各种激励信号的设置及瞬态分析
- 格式:doc
- 大小:886.50 KB
- 文档页数:8
用于瞬态分析的五种激励信号Pspice软件为瞬态分析提供了五种激励信号波形(称为瞬态源)供用户选用。
下面介绍这五种瞬态源的波形特点和描述该信号波形时涉及到的参数。
其中电平参数针对的是独立电压源。
对独立电流源,只需将字母V改为I,其单位由伏特变为安培。
(1).脉冲电源(VPulse):P247习题脉冲信号是在瞬态分析中用得较频繁的一种激励信号。
描述脉冲信号波形涉及到7个参数。
表1列出了这些参数的含义、单位及内定值。
表2给出了不同时刻脉冲信号值与这些参数之间的关系。
下图为一具体实例。
图中给出了该波形对应的参数。
脉冲信号波形(例)表1描述脉冲信号波形的参数注:表中TSTOP是瞬态分析中参数Final Time的设置值;TSTEP是参数Print Step的设置值。
表2脉冲信号电平值与参数的关系(2).分段线性电源(VPWL: Piece-Wise Linear):5.2节分段线性信号波形由几条线段组成。
因此,为了描述这种信号,只需给出线段转折点的坐标数据即可。
下图是一个分段线性信号波形实例。
图中同时给出了描述该波形的数据。
分段线性信号波形(例)(3).调幅正弦电源(VSIN: Sinusoidal Waveform):5.1节描述调幅正弦信号涉及6个参数。
表3列出了这些参数的含义、单位和内定值。
表4给出了调幅正弦信号波形的变化与这6个参数的关系。
下图为一具体实例,图中同时给出了该信号波形对应的参数。
调幅正弦信号波形(例)注:表中TSTOP为瞬态分析中参数Final Time的设置值。
表4 调幅信号波形与参数的关系说明:此处描述的调幅正弦信号只用于瞬态分析。
若阻尼因子与偏置值均为0,则调幅信号成为标准的正弦信号,但是在进行3-6节介绍的AC分析时,本信号并不起作用。
(4).调频电源(VSFFM: Single-FrequencyFrequency-Modulated)描述调频信号需要5个参数,表5列出了这些参数的含义、单位和内定值。
中南大学CAD实验题目各种激励信号的设置及瞬态分析学生姓名指导教师学院专业班级学生学号年月日一、实验目的1、了解各种激励信号中参数的意义,掌握其设置方法。
2、掌握对电路进行瞬态分析的设置方法,能够对所给出的实际电路进行规定的瞬态分析,得到电路的瞬态响应曲线。
二、实验内容1、正确设置正弦信号、脉冲信号、周期性分段线性信号,参数自行确定,要求屏幕上正好显示4个完整周期的信号曲线。
(1)正弦信号voff=1v, vampl=2v, vfreq=1khz, phase=60, df=0, td=0(2)脉冲信号Pulse:v1=1v, v2=3v,per=2s, pw=1s,td=1s,tf=0.6s,tr=0.2s(3)PWL(piece-wise Linear) t1=0s, t2=1s, t3=1.2s,t4=1.3s, t5=2s, t6=3.5st7=4s,t8=4.5s V1=0, v2=2, v3=0.5, v4=2, v5=1, v6=3, v7=1, v8=22、对下图单管放大电路进行瞬态分析,信号源采用正弦波,频率从1kHz 到20kHz任意选定。
根据信号频率,合理选择分析结束时间,观测输出端的波形,屏幕上正好显示5个完整周期的波形。
设置如下:正弦信号:voff=1v, vampl=2v, vfreq=1khz, phase=60, df=0, td=03、在瞬态分析的同时对输出节点(out)的电压波形进行傅里叶分析,分析计算到6次谐波。
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(OUT)DC COMPONENT = 2.174553E+00HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZEDNO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)1 1.000E+03 5.468E+00 1.000E+00 -1.190E+02 0.000E+002 2.000E+03 1.451E+00 2.653E-01 -1.466E+02 9.135E+013 3.000E+03 1.265E+00 2.314E-01 5.004E-013.574E+024 4.000E+03 1.192E+00 2.180E-01 -2.589E+014.500E+025 5.000E+03 2.318E-01 4.240E-02 1.074E+02 7.022E+026 6.000E+03 8.352E-01 1.528E-01 9.329E+01 8.071E+02 TOTAL HARMONIC DISTORTION = 4.433670E+01PERCENT出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
1.Maxwell 2D: 金属块涡流损耗(一)启动W o r k b e n c h并保存1.在windows系统下执行“开始”→“所有程序”→ANSYS 15.0→Workbench 15.0命令,启动ANSYS Workbench 15.0,进入主界面。
2.进入Workbench后,单击工具栏中的 按钮,将文件保存。
(二)建立电磁分析1.双击Workbench平台左侧的Toolbox→Analysis Systems→Maxwell 2D此时在ProjectSchematic中出现电磁分析流程图。
2.双击表A中的A2,进入Maxwell软件界面。
在Maxwell软件界面可以完成有限元分析的流程操作。
3.选择菜单栏中Maxwell 2D→Solution Type命令,弹出Solution Type对话框(1)Geometry Mode:Cylinder about Z(2)Magnetic:Transient(3)单击OK按钮4.依次单击Modeler→Units选项,弹出Set Model Units对话框,将单位设置成mm,并单击OK按钮。
(三)建立几何模型和设置材料1.选择菜单栏中Draw→Rectangle 命令,创建长方形在绝对坐标栏中输入:X=500,Y=0,Z=0,并按Enter键在相对坐标栏中输入:dX=20,dY=0,dZ=500,并按Enter键2.选中长方形,选择菜单栏中Edit→Duplicate along line命令在绝对坐标栏中输入:X=0,Y=0,Z=0,并按Enter键在相对坐标栏中输入:dX=50,dY=0,dZ=0,并按Enter键弹出Duplicate along line对话框,在对话框中Total Number:3,然后单击OK按钮。
3.选中3个长方形右击,在快捷菜单中选择Assign Material命令,在材料库中选择Aluminum,然后单击OK按钮。
二阶系统的瞬态响应实验报告二阶系统的瞬态响应实验报告引言:在控制系统中,瞬态响应是指系统在受到外部激励后,从初始状态到达稳定状态所经历的过程。
而二阶系统是一类常见的动态系统,其特点是具有两个自由度。
本次实验旨在通过对二阶系统的瞬态响应进行实验研究,探索其特性和性能。
实验目的:1. 理解二阶系统的结构和特性;2. 掌握二阶系统的瞬态响应分析方法;3. 通过实验验证理论模型的准确性。
实验装置与方法:本次实验采用了一台二阶系统实验装置,其中包括了一个二阶系统模块、信号发生器、示波器等设备。
实验步骤如下:1. 搭建实验装置,确保各设备连接正确并稳定;2. 设定信号发生器的输入信号频率和幅值;3. 通过示波器观察和记录系统的输出响应;4. 改变输入信号的频率和幅值,重复步骤3。
实验结果与分析:通过实验观察和记录,我们得到了二阶系统在不同输入信号条件下的瞬态响应曲线。
根据实验数据,我们可以进行以下分析:1. 频率对瞬态响应的影响:在实验中,我们分别设定了不同频率的输入信号,并观察了系统的瞬态响应。
结果显示,当输入信号的频率较低时,系统的瞬态响应较为迟缓,需要较长时间才能达到稳定状态。
而当输入信号的频率较高时,系统的瞬态响应较为迅速,能够更快地达到稳定状态。
这说明在二阶系统中,频率对瞬态响应具有显著影响。
2. 幅值对瞬态响应的影响:我们还通过改变输入信号的幅值,观察了系统的瞬态响应。
实验结果显示,当输入信号的幅值较小时,系统的瞬态响应较为平缓,没有明显的过冲现象。
而当输入信号的幅值较大时,系统的瞬态响应会出现过冲现象,并且需要更长的时间才能达到稳定状态。
这表明在二阶系统中,幅值对瞬态响应同样具有重要影响。
结论:通过本次实验,我们深入了解了二阶系统的瞬态响应特性。
实验结果表明,频率和幅值是影响二阶系统瞬态响应的重要因素。
频率较低和幅值较小的输入信号可以使系统的瞬态响应更加平缓和稳定。
而频率较高和幅值较大的输入信号则会导致系统瞬态响应更快和过冲现象的出现。
实验报告实验名称瞬态分析课程名称电子电路计算机辅助设计院系部:电气与电子工程学院专业班级:电子1301学生姓名:韩辉学号: 1131230106同组人:实验台号:指导教师:高雪莲成绩:实验日期:华北电力大学实验原理1.瞬态分析(1)瞬态分析定义:在给定输入激励信号作用下,计算电路输出端的瞬态响应。
进行瞬态分析时,首先计算t=0时的电路初始状态,然后从t=0到某一给定的时间范围内选取一定的时间步长,计算输出端在不同时刻的输出电平。
分析结果保存在dat文件中,可用probe模块分析显示波形结果。
(2)PSpice可对大信号非线性电路进行瞬态分析,即是求电路时域响应,所以也叫时域扫描(Time Domain)。
可在给的激励信号(激励信号有脉冲信号、分段线性信号、正弦调幅信号、调频信号和指数信号)情况下,求电路输出的时间响应、延时特性,也可在没有激励信号的情况下,仅依电路存储能量,求得振荡波形和周期等。
(3)参数设置:•Run to:瞬态分析终止的时间•Start saving data:开始保存分析数据的时刻•Maximum step:分析时间的步长设置。
Pspice会根据分析时间自动调节分析步长,但是也能够设置该值。
•Skip the initial transient bias point calculation:是否进行初始偏置点运算,如果跳过,偏置条件由电感、电容等器件的初始条件确定。
•Print values in the output: 输出数据的时间步长,若该值与瞬态分析中采用的时间值不相同,pspice将采用二阶多项式插值的方法从瞬态分析结果推得需要输出数据的各个时刻输出电平值。
2.傅立叶分析(1)傅立叶分析作用:在瞬态分析完成后,通过傅立叶积分,计算瞬态分析输出结果波形的直流、基波和各次谐波分量。
一般情况下,傅立叶分析的采样时间间隔与瞬态分析中的打印时间步长相同。
如果该步长大于瞬态分析终止时间的1%,则取后者为傅立叶分析是采样时间间隔并采用二阶插值的方法,确定每一采样点的信号电平值。
Orcad PSpiceOrCAD PSpice培训教材培训目标:熟悉PSpice的仿真功能,熟练掌握各种仿真参数的设置方法,综合观测并分析仿真结果,熟练输出分析结果,能够综合运用各种仿真对电路进行分析,学会修改模型参数。
一、 PSpice分析过程设置仿真参数绘制原理图运行仿真观测并分析仿真结果二、绘制原理图原理图的具体绘制方法已经在Capture中讲过了,下面主要讲一下在使用PSpice时绘制原理图应该注意的地方。
1、新建Project时应选择Analog or Mixed-signal Circuit2、调用的器件必须有PSpice模型首先,调用OrCAD软件本身提供的模型库,这些库文件存储的路径为Capture\Library\pspice,此路径中的所有器件都有提供PSpice模型,可以直接调用。
其次,若使用自己的器件,必须保证*.olb、*.lib两个文件同时存在,而且器件属性中必须包含PSpice Template属性。
3、原理图中至少必须有一条网络名称为0,即接地。
4、必须有激励源。
原理图中的端口符号并不具有电源特性,所有的激励源都存储在Source和SourceTM库中。
5、电源两端不允许短路,不允许仅由电源和电感组成回路,也不允许仅由电源和电容组成的割集。
解决方法:电容并联一个大电阻,电感串联一个小电阻。
6、最好不要使用负值电阻、电容和电感,因为他们容易引起不收敛。
三、仿真参数设置2PSpice能够仿真的类型在OrCAD PSpice中,可以分析的类型有以下8种,每一种分析类型的定义如下:直流分析:当电路中某一参数(称为自变量)在一定范围内变化时,对自变量的每一个取值,计算电路的直流偏置特性(称为输出变量)。
交流分析:作用是计算电路的交流小信号频率响应特性。
噪声分析:计算电路中各个器件对选定的输出点产生的噪声等效到选定的输入源(独立的电压或电流源)上。
即计算输入源上的等效输入噪声。
激励器作用使用激励器提高声音的清晰度,可懂性和表现力。
使声音更加悦耳动听,降低听激励器音疲劳,增加响度。
虽然激励器只给声音增加了0.5dB左右的谐波成分,但实际听起来,音量好像增加了10dB左右。
使声音的听觉响度明显增加,声音图像的立体感,以及声音的分离度的增加;改善了声音的定位和层次感,还可以提高重放声音的音质,磁带的复制率。
因为声信号在传送和录制过程中会损失高频谐波成分,出现高频噪声。
此时前者用激励器先对信号进行补偿,后者可用滤波器将高频噪声滤掉后,再营造出高音成分,保证重放音质。
激励器的调节需要音响师对系统的音质和音色进行判别,再根据主观听音评价进行调整。
编辑本段激励器使用改善music音频质量利用听觉激励器提高系统的处理能力,达到改善EFP音频质量的目的。
听觉激励器目前,在激励方式进行音频信号处理方面,有听觉激励器(Aural Exciter)、激励处理软件和激励电路。
其中专业听觉激励器比较适合EFP。
听觉激励器激发的谐波信号是经过仿真设计的,可以类比于人工混响模拟厅堂声学特性。
因此,不应简单地把这种人工谐波的产生看作原信号“失实”并等同于失真。
激励器的设计目的是恢复音频信号所丢失的谐波成份,有效地扩展高频带宽并提高信噪比,从而提高声音还原的清晰度和表现力。
而且,这些谐波的电平非常低,对信号的功率几乎不产生影响。
由于激励器具有上述优点,利用它对信号进行处理,可以提高声音质量。
实践中我们采用Aphex Aural Exciter-Ⅲ-250 (简称Ax-Ⅲ-250)专业听觉激励器。
Ax-Ⅲ-250为双通道处理器,每一个通道均包括相同的两个音频路径,即主信号路径(Main Path)和旁链受激励信号路径(Sidechain Path)。
主路径把来自输入级的音频信号直接送到输出级,基本上不加任何处理;旁链路径则包含激励器的所有“心脏”电路。
两路音频信号在加法电路级上混合,混合比例由Mix功能控制。
各种激励信号的设置及瞬态分析
学院:物理与电子学院
班级:电信1004班
姓名:
学号:
2012年10月30
一、实验目的
1、了解各种激励信号中参数的意义,掌握其设置方法。
2、掌握对电路进行瞬态分析的设置方法,能够对所给出的实际电路进行规
定的瞬态分析,得到电路的瞬态响应曲线。
二、实验内容
1、正确设置正弦信号、脉冲信号、周期性分段线性信号,参数自行确定,要求屏幕上正好显示4个完整周期的信号曲线。
2、对下图单管放大电路进行瞬态分析,信号源采用正弦波,频率从1kHz 到20kHz任意选定。
根据信号频率,合理选择分析结束时间,观测输出端的波形,屏幕上正好显示5个完整周期的波形。
3、在瞬态分析的同时对输出节点(out)的电压波形进行傅里叶分析,分析计算到6次谐波。
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(V_V1)
DC COMPONENT = -1.719473E-08
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE RMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 5.000E-03 1.000E+00 -3.067E-04 0.000E+00
2 2.000E+0
3 2.640E-08 5.281E-06 -1.587E+02 -1.587E+02
3 3.000E+03 1.869E-08 3.739E-06 1.675E+02 1.675E+02
4 4.000E+03 1.066E-08 2.133E-06 1.355E+02 1.355E+02
5 5.000E+03 4.034E-09 8.069E-07 1.563E+02 1.563E+02
6 6.000E+03 9.503E-09 1.901E-06 -1.748E+02 -1.747E+02
TOTAL HARMONIC DISTORTION = 7.118649E-04 PERCENT
JOB CONCLUDED
TOTAL JOB TIME .77
三、实验结果总结与分析
瞬态特性分析的目的是在给定输入激励信号作用下,计算电路输出端的瞬态响应。
傅里叶分析的作用是在瞬态分析完成后,通过傅里叶积分,计算瞬态分析输出结果波形的直流、基波和各次谐波分量。
因此,只有在瞬态分析后才可能进行傅里叶分析.
通过本次实验,我们更深刻的理解正弦信号、脉冲信号、周期性分段线性信号下的波形,让我们对这些信号工作下的电路有了更加直观的了解,并且对以后的学习打下了扎实的基础。