可以遵循时间和电流调节原则,KA1,KA2,KA3中间继电器可以根据实际工作情况而定.RN=E N÷I N÷√3 R N:电机转子额定电阻E N:电机转子额定电压I N:电机转子额定电流例:240KW—6极电机,定子电流436A,定子电压380V。
转子电流376A,转子电压407VRN=(E N÷IN)÷√3=(407÷376)÷√3=(1.0824)÷√3=0。
624Ω△RY1=1。
4 RN = 1.4×1.0824 = 1.515Ω△RY2=0。
5RN = 0.5×1.0824= 0.5412Ω△R1=0。
3RN = 0.3×1。
0824 = 0。
3247Ω△R2=0.2 RN = 0。
绕线式电动机转子串电阻调速方法2011-06-12 11:06:41| 分类:电子线路图|字号订阅三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。
改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
论述绕线式交流异步电动机转子回路串电阻调速原理兰州理工大学操纵理论与操纵工程谯自健 1220811010150 引言绕线式交流异步电动机转子回路串电阻调速是传统调速方式之一,其结构简单,易于实现。
本文通过对绕线式交流异步电动机转子回路串电阻调速的原理、效率和缺点方面作出分析。
1 绕线式交流异步电动机转子回路串电阻调速原理转子串电阻调速的线路图和机械特性如图(a)和(b)所示,拖动恒转矩负载时,能够取得几级不同的速度。
图(a)转子回路串电阻调速线路图图(b)机械特性曲线依照电机学原理知:60-S f n p =极对数(1) 其中n 为电动机转速,f 为电源频率,S 为转差率(1)Pm S Pe =-(2) *Pa S Pe = (3)其中Pe 为异步电动机电磁功率,Pm 为异步电动机机械功率,Pa 为转子铜耗即转差功率因此得::1:(1):Pe Pm Pa S S =- 由式(4)能够看出SPm 减小,相反转差功率Pa 在增大,而转速n 随S 的增大而减小。
因此所绕线式异步交流电动机转子回路串电阻调速的实质是通过改变转差功率或转差率的大小来调剂转速n 的。
当串入的电阻阻值越大那么转差功率增大,随之转差率S 变大,从而使转速n 下降。
2 绕线式异步交流电动机转子回路串电阻调速的优缺点 绕线式转子异步电动机,通过转子回路串入不同数值的电阻R ,改变转差率S 调速的传统方式,能够取得不同斜率的机械特性,从而实现速度的调剂。
这种调速方式简单方便,但存在如下缺点:(1)调速是有级的,不滑腻。
(2)在深度调速机会械特性很软,致使负载有较小转变,即可引发转速的专门大的波动,降低了静态调速精度。
(3)转差功率Pa 消耗在电阻发烧上,效率低。
由于是通过增大转子回路的电阻值来降低电动机转速的,当拖动恒转矩负载时,转速n 越低,转差率S 就越大,从而使得转差功率也愈大,电能消耗大,效率更低。
当转差功率S=0.5时,效率η<0.5。
绕线转子异步电动机转子串电阻电感起动与调速方
法的研讨
绕城转子异步电动机能够通过转子串电阻进行起动与调速,但电阻上能耗大;如果转子串频敏变阻器,虽能减少损耗,但只能起动而不能调速。
本文提出一种转子串电阻、电感的方法,既能用于起动与调速,又能较大程度地节能。
IJ作原理如图1,在绕线电机转于绕组每相串入相同的电阻与电感。
首先我们考虑只串电感L的情况,电机运行时的临界转差率式中r;——定子绕组的电阻X;——定于绕组的电抗r二。
——转子绕组电阻的折算值X二——转子回路电抗的折算值teZ。
H。
0+XL其中X二。
——转子绕组电抗的折算值X、——转子串电感L的电抗折算值由于r;<<x。
,x;Wx。
,略去r;、x;,则即Sm与人成反比,与固有特性相比,临界转差率的值减少。
电机运行时的最大转矩为同理略去r;、x;,则式中m;——电机定子相数V;——电机定子相电压。
——电机同步角速度由式(2)可知,凡人与Xb也成反比,与固有特性相比,最大转矩减少。
由以上分析可知,转子串电感时的机械特性如图2中的曲线1(曲线0为电机的固有特性)。
在此基础上转子绕组再串入电阻Rnl 与Rn。
,由式(l)、式(2)可知:临界转差率随转子回路电阻的增加而增大,而最大转短不变,其机械(本文共计3页)......[继续阅读本文]
转子上串联电阻可以降低启动电流增大启动转矩,同样也可以用于调速,但转子回路串联电阻调速的方式不理想,在电机轻载和空载的时候几乎起不到调速的作用,串联电抗器也可以减小起动电流,但是起动转矩也会减小很多,所以不采用串联电抗器来启动。
不是说三项绕线转子异步电动机转子回路串入电阻,可以增大起动转矩,串入电阻值越大,起动转矩越大?要合适
是应该三相都串的,以保持三相平衡。
所串电阻增大,转速变低。
因为电阻增大,相当于电机端电压降低,电机机械特性变软,转差率增大。
负载恒定的时候,电机的电流会增大的。