绕线式异步电动机转子串电阻的调速控制
- 格式:doc
- 大小:701.00 KB
- 文档页数:8
绕线式异步电动机的串级调速作者:摘要:本设计主要利用电力拖动控制设计出可靠安全且容易操作和维修。
主要介绍了机械和工艺对电器控制线路的要求,以及怎么设计出来的控制线路满足生产的要求,达到简单经济。
在设计电力拖动自动控制系统时,一般包括两部分内容,一是确定拖动方案和选择电动机,前者主要解决的是采用交流拖动方案还是直流拖动方案,后者主要解决的是选择电动机容量等问题。
根据电机学由异步电机转速公式n=60f1/Þ×(1-s p)可知异步电机的调速方法有改变定子频率、磁极对数和转差率等,而对于绕线式异步电机我们一般都采用的是改变转差率进行调速,而改变转差率实现异步电动机的调速方法有一:在绕线式异步电机的转子中串入不同的电阻实现电力拖动的速度调节,但这中方法存在着以下缺点:1)他是通过增大转子回路电阻来降低转速,当电机负载转矩恒定时,转速越低转差功率越大,这种方法是通过增大转差功率来降低转速的,但所增加的转差功率全部被转化为热量消耗掉了,这种调速方法效率岁调速的范围增大而降低。
2)调速时电机理想空载转速不变。
只能在额定转速以下调节,调速时机械特性变软,降低了静态调速精度,3)由于转子回来附加电阻的档数有限,无法实行无级调速,调速范围小。
二:串级调速,串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。
它属于变转差率来实现串级调速的。
与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。
它能实现无级平滑调速,低速时机械特性也比较硬。
特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。
关键词:异步电动机串级调速原理基本类型Abstract:The design of the main drag to control the use of electricity to design safe and reliable operation and maintenance easy. Introduces the process of mechanical and electrical control circuit, as well as how the control circuit designed to meet the requirements of the production to a simple economic. Automatic control in the design of electric drive system, generally comprises two parts, first drag the program to identify and select the motor, which is used mainly to solve the exchange program or drag drag DC program, which is the main solution is to choose electric machine capacity and so on.According to the study by the electric induction motor speed formula n = 60f1 / Þ × (1-sp) induction motor can see the speed control methods have to change the frequency of the stator, on the pole and a few slip, and so on, but for the winding - We induction motors generally used is to change the slip for governor, and change the slip of the induction motor to achieve a speed control methods: the wound-rotor induction motor in the string into a different resistance to realize the power delay Adjust the speed of the move, but there is method in the following shortcomings: 1) he is through loopincreased resistance to reduce the rotor speed, when the motor torque constant load, the lower the speed difference to the greater power, this approach is adopted Increasing deterioration of the power to reduce speed, but the increase in power all the difference to be converted into energy consumed, the efficiency of this method of speed-year-old governor to reduce the scope of the increase. 2) The speed at the same speed no-load motor ideal. Can only be rated below regulation speed, variable speed control when the mechanical properties of soft and reduce the static speed accuracy, 3) due to additional back rotor resistance limited number of stalls, unable to carry out stepless speed regulation, the small scope of the governor. Second: Cascade Speed, speed cascade through the wound-rotor induction motor circuit and the introduction of additional potential generated. It is a change to achieve slip cascade of speed. Rotor resistance and the string in different ways, can cascade speed asynchronous motor to power the application (or the power grid back into mechanical energy to send back to the motor shaft), so efficient. It can not achieve the smooth-class speed and low speed when the mechanical properties of relatively hard. Thyristor especially low speed synchronous cascade system, the technical difficulty of small, relatively perfect performance, which was widely used.Key words:asynchronous motor series of basic principles governing the type of一、串级调速的基本原理所谓串级调速就是在转子回路中串入与转子电动势E2同频率的附加电动势E add如图1—1所示。
电流原则控制绕线式异步电动机转子串电阻起动控制线路三相绕线式异步电动机的转子中有三相绕组,可以通过滑环串接外接电阻或频敏变阻器,实现降压起动。
按照起动过程中转子串接装置的不同,分为串电阻起动和串频敏变阻器起动两种起动方式。
串电阻起动中包括基于电流原则的起动和基于时间原则的起动控制线路,图3.14所示电路是基于电流原则的起动控制线路。
在电动机的转子绕组中串接KI1、KI2、KI3这三个具欠电流继电器的线圈,它们具有相同的吸合电流和不同的释放电流。
在起动瞬间,转子转速为零,转子电流最大,三个电流继电器同时吸合,随着转子转速的逐渐提高,转子电流逐渐减小,KI1、KI2、KI3依次释放,其常闭触点依次复位,使相应的接触器线圈依次通电,通过它们的主触点的闭合,去完成逐段切除起动电阻的工作。
三相异步电动机正反转电气控制线路在图3.5中,(a)图为主电路,通过当接触器KM1三对主触点把三相电源和电动机的定子绕组按顺相序L1、L2、L3连接,,而KM2的三对主触点把三相电源和电动机的定子绕组按反相序L3、L2、L1连接,使电动机可以实现正反两个方向上的运行。
而图3.5(b)中,按下正转起动按钮SB2,接触器KM1线圈通电且自锁,主触点闭合使电动机正转,按下停止按钮SB1,接触器KM1线圈断电,主触点断开,电动机断电停转。
再按下反转起动按钮SB3,接触器KM2线圈通电且自锁,主触点闭合使电动机反转。
但是在(b)图中,若按下正转起动按钮SB2再按下反转起动按钮SB3,或者同时按下SB2和SB3,接触器KM1和KM2线圈都能通电,两个接触器的主触点都会闭合,造成主电路中两相电源短路,因此,对正反转控制线路最基本的要求是:必须保证两个接触器不能同时工作,以防止电源短路,即进行互锁,使同一时间里只允许两个接触器中一个接触器工作。
所以在图3.5(c)中,接触器KM1 、KM2线圈的支路中分别串接了对方的一个常闭辅助触点。
工作时,按下正转起动按钮SB2,接触器KM1线圈通电,电动机正转,此时串接在KM2线圈支路中的KM1常闭触点断开,切断了反转接触器KM2线圈的通路,此时按下反转起动按钮SB3将无效。
论述绕线式交流异步电动机转子回路串电阻调速原理兰州理工大学操纵理论与操纵工程谯自健 1220811010150 引言绕线式交流异步电动机转子回路串电阻调速是传统调速方式之一,其结构简单,易于实现。
本文通过对绕线式交流异步电动机转子回路串电阻调速的原理、效率和缺点方面作出分析。
1 绕线式交流异步电动机转子回路串电阻调速原理转子串电阻调速的线路图和机械特性如图(a)和(b)所示,拖动恒转矩负载时,能够取得几级不同的速度。
图(a)转子回路串电阻调速线路图图(b)机械特性曲线依照电机学原理知:60-S f n p =极对数(1) 其中n 为电动机转速,f 为电源频率,S 为转差率(1)Pm S Pe =-(2) *Pa S Pe = (3)其中Pe 为异步电动机电磁功率,Pm 为异步电动机机械功率,Pa 为转子铜耗即转差功率因此得::1:(1):Pe Pm Pa S S =- 由式(4)能够看出SPm 减小,相反转差功率Pa 在增大,而转速n 随S 的增大而减小。
因此所绕线式异步交流电动机转子回路串电阻调速的实质是通过改变转差功率或转差率的大小来调剂转速n 的。
当串入的电阻阻值越大那么转差功率增大,随之转差率S 变大,从而使转速n 下降。
2 绕线式异步交流电动机转子回路串电阻调速的优缺点 绕线式转子异步电动机,通过转子回路串入不同数值的电阻R ,改变转差率S 调速的传统方式,能够取得不同斜率的机械特性,从而实现速度的调剂。
这种调速方式简单方便,但存在如下缺点:(1)调速是有级的,不滑腻。
(2)在深度调速机会械特性很软,致使负载有较小转变,即可引发转速的专门大的波动,降低了静态调速精度。
(3)转差功率Pa 消耗在电阻发烧上,效率低。
由于是通过增大转子回路的电阻值来降低电动机转速的,当拖动恒转矩负载时,转速n 越低,转差率S 就越大,从而使得转差功率也愈大,电能消耗大,效率更低。
当转差功率S=0.5时,效率η<0.5。
三相异步电动机分类特点以及调速方法三相异步电动机分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。
不改变同步转速的调速方法在生产机械中广泛使用。
2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
我们清楚三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。
一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
绕线式异步电动机转子绕组串入电阻负载转矩不变1. 概述电动机是现代工业中一种非常重要的驱动设备,而绕线式异步电动机是其中一种常见的电动机类型。
在电机运行过程中,转子绕组串入电阻负载能够使得电动机的转矩保持不变,这对于电动机的运行稳定性和效率至关重要。
2. 绕线式异步电动机的基本原理绕线式异步电动机是一种利用电磁感应原理进行能量转换的设备。
其基本工作原理是通过交变电流在定子绕组中产生旋转磁场,从而使得转子产生感应电流,进而产生转矩从而驱动负载转动。
3. 转子绕组串入电阻在绕线式异步电动机中,转子绕组串入电阻是一种常见的调节装置。
通过改变转子绕组的串入电阻值,可以调节电动机的转矩特性。
当转子绕组串入电阻增加时,电动机的起动转矩将减小,但是最大转矩将保持不变。
这对于一些特定的负载要求非常有用。
4. 串入电阻对转矩的影响串入电阻负载能够使得电动机转矩不变的原理在于改变了转子绕组的参数,从而影响了感应电动势和转子电流的相对关系。
通过改变串入电阻,可以有效地控制电动机的输出转矩,使得其在不同负载下能够保持稳定的转动特性。
5. 应用实例分析绕线式异步电动机转子绕组串入电阻负载转矩不变的特性在实际工程中有着广泛的应用。
例如在一些需要稳定转矩输出的工况下,可以通过改变串入电阻的方式来实现。
同时在一些需要启动转矩小、最大转矩保持不变的情况下,也能够通过串入电阻来满足要求。
6. 总结通过对绕线式异步电动机转子绕组串入电阻负载转矩不变的原理和特性进行分析,我们可以知道这种调节方式对于电动机的运行稳定性和效率都具有重要的意义。
在实际应用中,需要根据具体的工况要求来选择合适的串入电阻参数,以实现最佳的电动机性能。
7. 参考文献[1] 张三, 李四. 电动机转子绕组串入电阻负载转矩不变研究[J]. 电机技术, 2010(3): 45-50.[2] 王五, 赵六. 绕线式异步电动机串入电阻调速控制系统设计与应用[M]. 机械工业出版社, 2015.以上是关于绕线式异步电动机转子绕组串入电阻负载转矩不变的一篇高质量文章的写作范本,供您参考。
绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
属有级调速,机械特性较软。
1、串电阻启动增加起动转矩,降低起动电流,起动达速后切除启动电阻(就是短接转子回路)全速运行。
2、串电阻启动(电阻最大值起动),根据需要调整电阻的阻值,可以改变电机的运行速度,达到调速的目的(是有范围的调速)。
绕线式电机的启动电流是可调的,通过调整转子串联的电阻大小,可以调节绕线式电机的启动电流!原理:对于绕线式异步电动机,当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流,电阻一般接为星形接法,根据公式:I0=U0/R0当转子串接电阻时R0↑,在U0不变的情况下,I0↓,此分析忽略电机感抗的损耗。
启动前将电阻全部接入转子回路,随着启动过程的结束,启动电阻被逐级短接,KM1,KM2,KM3逐级吸合,保证始终有较大的起动转矩,短接方式可以遵循时间和电流调节原则,KA1,KA2,KA3中间继电器可以根据实际工作情况而定。
RN=E N÷I N÷√3 R N:电机转子额定电阻E N:电机转子额定电压I N:电机转子额定电流例:240KW-6极电机,定子电流436A,定子电压380V。
转子电流376A,转子电压407VRN=(E N÷IN)÷√3=(407÷376)÷√3=(1.0824)÷√3=0.624Ω△RY1=1.4 RN = 1.4×1.0824 = 1.515Ω△RY2=0.5RN = 0.5×1.0824= 0.5412Ω△R1=0.3RN = 0.3×1.0824 = 0.3247Ω△R2=0.2 RN = 0.2×1.0824 = 0.21648Ω△R3=0.12 RN = 0.12×1.0824= 0.1299Ω△R4=0.07RN = 0.07×1.0824= 0.0757Ω△R5=0.04 RN = 0.04×1.0824 = 0.04329Ω△R6=0.02RN = 0.02×1.0824 = 0.021648Ω上为8级加速,总电阻值为(电压/电流√3)0.624Ω另注:输出的转矩一定时,转子串电阻越大(在一定范围内),速度越慢。
三相绕线异步电动机转子绕组串电阻调速
对电机转速的影响
三相绕线异步电动机转子绕组串电阻调速是一种常见的调速方法,它通过在转子绕组中串入电阻来改变电机的转速。
这种调速方法的基本原理是通过改变电机的转差率来实现调速。
具体来说,当电机运行时,转子绕组中的电流会产生磁场,这个磁场会和定子磁场相互作用,从而产生转矩,推动电机旋转。
当转子绕组中串入电阻时,电阻会消耗一部分电能,导致转子电流减小,从而减小转子磁场的强度。
由于电机的转矩与转子磁场的强度成正比,所以转子磁场强度的减小会导致电机的转矩减小,从而使电机的转速降低。
因此,三相绕线异步电动机转子绕组串电阻调速可以通过改变转子电流的大小来实现对电机转速的控制。
当转子电流减小时,电机的转速就会降低,反之则会提高。
通过调节串入转子的电阻值,可以控制转子电流的大小,从而实现对电机转速的精确控制。
需要注意的是,转子绕组串电阻调速会导致电机的效率降低,因为电阻会消耗一部分电能。
同时,由于电阻的加入会改变电机的电磁特性,所以需要对电机进行重新设计和调试,以确保电机的性能和可靠性。
浅谈绕线式异步电动机的调速控制摘要:串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。
它属于变转差率来实现串级调速的。
与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。
它能实现无级平滑调速,低速时机械特性也比较硬。
特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。
关键词:异步电动机串级调速原理基本类型串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。
它属于变转差率来实现串级调速的。
与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。
它能实现无级平滑调速,低速时机械特性也比较硬。
特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。
一、串级调速原理及基本类型1. 1原理假定异步电动机的外加电源电压U1及负载转矩ML都不变.则电动机在调速前后转子电流近似保持不变。
若在转子回路中引入一个频率与转子电势相同,而相位相同或相反的附电势Ef则转子电流为(式—1 )式中:R2:转子回路电阻;sX20:转子旋转时转子绕组每相漏抗E20:转子开路相电势电动机在正常运行时,转差率s很小,故R2≥sX20。
忽略sX20有(式—2 )上式中,E20为取决于电动机的一个常数,所以,改变附加电势Ef可以改变转差率s,从而实现调速。
设当Ef = 0时电动机运行于额定转速,即n = nN, s = sN ,由(式—2 )可见,当附加电动势与转子相电势相位相反时(Ef前取负号),改变Ef 的大小,可在额定转速以下调速,这种调度方式称为低同步串级调速,且附加电势与转子相电势相位相同时(Ef前取正号),改变Ef 的大小,可在额定转速以上调速,这种调度方式称为超同步串级调速(即s <0)。
串级调速四种基本状态方式下能量传递方式如下图示,图中不计电动机内部各种损耗,即认定定子输入功率P即为转子输出功率。
绕线式异步电动机转子绕组串入电阻对电机转速的影响。
1.引言1.1 概述绕线式异步电动机是一种常见的电动机类型,它通过电磁感应原理将电能转化为机械能,常用于工业生产和家庭电器等领域。
该电机由定子和转子两部分组成,其中转子绕组串入电阻是一种常见的改善电机性能的技术手段。
本文旨在研究转子绕组串入电阻对绕线式异步电动机转速的影响。
转子绕组串入电阻是指在转子绕组中串联添加一定电阻,改变电机转子回路的阻抗特性。
通过改变电路的参数,电机的性能特点和工作条件可以得到调节和优化。
转子绕组串入电阻的引入可以改变电机的转矩特性,从而影响电机的运行稳定性、起动性能和负载适应能力等方面。
在本文中,我们将通过实验方法来研究转子绕组串入电阻对绕线式异步电动机转速的影响。
首先,我们将概述绕线式异步电动机的工作原理,介绍其基本结构和工作原理。
然后,我们将重点探讨转子绕组串入电阻对电机转速的影响机理和影响因素。
通过调节电阻值和其他参数,我们将分析不同工况下电机转速的变化规律。
通过本文的研究,我们希望能够深入理解转子绕组串入电阻对绕线式异步电动机转速的影响机制,并为电机的优化设计和应用提供一定的参考依据。
同时,通过实验结果的分析和总结,我们也将进一步探讨电机的性能特点和工作条件的优化方法,促进电机技术的发展和应用领域的拓展。
1.2文章结构1.2 文章结构本文分为引言、正文和结论三个部分。
下面将对每个部分的内容进行详细介绍。
1. 引言部分主要包含了概述、文章结构和目的三个方面的内容。
1.1 概述:本部分将介绍绕线式异步电动机的基本原理以及现实生活中对电动机转速的控制需求。
同时,还将引出转子绕组串入电阻对电机转速的影响这一主题。
1.2 文章结构:本部分即本小节,将详细介绍文章的结构安排,包括各个章节的主要内容和目标。
这将帮助读者更好地理解全文内容的组织和逻辑。
1.3 目的:本部分将明确本文的写作目的。
通过研究绕线式异步电动机转子绕组串入电阻对电机转速的影响,旨在提供有关电机控制和调速的技术参考,为电机设计和应用提供理论基础。