第七章 电解质溶液
- 格式:doc
- 大小:51.50 KB
- 文档页数:4
第七章电解质溶液练习题一、判断题:1.溶液是电中性的,正、负离子所带电量相等,所以正、负离子离子的迁移数也相等。
2.离子迁移数与离子速率成正比,某正离子的运动速率一定时,其迁移数也一定。
3.离子的摩尔电导率与其价态有关系。
4.电解质溶液中各离子迁移数之和为1。
5.电解池通过l F电量时,可以使1mol物质电解。
6.因离子在电场作用下可以定向移动,所以测定电解质溶液的电导率时要用直流电桥。
7.无限稀电解质溶液的摩尔电导率可以看成是正、负离子无限稀摩尔电导率之和,这一规律只适用于强电解质。
8.电解质的无限稀摩尔电导率Λ可以由Λm作图外推到c1/2 = 0得到。
9.德拜—休克尔公式适用于强电解质。
10.若a(CaF2) = 0.5,则a(Ca2+) = 0.5,a(F-) = 1。
二、单选题:1.下列溶液中哪个溶液的摩尔电导最大:()(A) 0.1M KCl水溶液; (B) 0.001M HCl水溶液;(C) 0.001M KOH水溶液; (D) 0.001M KCl水溶液。
2.对于混合电解质溶液,下列表征导电性的量中哪个不具有加和性:()(A) 电导; (B) 电导率;(C) 摩尔电导率; (D) 极限摩尔电导。
3.在一定温度和较小的浓度情况下,增大强电解质溶液的浓度,则溶液的电导率κ与摩尔电导Λm变化为:()(A) κ增大,Λm增大; (B) κ增大,Λm减少;(C) κ减少,Λm增大; (D) κ减少,Λm减少。
4.在一定的温度下,当电解质溶液被冲稀时,其摩尔电导变化为:()(A) 强电解质溶液与弱电解质溶液都增大;(B) 强电解质溶液与弱电解质溶液都减少;(C) 强电解质溶液增大,弱电解质溶液减少;(D) 强弱电解质溶液都不变。
5.分别将CuSO4、H2SO4、HCl、NaCl从0.1mol·dm-3 降低到0.01mol·dm-3,则Λm变化最大的是:()(A) CuSO4 ; (B) H2SO4 ; (C) NaCl ; (D) HCl 。
第七章电解质溶液1. 按导体导电方式的不同而提出的第二类导体,其导电机理是:(A)电解质溶液中能导电的正负离子的定向迁移。
(B)正负离子在电极上有氧化还原作用的产生(电子在电极上的得失)。
2. 按物体导电方式的不同而提出的第二类导体,对于它的特点的描述,那一点是不正确的?答案:A(A)其电阻随温度的升高而增大(B)其电阻随温度的升高而减小(C)其导电的原因是离子的存在(D)当电流通过时在电极上有化学反应发生3. 描述电极上通过的电量与已发生电极反应的物质的量之间的关系是:答案:C(A ) 欧姆定律 (B ) 离子独立移动定律 (C ) 法拉第定律 (D ) 能斯特定律4.0.1mol.kg -1的Na 3PO 4水溶液的离子强度是: 210.62i i I m Z ==∑ ;0.001m 的36K [Fe(CN)]的水溶液的离子强度是:210.0062i i I m Z ==∑。
5.用同一电导池分别测定浓度为0.01mol.dm -3和0.10.01mol.dm -3的同种电解质溶液,其电阻分别为1000Ω和500Ω,则它们的摩尔电导之比为:答案:B(A ) 1:5 (B ) 5:1 (C ) 1:20 (D ) 20:11222115:1R c R c λλ== 6.在25℃无限稀释的水溶液中,离子摩尔电导最大的是:答案:D (A ) La 3+ (B ) Mg 2+ (C ) NH +4(D ) H +7.电解质溶液的摩尔电导可以看作是正负离子的摩尔电导之和,这一规律只适用于:(A ) 强电解质 (B ) 弱电解质 (C ) 无限稀溶液 (D ) m =1的溶液 答案:C8.科尔劳施定律认为电解质溶液的摩尔电导与其浓度成线性关系为)c 1(m m β-λ=λ∞。
这一规律适用于:答案:B(A ) 弱电解质 (B ) 强电解质的稀溶液 (C ) 无限稀溶液 (D )m =1的溶液9.0.1m 的CaCl 2水溶液其平均活度系数±γ=0.219,则离子平均活度为:答案:B(A ) 3.476×10-3 (B ) 3.476×10-2 (C ) 6.964×10-2 (D ) 1.385×10-210.在HAc 电离常数测定的实验中,直接测定的物理量是不同浓度的HAc 溶液的:(A ) 电导率 (B ) 电阻 (C ) 摩尔电导 (D ) 电离度 答案:B11.对于0.002m 的Na 2SO 4溶液,其平均质量摩尔浓度±m 是:334 3.17510m m -±==⨯。
第七章 电解质溶液 复习题及答案1、 电池和电解质溶液都能导电,试述两者导电的本质有何不同?答:金属是第一类导体(电子导体),靠自由电子的定向移动而导电。
电解质溶液是第三类导体(离子导体)。
靠离子的定向移动而导电。
2、 电池中正极、负极、阴极、阳极的定义分别是什么?为什么在原电池中负极是阳极而正极是阴极? 答:正极:电极电势高的电极称正极。
负极:电极电势低的电极称负极。
阳极:无论原电池或电解池发生氧化反应的电极称为阳极。
阴极:发生还原反应的电极称为阴极。
3、 在电解质溶液中,电导率和摩尔电导率三者之间有什么关系?知道其关系后有何用处?答:在电解质溶液中,在浓度不太大的情况下。
无论是强电解质溶液还是弱电解质其电导率k 都随浓度的增大而升高。
因为导电离子数目增多了,但强电解质溶液来说增加明显,而随着浓度继续增加,由于正负离子之间的相互作用力增加,而使离子的运动速率降低,电导率反而下降。
对弱电解质来说,电导率k 随浓度增加增高不明显,且随浓度继续增加,其电离度减少,而使电导率略有下降。
4、 怎样分别求出强电解质和弱电解质的极限摩尔电导率?为什么要用不同的方法? 答:根据科尔努乌施公式:)1(c β-Λ=Λ∞此公式适用与c<0.001md•dm -3的强电解溶液,故强电解∞Λm 可以用外推法(0→c )求得。
而弱电解质溶液的 m Λ即使在浓度很小时,m Λ与c 也不成线性关系,而是双曲线关系:m Λ•c =常数,而且c 稍微改变一点,m Λ值可能变动很大。
即实验的少许误差对外推法的∞Λm 影响很大,所以弱电解质溶液不能从实验上直接外推求∞Λm ,而用离子独立移动定律求∞Λm 。
5、离子摩尔电导率、离子迁移率和离子迁移数三者之间有何关系?知道其关系后有何用处? 答:a )离子的摩尔电导率与离子迁移率的关系m Λ=U +F+U -F 强电解质溶液m Λ=α(U ++U -)F 弱电解质溶液无限稀释时α=1 F U U m )(∞-∞+∞+=Λ对单个离子 .F U m ∞+∞+=λ F U m ∞-∞-=λ对稀的强电解质溶液,可近似有:F U ++=λ F U --=λb )离子摩尔电导率与离子迁移数之间的关系。
第七章 电解质溶液 返回上一页1. 用电流强度为5 A的直流电来电解稀H2SO4溶液,在300 K, 压力下如欲获得氧气和氢气各1 dm3,需分别通电多少时间?已知在该温度下水的蒸汽压为3565 Pa.2. 当CuSO4溶液中通过1930 C电量后,在阴极上有0.009 mol的Cu沉积出来,试求在阴极上还析出H2(g)的物质的量.3. 用Pt为电极,通电于CuSO4溶液,阴极部,中部和阳极部溶液的颜色在通电过程中有何变化?若都改用Cu电极,三部溶液颜色变化又将如何?4. 用银电极来电解AgNO3水溶液,通电一定时间后阴极上有0.078 g的Ag(s)析出.经分析知道阳极部含有AgNO3 0.236 g ,水23.14 g.已知原来所用溶液的浓度为每克水中溶有AgNO3 0.00739 g,试求Ag+和NO3-离子的迁移数.5. 在298 K时用Ag+AgCl为电极,电解KCl的水溶液,通过前溶液中KCl的质量分数为w(KCl)=1.4941×,通电后在质量为120.99 g的阴极部溶液中w(KCl)=1.9404×.串联在电路中的银库仑计有160.24 mg的Ag沉积出来,求K+和Cl-离子的迁移数.6. 在298K时电解用Pb(s)作电极的Pb(NO3)2溶液,该溶液的浓度为每1000g水中含有Pb(NO3)216.64 g,当与电解池串联的银库仑计中有0.1658 g银沉积后就停止通电.阳极部溶液质量为62.50 g,经分析含有Pb(NO3)21.151 g , 计算Pb2+离子的迁移数.7. 以银为电极通电于氰化银钾(KCN+AgCN)溶液时,银在阴极上析出.每通过 1 mol电子的电量,阴极部失去1.40 mol的Ag+和0.80 mol的CN-,得到0.60 mol 的K+,试求:(1) 氰化银钾络合物的化学式;(2) 正,负离子的迁移数.8. 在298K时,用铜电极电解铜氨溶液,已知溶液中每1000 g水中含CuSO4 15.96 g, NH3 17.0 g, 当有0.01 mol 电子的电量通过以后,在103.66 g阳极溶液中含有2.091 g CuSO4, 1.571 g NH3, 试求:(1) [Cu(NH3)x]2+离子中的x值.(2) 该络合物离子的迁移数.9. 在用界面移动法测定H+的离子迁移率(淌度)时,在历时750 s后界面移动了4.0 cm ,迁移管两极间的距离为9.6 cm,电位差为16.0 V,设电场是均匀的,试求H+离子的迁移率.10. 某电导池内有两个直径为0.04 m并相互平行的圆形银电极,两极之间的距离为0.12 m.若在电导池内盛满浓度为0.1 mol·dm-3的AgNO3溶液,施以20 V电压,则所得电流强度为0.1976 A. 试计算电导池常数,溶液的电导,电导率和AgNO3的摩尔电导率.11. 273.15K时,在(1),(2)两个电导池中分别盛以不同液体并测得其电阻.当在(1)中盛Hg(l)时,测得电阻为0.99895 Ω(1Ω是273.15K时,截面积为1 平方毫米,长为1062.936 mm的汞柱的电阻);当(1)和(2)中均盛以浓度为3.0 mol·dm-3的H2SO4溶液时,测得(2)的电阻为(1)的0.107811倍;若在(2)中盛以浓度为1.0 mol·dm-3的KCl溶液时,测得电阻为17565Ω.试求:(甲) 电导池(1)的电导池常数.(乙) 在273.15 K时,该KCl溶液的电导率.12. 291K时,已知KCl和NaCl的无限稀释摩尔电导率分别为129.65×和108.60×S·m2/mol,K+和Na+的迁移数分别为0.496和0.397,试求在291 K和无限稀释时(1) KCl溶液中K+和Cl-的离子摩尔电导率.(2) NaCl溶液中Na+和Cl-的离子摩尔电导率.13. 298K时测得SrSO4饱和水溶液的电导率为1.482×S/m,该温度时水的电导率为1.5×S/m.试计算在该条件下SrSO4在水中的溶解度.14. 291K时,纯水的电导率为3.8×S/m.当水H2O离解成H+和OH-并达到平衡,求该温度下, H2O的摩尔电导率,离解度和H+离子浓度.已知这时水的密度为 998.6 kg·m-3.15. 在298K时,浓度为0.01 mol·dm-3的CH3COOH 溶液在某电导池中测得电阻为2220 Ω,已知该电导池常数为36.7 m-1.试求在该条件下CH3COOH的电离度和电离平衡常数.16. 在291K时设稀溶液中H+,K+和Cl-的离子摩尔电导率分别为278×,48×和49×S·m2/mol,试求在该温度下,在1000 V/m的均匀电场中,每种离子的迁移速率分别是多少?17. 分别计算下列各溶液的离子强度(1) 0.025 mol/kg的NaCl溶液.(2) 0.025 mol/kg的CuSO4溶液.(3) 0.025 mol/kg的LaCl3溶液.(4) NaCl和LaCl3的浓度都为0.025 mol/kg的混合溶液.18. 在298K时,某溶液含CaCl2的浓度为0.002 mol/kg,含ZnSO4的浓度亦为0.002 mol/kg。
电解质溶液习题及答案 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT第七章(一)电解质溶液练习题一、判断题:1.溶液是电中性的,正、负离子所带总电量相等,则正、负离子离子的迁移数也相等。
2.离子迁移数与离子速率成正比,某正离子的运动速率一定时,其迁移数也一定。
3.离子的摩尔电导率与其价态有关系。
4.电解质溶液中各离子迁移数之和为1。
5.电解池通过l F电量时,可以使1mol物质电解。
6.因离子在电场作用下可以定向移动,所以测定电解质溶液的电导率时要用直流电桥。
7.无限稀电解质溶液的摩尔电导率可以看成是正、负离子无限稀摩尔电导率之和,这一规律只适用于强电解质。
8.电解质的无限稀摩尔电导率Λ m可以由Λm作图外推到c1/2 = 0得到。
下列关系式是否正确:(1) ∞,1<∞,2<∞,3<∞,4(2)κ1=κ2=κ3=κ4(3)∞,1=∞,2=∞,3=∞,4(4) m,1=m,2=m,3=m,410.德拜—休克尔公式适用于强电解质。
溶液,以下等式成立:11.对于BaCl2(1) a = γb/b0;(2) a = a+·a - ; (3) γ± = γ+·γ2;-(4) b = b+·b-;(5) b±3 = b+·b-2; (6) b± = 4b3。
12.若a(CaF2) = ,则a(Ca2+) = ,a(F-) = 1。
二、单选题:1.下列溶液中哪个溶液的摩尔电导最大:(A) KCl水溶液;(B) HCl水溶液;(C) KOH水溶液;(D) KCl水溶液。
2.对于混合电解质溶液,下列表征导电性的量中哪个不具有加和性:(A) 电导;(B) 电导率;(C) 摩尔电导率;(D) 极限摩尔电导。
3.在一定温度和较小的浓度情况下,增大强电解质溶液的浓度,则溶液的电导率κ与摩尔电导Λm变化为:(A) κ增大,Λm增大;(B) κ增大,Λm 减少;(C) κ减少,Λm增大;(D) κ减少,Λm减少。
第七章 电解质溶液
一、学习提要:
本章是电化学的主要内容之一。
它主要研究电解质溶液导电的本质、导电能力的表示方法,电解质溶液的浓度与导电率之间的关系、电解质离子的平均活度、平均活度系数和平均浓度。
学习中应弄清楚以下内容:
1、1、了解迁移数的意义及常用测定迁移数的方法;
2、明确电导、电导率、摩尔电导率的意义及它们与溶液浓度的关系;
3、熟悉离子独立移动定律及电导测定的一些应用;
4、了解迁移数与摩尔电导率、离子迁移率之间的关系;
5、弄清楚电解质的离子平均活度,平均活度系数和平均浓度的关系及计算方法;
6、了解强电解质溶液理论,并会使用德奉——休克尔极限公式;
二、主要公式及使用条件
1、法拉第定律:Q=nZF m=ZF Q
M 适用于电解池和原电池;
2、离子的迁移数:t +=-+++Q Q Q =-++
+U U U
t -=-+-+Q Q Q =-+-
+U U U t ++t -=1
适用于一定温度,一定外电场下只含一种正离子和一种负离子。
3、电导及电导率:G=R 1=k L A
4、摩尔电导率:∧m =C k
5、摩尔电导率与浓度的关系:∧m =∧∞m -A C
适用于强电解质的稀溶液。
6、离子独立移动定律:∧∞m =λ∞m1++λ∞m1-
7、弱电解质的离解度 α=m m
∞Λ
Λ 8、 a ±v = a +v +·a -v -
γ±v =γ+v +·γ-v - 适用于强电解质溶液
b ±v =b +v +·b -v -
9、I=21
∑b B Z B 2 适用于强电解质溶液
10、lg γ±=-A1Z +·Z -1I
三、判断、说明原因:
1、电解质溶液中各离子迁移数之和为1;
2、电解池通过1F 电量时,可以使1mol 物质电解;
3、因离子在电场作用下可定向移动,所以测定电解质溶液的电导率时要用直流电桥;
4、离子独立移动定律只适用于强电解质;
5、电解质的无限稀摩尔电导率∧∞m 由∧m -C ,作图外推法求得;
6、德律——休克尔公式适用于强电解质;
7、对于BaCl 2溶液(溶液浓度为b ),则b 3±=b +·b -2
8、将锌和铜插入H 2SO 4溶液构成的电池是可逆电池。
四、填空:
1、在强电解质的稀溶液中摩尔电导率∧m 随浓度的增加而 ;电导率κ随浓度的增加而 ;
2、0.1mol·kg -1BaCl 2溶液中γ±=0.219,则a ±= ;a(BaCl 2)= ;
3、用同一电导池测得电解质A 溶液和电解质B 溶液的电阻之比,R A :R B =5:1,它们的浓度之比C A :C B =1:5,则它们的摩尔电导率∧m 。
A ∧m 。
B 。
4、已知∧∞m (Na +)=50.11×10-4·S·m 2·mol -1,∧∞m (OH -)=198.0×10-4 S·m 2·mol -1,在无限稀的NaOH 溶液中 t ∞(Na +)= ,t ∞(OH -)= ;
5、已知25℃时,H +和AC -无限稀摩尔电导率分别为350和40S·Cm 2·mol -1,实验测得25℃浓度为0.0312mol·dm -3的醋酸溶液的电导率κ=2.871×10-4·S·cm -1,此溶液中醋酸的电高度α= ,电离常数κ= 。
五、计算:
1、 1、298K 时,测得饱和AgCl 水溶液的电导率是2.68×10-4 S·cm -1,配制此溶液的水的电导率为0.8600×10-4 S·cm -1,已知298K 时,AgNO 3、HCl 和HNO 3无限稀∧
∞m 分别为1.330×10-2、4.260×10-2和4.210×10-2 (SOm 2·mol -1)。
计算298K 、AgCl 在水中的溶液度(g·dm -3)。
第七章 电解质溶液
习题13题:291K 时,已知KCl 和NaCl 的无限稀释,摩尔电导率A ∞m 分别与129.65×10-4和108.60×10-4S ·m 2mol -1,K+和Na+的迁移数分别为0.496和0.397,试求在291K 和无限稀释时:
(1)KCl 溶液中K +和Cl -的摩尔电导率;
(2)NaCl 溶液中Na +和Cl -的摩尔电导率。
解:(1)KCl 溶液中,因为t ∞mK+=m m ∞+
∞Λλ
所以λ∞m+=Λ∞m t m =129.65×10-4×0.496(S ·m 2mol -1)
=6.430×10-3 S ·m 2mol -1
λ∞m+=129.65×10-4×(1-0.496)
=6.53×10-3 S ·m 2mol -1
(2)同样方法可求出NaCl 溶液中,Na +和Cl -的摩尔电导率(略)
19题:298K 时,在某一电导池中充以0.01mol ·dm -3的KCl 溶液(已知其电导率为0.14114 S ·m -1),测得其电阻为525Ω。
若在该电导池中充以0.10mol ·dm -3的NH 3·H 2O 溶液时,测得电阻为2030Ω,已知此时水的电导率为2×10-4 S ·m -1,试求:
(1)该NH 3·H 2O 溶液的电离度;
(2)若该电导池内充以纯水,电阻应为若干,
分析:此题要用到公式:κ=R 1·K cell 和公式α=m m
∞Λ
Λ
解:(1):κ=R 1·K cell K cel =κR=0.14114×525=74.1m -1
κ=R 1·K cell =20301
×74.1=0.03650=36.5×10-3 (S ·m -1)
NH 3·H 2O 的κ=(36.5-2)10-4S ·m=36.3×10-3(S ·m -1)
Λ=331/100010.03103.36m dm dm mol m
S C
⨯⋅⋅-⨯=--κ=0.36310-3 S ·m 2mol -1 α=2310714.210
363.0--∞⨯⨯=ΛΛm m =1.34×10-2
(2)若充以纯水,因纯水的κ=2×10-4 (S ·m -1)
κ=R 1·K cell R=κ1×K cell ==⨯-410
21
.74 3.75×105(Ω)。