第五章离心分离技术..
- 格式:ppt
- 大小:4.80 MB
- 文档页数:85
离心机离心分离的几种方法及特点2009-07-10文字选择:制备型超高速离心机的几种分离方法:A.差速离心:逐次增加离心力,每次可沉降样品溶液中的一些组份。
差速离心是一种最常用的方法。
在这种方法中,离心管在开始时装满了均一的样品溶液。
通过在一定速度下一定时间的离心后,就可得到两个部份:沉淀和上清液。
通常在第一次离心时把大部分不需要的大粒子沉降去掉。
这时所需的组份大部分仍留在上清液中。
然后将收集到的上清液以更高速度离心,把所需的粒子沉积下来。
离心的时间要选择得当,使大部份不需要的更小的粒子仍留在上清液中。
对于得到的沉淀和上清液可以进行进一步的离心,直到达到所需要的分离纯度为止。
差速离心的特点是操作简单,但分离纯度不高。
B.密度梯度离心法:可以同时使样品中几个或全部组份分离,具有很好的分辨率。
1)速率区带法(rate zonal):根据样品中不同粒子所具有的不同的尺寸大小及沉降速度(S)。
大致步骤如下:在离心管中装入密度梯度溶液,溶液的密度从离心管顶部至底部逐渐增加(正梯度)。
将所需分离的样品小心地加至密度梯度溶液的顶部。
样品在梯度溶液表面形成一负梯度。
由于不同大小的粒子在离心力作用下,在梯度中移动的速度不一样,所以经过离心后会形成几条分开的样品区带。
注意:样品粒子的密度必须大于梯度液注中任一点的密度。
离心过程必须在区带到达管子底部前停止。
2)等密度离心法(isopycnic):根据粒子的不同密度来分离。
离心过程中,粒子会移至与它本身密度相同的地方形成区带。
密度样度的选择要使梯度的范围包括所有待分离粒子的密度。
样品可以在密度梯度液粒上面或均匀分布在密度梯度中。
经离心后,样品粒子达到它们的平衡点。
注意:平衡后粒子的分离完全由其密度决定,与时间无关,此时再改变离心转速,只能改变区带的相对位置。
2.密度梯度分析法1)梯度介质性质与选择:A、应具备的性质:梯度物质的选择原则是满足分离方法的基本要求,一个理想的密度材料标准它应是:? 所形成的溶液密度应包括所需要的密度范围。
离心技术离心技术离心是利用旋转运动的离心力以z离心是利用旋转运动的离心力,以及物质的沉降系数或浮力密度的差别进行分离、浓缩和提纯的项操作技进行分离、浓缩和提纯的一项操作技术。
主要内容z离心的基本原理z离心设备的分类z离心机的选择z 离心技术应用实例一、离心的基本原理z 利用转子高速旋转时所产生的强大离心力,加快颗粒的沉降速度,把样品中不同沉降系数的或浮力密度差的物质分离开。
离心力)当离心机转子以一定的角速度z 离心力(F ):当离心机转子以一定的角速度ω(弧度/秒)旋转,颗粒的旋转半径为r (厘米)时,颗粒所受的向外的力即离心力力即离心力。
2==F ma m rωω:旋转角速度ω: 旋转角速度r:旋转体离旋转轴的距离()2/sec n rad πω=60相对离心力(RCF):又称分离因数,是衡量离心程度的相对离心力参数,是指在离心力场中,作用于颗粒的离心力相当于地球引力的倍数,单位是重力加速度g (980cm/秒2)。
RCF=ω2r/980=4π2n 2r/3600*980= 1.119*10-5n 2r222524 1.11910980r n r RCF n r ωπ−===×3600980×低速离心时常以每分钟的转数rpm (即n )来作为离心力单n:转子每分钟的转数(rpm)位;而高速离心则以g 表示。
Dole&Cotzias制作了转子速度和半径相对应的离心力列线图半径相对离心力转数Sedimentation coefficient (S)沉降系数Sedimentation coefficient (S)z 离心沉降和重力沉降只是对沉降的作用力不同,离心沉降的速度v 2v S r ω=z其中S 即为沉降系数。
z S 表示单位离心场中粒子的移动速度。
2303S −沉降速度212221log log 2.303()r r v r t t ωω===−单位离心力zr 1:离心前粒子距离转轴的距离z r :离心后粒子距离转轴的距离2在实际应用时常在1010-13秒左右,故把S在实际应用时常在Svedberg单位,单位,秒称为一个Svedberg沉降系数10沉降系数-1310秒称为一个。
离心现象及其应用教学教案第一章:离心现象的引入1.1 教学目标了解离心现象的定义和产生条件掌握离心现象在日常生活中和工业中的应用培养学生的观察能力和思考能力1.2 教学内容离心现象的定义和产生条件离心现象在日常生活中的应用实例离心现象在工业中的应用实例1.3 教学方法采用问题导入法,引导学生思考离心现象的产生原因和应用场景通过图片和视频资料,展示离心现象在日常生活中的应用实例通过案例分析,让学生了解离心现象在工业中的应用实例1.4 教学评估课堂问答,检查学生对离心现象的定义和产生条件的理解程度小组讨论,让学生分享自己对离心现象应用的思考和发现第二章:离心现象的原理2.1 教学目标掌握离心现象的原理和数学描述理解离心力与向心力的关系培养学生的数学思维能力2.2 教学内容离心现象的原理和数学描述离心力与向心力的关系离心现象的数学计算方法2.3 教学方法通过示例和数学推导,让学生理解离心现象的原理和数学描述采用问题解决法,引导学生思考离心力与向心力的关系通过练习题,巩固学生对离心现象数学计算方法的理解2.4 教学评估课堂问答,检查学生对离心现象原理和数学描述的理解程度习题练习,评估学生对离心力与向心力的关系的掌握程度第三章:离心现象在日常生活中的应用3.1 教学目标了解离心现象在日常生活中的应用实例掌握离心泵、洗衣机和果汁机等设备的原理和工作方式培养学生的实际应用能力3.2 教学内容离心泵的原理和工作方式洗衣机的离心干燥原理果汁机的离心分离原理3.3 教学方法通过图片和实物展示,让学生了解离心现象在日常生活中的应用实例采用案例分析法,引导学生理解离心泵、洗衣机和果汁机等设备的原理和工作方式进行小实验,让学生亲身体验离心现象的应用3.4 教学评估课堂问答,检查学生对离心现象在日常生活中应用实例的理解程度小组讨论,让学生分享自己对离心泵、洗衣机和果汁机等设备原理和工作方式的认识第四章:离心现象在工业中的应用4.1 教学目标了解离心现象在工业中的应用实例掌握离心分离、离心压缩和离心干燥等工艺原理培养学生的工业应用能力4.2 教学内容离心分离的原理和应用离心压缩的原理和应用离心干燥的原理和应用4.3 教学方法通过图片和视频资料,展示离心现象在工业中的应用实例采用案例分析法,引导学生理解离心分离、离心压缩和离心干燥等工艺原理进行小实验,让学生亲身体验离心现象在工业中的应用4.4 教学评估课堂问答,检查学生对离心现象在工业中应用实例的理解程度小组讨论,让学生分享自己对离心分离、离心压缩和离心干燥等工艺原理和应用的认识第五章:离心现象的综合应用5.1 教学目标了解离心现象在不同领域的综合应用掌握离心现象在不同行业中的具体应用实例培养学生的综合应用能力5.2 教学内容离心现象在交通工程中的应用离心现象在环境工程中的应用离心现象在生物工程中的应用5.3 教学方法通过图片和视频资料,展示离心现象在不同领域的综合应用实例采用案例分析法,引导学生理解离心现象在不同行业中的具体应用实例进行小组讨论,让学生分享自己对离心现象综合应用的认识和思考5.4 教学评估课堂问答,检查学生对离心现象在不同领域综合应用实例的理解程度小组讨论,让学生分享自己对离心现象在不同行业中具体应用实例的认识第六章:离心现象在航天工程中的应用6.1 教学目标了解离心现象在航天工程中的重要应用掌握离心训练、离心模拟等关键技术培养学生的创新意识和科学精神6.2 教学内容离心现象在航天工程中的应用实例离心训练的原理和应用离心模拟在航天器设计中的作用6.3 教学方法通过图片和视频资料,展示离心现象在航天工程中的应用实例采用案例分析法,引导学生理解离心训练、离心模拟等关键技术进行小组讨论,让学生分享自己对离心现象在航天工程中应用的认识和思考6.4 教学评估课堂问答,检查学生对离心现象在航天工程中应用实例的理解程度小组讨论,让学生分享自己对离心训练、离心模拟等关键技术的认识第七章:离心现象在医疗领域的应用7.1 教学目标了解离心现象在医疗领域的重要应用掌握离心分离、离心诊断等关键技术培养学生的关爱生命、关注健康的意识7.2 教学内容离心现象在医疗领域中的应用实例离心分离在血液学中的应用离心诊断在临床检验中的作用7.3 教学方法通过图片和视频资料,展示离心现象在医疗领域中的应用实例采用案例分析法,引导学生理解离心分离、离心诊断等关键技术进行小组讨论,让学生分享自己对离心现象在医疗领域中应用的认识和思考7.4 教学评估课堂问答,检查学生对离心现象在医疗领域中应用实例的理解程度小组讨论,让学生分享自己对离心分离、离心诊断等关键技术的认识第八章:离心现象在材料科学中的应用8.1 教学目标了解离心现象在材料科学中的重要应用掌握离心力对材料结构和性能的影响培养学生的创新意识和实践能力8.2 教学内容离心现象在材料科学中的应用实例离心力对材料结构和性能的影响离心技术在材料制备和处理中的应用8.3 教学方法通过图片和视频资料,展示离心现象在材料科学中的应用实例采用案例分析法,引导学生理解离心力对材料结构和性能的影响进行小组讨论,让学生分享自己对离心现象在材料科学中应用的认识和思考8.4 教学评估课堂问答,检查学生对离心现象在材料科学中应用实例的理解程度小组讨论,让学生分享自己对离心力对材料结构和性能的影响的认识第九章:离心现象在环境保护中的应用9.1 教学目标了解离心现象在环境保护中的重要应用掌握离心分离、离心净化等关键技术培养学生的环保意识和可持续发展观念9.2 教学内容离心现象在环境保护中的应用实例离心分离在废水处理中的应用离心净化在空气污染控制中的作用9.3 教学方法通过图片和视频资料,展示离心现象在环境保护中的应用实例采用案例分析法,引导学生理解离心分离、离心净化等关键技术进行小组讨论,让学生分享自己对离心现象在环境保护中应用的认识和思考9.4 教学评估课堂问答,检查学生对离心现象在环境保护中应用实例的理解程度小组讨论,让学生分享自己对离心分离、离心净化等关键技术的认识第十章:离心现象的拓展研究10.1 教学目标了解离心现象在其他领域的拓展应用掌握离心现象在其他领域的具体应用实例培养学生的创新意识和科学精神10.2 教学内容离心现象在其他领域的拓展应用实例离心现象在其他领域的具体应用技术离心现象在未来的发展趋势10.3 教学方法通过图片和视频资料,展示离心现象在其他领域的拓展应用实例采用案例分析法,引导学生理解离心现象在其他领域的具体应用技术进行小组讨论,让学生分享自己对离心现象在其他领域中应用的认识和思考10.4 教学评估课堂问答,检查学生对离心现象在其他领域拓展应用实例的理解程度小组讨论,让学生分享自己对离心现象在其他领域具体应用技术的认识重点和难点解析第一章:离心现象的引入重点和难点解析:离心现象的定义和产生条件是本章节的核心内容,需要通过实例和实际操作来帮助学生理解。
环保行业工业废水的处理与回用技术创新方案第一章工业废水处理概述 (3)1.1 工业废水处理现状 (3)1.2 工业废水处理的重要性 (3)1.3 工业废水处理发展趋势 (4)第二章物理法处理技术 (4)2.1 格栅与筛网过滤技术 (4)2.2 沉淀与澄清技术 (4)2.3 离心分离技术 (5)第三章化学法处理技术 (5)3.1 中和法 (5)3.1.1 中和剂的选取 (5)3.1.2 中和法的工艺流程 (5)3.2 氧化还原法 (6)3.2.1 氧化剂的选择 (6)3.2.2 还原剂的选择 (6)3.2.3 氧化还原法的工艺流程 (6)3.3 絮凝法 (6)3.3.1 絮凝剂的选择 (6)3.3.2 絮凝法的工艺流程 (7)3.4 吸附法 (7)3.4.1 吸附剂的选择 (7)3.4.2 吸附法的工艺流程 (7)第四章生物法处理技术 (7)4.1 活性污泥法 (7)4.2 生物膜法 (8)4.3 厌氧生物处理技术 (8)4.4 生物脱氮除磷技术 (8)第五章混合法处理技术 (9)5.1 物化生化组合工艺 (9)5.2 化学絮凝生物处理组合工艺 (9)5.3 电磁处理技术 (9)第六章工业废水回用技术 (10)6.1 物理法回用技术 (10)6.1.1 概述 (10)6.1.2 过滤技术 (10)6.1.3 沉淀技术 (10)6.1.4 离心技术 (10)6.1.5 膜分离技术 (10)6.2 化学法回用技术 (10)6.2.2 氧化还原技术 (10)6.2.3 中和技术 (10)6.2.4 絮凝技术 (10)6.2.5 离子交换技术 (11)6.3 生物法回用技术 (11)6.3.1 概述 (11)6.3.2 好氧生物处理 (11)6.3.3 厌氧生物处理 (11)6.4 混合法回用技术 (11)6.4.1 概述 (11)6.4.2 物理化学法 (11)6.4.3 生物化学法 (11)6.4.4 物理生物法 (11)第七章工业废水处理设备与工艺优化 (11)7.1 废水处理设备选型与设计 (12)7.1.1 设备选型原则 (12)7.1.2 设备选型方法 (12)7.1.3 设备设计要点 (12)7.2 工艺参数优化 (12)7.2.1 工艺参数调整原则 (12)7.2.2 工艺参数优化方法 (12)7.2.3 工艺参数优化内容 (13)7.3 自动化控制系统 (13)7.3.1 控制系统设计原则 (13)7.3.2 控制系统设计方法 (13)7.3.3 控制系统功能 (13)第八章工业废水处理工程案例分析 (13)8.1 某化工企业废水处理工程 (13)8.1.1 项目背景 (13)8.1.2 废水处理工艺 (13)8.1.3 工程效果 (14)8.2 某制药企业废水处理工程 (14)8.2.1 项目背景 (14)8.2.2 废水处理工艺 (14)8.2.3 工程效果 (14)8.3 某电镀企业废水处理工程 (14)8.3.1 项目背景 (14)8.3.2 废水处理工艺 (15)8.3.3 工程效果 (15)第九章工业废水处理行业政策与标准 (15)9.1 我国工业废水处理政策概述 (15)9.1.1 政策背景 (15)9.1.2 政策目标 (15)9.2 工业废水处理标准体系 (16)9.2.1 标准体系构成 (16)9.2.2 标准内容 (16)9.3 工业废水处理行业监管与处罚 (16)9.3.1 监管体系 (16)9.3.2 处罚措施 (16)第十章环保行业工业废水处理与回用技术创新展望 (17)10.1 工业废水处理技术创新趋势 (17)10.2 工业废水回用技术创新趋势 (17)10.3 环保行业工业废水处理与回用技术发展方向 (17)第一章工业废水处理概述1.1 工业废水处理现状我国经济的快速发展,工业生产规模不断扩大,工业废水排放量也随之增加。
离心技术一.概念生物样品悬浮液在高速旋转下,由于巨大的离心力作用使悬浮的微小颗粒(细胞器、生物大分子的沉淀等)以一定的速度沉降,从而与溶液得以分离的一种技术。
沉降速度取决于颗粒的质量、大小和密度。
主要应用于各种生物样品的分离和制备。
二.基本原理1.离心力(F)F = m·a =m·ω2r2a:粒子旋转的加速度m:粒子的有效质量克为单位ω:粒子旋转的角速度弧度/秒为单位r:粒子的旋转半径cm为单位2.相对离心力(RCF)relative centrifuge force通常离心力常用地球的引力的倍数来表示,因而称为相对离心力(RCF)。
或者用数字×g 来表示,例如:13,000g,则表示相对离心力为13,000。
相对离心力指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度g(980cm/s2)。
RCF=ma/ mg= mω2r2/mg=ω2r2/gω=2π×rpm/60∴RCF=1.119×10-5×(rpm)2rrpm:revolutions per minute为每分钟转数由上式可知,只要给出旋转半径r,则RCF和rpm之间可以相互换算。
由于转头的形状及结构的差异,每台离心机的离心管从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算时规定旋转半径均用平均半径r av代替:rav=(r min+r max)/2低速离心时常以转速rpm来表示,高速离心时则以g表示。
报告离心条件时使用RCF 比rpm要科学,因为它可以真实地反映颗粒在离心管内不同位置的离心力及其动态变化。
三.离心机的主要构造和类型1.离心机的分类工业用离心机制备性离心机:分离各种生物材料、分离的样品量比较大实验用离心机分析性离心机:研究纯的生物大分子和颗粒的理化性质,一般有光学系统,可监测粒子在离心场中的行为,能推断物质的纯度、形状和分子量等,都是超速离心机制备性离心机分为:(1)普通离心机最大转速6000rpm左右,最大RCF接近6000g,容量为几十毫升至几升,分离形式是固液沉降分离,其转速不能严格控制,通常不带冷冻系统,室温操作,用于收集易沉淀的大颗粒物质,如:细胞等(2)高速冷冻离心机转速为2000-25000rpm,最大RCF为8900×g,最大容量可达3L,一般都有制冷系统,以消除高速旋转转头与空气之间摩擦而产生的热量,离心室的温度可以调节和维持在0℃-4℃,可以严格准确的控制转速温度和时间,并有指针或数字显示。