第八章电解质溶液.
- 格式:pdf
- 大小:167.05 KB
- 文档页数:23
第八章电解质溶液及电化学系统主要内容1.电解质溶液及电化学系统研究的内容和方法2.电解质溶液的热力学性质3.电解质溶液的导电性质4.电化学系统的热力学重点1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.重点掌握离子氛的概念和德拜—休克尔极限定律;3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算;难点1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律;3.原电池电动势与热力学函数的关系;能斯特方程及其计算教学方式1. 采用CAI课件与黑板讲授相结合的教学方式。
2. 合理运用问题教学或项目教学的教学方法。
教学过程第8.1节电解质溶液及电化学系统研究的内容和方法一、电解质溶液及电化学系统研究的内容1、电解质溶液①电解质溶液的热力学性质电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。
思考:理想稀薄溶液所遵从的热力学规律是什么?②电解质溶液的导电性质高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。
2、电化学系统在两相或数相间存在电势差的系统称为电化学系统。
①电化学系统的热力学性质电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。
②电化学系统的动力学电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。
二、电化学研究的对象第8.2节电解质溶液的热力学性质一、电解质的类型1、电解质的分类电解质的定义:解离:电解质在溶剂中解离成正、负离子的现象。
强电解质:弱电解质:强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。
第八章电解质溶液上一章下一章返回1.柯尔拉乌希经验公式适用条件和范围是什么?柯尔拉乌希离子独立运动定律的重要性何在?答:柯尔拉乌希经验公式:,适用于强电解质水溶液,浓度低于0.01mol·dm-3的稀溶液。
根据离子独立移动定律,可以从相关的强电解质的Λ∞来计算弱电解质的Λ∞。
或由离子电导数值计算出电解质的无限稀释时摩尔电导。
2.电导率与摩尔电导概念有何不同? 它们各与哪些因素有关?答:电导率κ是:两极面积各为1m2,并相距1m时,其间溶液所呈的电导;而摩尔电导是在相距1m的两电极间含有1mol溶质的溶液所呈的电导,摩尔电导用Λm表示Λm=κ/c,电导率κ与电解质本性有关,与温度有关,与电解质浓度有关;摩尔电导与电解质本性有关,与温度有关,与电解质浓度有关。
3.为什么用交流电桥测定溶液的电导? 为什么用1000H z(即c/s,周每秒)频率测定溶液的电导? 为什么在未知电阻的线路上并联一电容? 测准溶液电导的关键是什么?答:用交流电流测溶液的电导,可以避免电解作用而改变电极本性,并且可以消除电极的极化作用。
用1000Hz的交流频率可防止电极上的极化作用,并可用耳机检零。
并联电容是为了消除电导池的电容的影响。
测准电导的关键是在各接触点均接触的条件下,电桥平衡,正确检零。
4.当一定直流电通过一含有金属离子的溶液时,在阴极上析出金属的量正比于:(1) 金属的表面积; (2) 电解质溶液的浓度;(3) 通入的电量; (4) 电解质溶液中离子迁移的速度。
答:(3).5.在界面移动法测定离子迁移数的实验中,其结果是否正确,最关键是决定于:(1) 界面移动的清晰程度; (2) 外加电压的大小;(3) 阴、阳离子迁移速度是否相同; (3) 阴、阳离子的价数是否相同。
答:(1)6.电解质在水溶液中时,作为溶剂的水电离为 H+、OH-离子,为什么一般不考虑它们的迁移数?影响离子迁移数的主要因素是什么?答:因为水中H+与OH-的浓度甚低,K sp=10-14,其迁移数极小,不考虑不会影响测量结果。
第八章电解质溶液复习题1、答:Faraday 归纳了多次实验结果,于1833年总结出了电解定律:1.在电极界面上发生化学变化物质的质量 与通入的电荷量成正比。
2.通电于若干个电解池串联的线路中,当所取的基本粒子的荷电数相同时,在各个电极上发生反应的物质,其物质的量相同,析出物质的质量与其摩尔质量成正比。
2、答:电势高的极称为正极;电势低的极称为负极;发生还原作用的极称为阴极;发生氧化作用的极称为阳极。
在原电池中,阳离子迁向阴极,阴极上发生还原,得到电子;阴离子迁向阳极,在阳极上发生氧化反应,失去电子,故在原电池中电子是从阳极流入阴极;根据电流的方向是从正极流向负极,而电子的方向是从负极流向正极,故在原电池中阳极是负极而阴极是正极。
3、对于电导率:中性盐和强电解质溶液的电导率随着浓度的增加而升高。
强电解质当浓度增加到一定程度后,解离度下降,离子运动速率降低,电导率也降低;中性盐由于受饱和溶解度的限制,浓度不能太高;弱电解质溶液电导率随浓度变化不显著,因浓度增加使其电离度下降,粒子数目变化不大;对于摩尔电导率:由于溶液中导电物质的量已给定,都为1mol ,所以,当浓度降低时,粒子之间相互作用减弱,正、负离子迁移速率加快,溶液的摩尔电导率必定升高。
但不同电解质随浓度降低,摩尔电导率增大的幅度不同,强电解质当浓度降至0.001 molL 以下时,摩尔电导率与浓度的1/2次方之间呈线性关系。
弱电解质浓度较大时,随着浓度下降,摩尔电导率也缓慢升高,但变化不大。
等稀到一定程度,摩尔电导率迅速升高。
4、强电解质:随着浓度下降,摩尔电导率升高,通常当浓度降至0.001 molL 以下时,摩尔电导率与浓度的1/2次方之间呈线性关系。
将该直线外推至浓度趋近于0,就可求得无限稀释摩尔电导率。
弱电解质:随着浓度下降,摩尔电导率也缓慢升高,但变化不大。
摩尔电导率与浓度不呈线性关系,等稀到一定程度,摩尔电导率迅速升高,弱电解质的无限稀释摩尔电导率不能用外推法得到。
第八章电解质溶液1.在300 K 、100 kPa 压力下,用惰性电极电解水以制备氢气。
设所用直流电的强度为S A ,电流效率为100 % 。
如欲获得1 m'H, C剖,需通电多少时间?如欲获得1 m'O,C剖,需通电多少时间?已知在该温度下水的饱和蒸气压为3 565 Pa 。
2.用电解NaCl 水溶液的方法制备NaOH,在通电一段时间后,得到了浓度为1. 0 mo!•dm-3的Na OH 溶液0. 6 dm3 ,在与之串联的铜库仑计中析出了30. 4 g Cu (s)。
计算该电解池的电流效率。
3. 用银电极来电解AgN O,水溶液,通电一定时间后,在阴极上有0. 078 g 的Ag (s)析出。
经分析知道阳极部含有水23. 14 g 、Ag N Oa o. 236 g o 已知原来所用溶液的浓度为每克水中溶有Ag N 030. 007 39 g,试分别计算A矿和N03 的迁移数。
4.在298 K 时,用Ag I AgCl 为电极,电解KC!的水溶液,通电前溶液中KC!的质量分数为四(KCl ) = l. 494 1×10-3,通$..后在质量为12 0. 99 g 的阴极部溶液中四(KCl ) = l. 940 4 ×10 3 ,串联在电路中的银库仑计中有160. 24 mg 的Ag 沉积出来,求K +和Cl 的迁移数。
5.在298 K 时,用Pb (s)作电极电解Pb (N0, ) 2 溶液,该溶液的浓度为每1 000 g 水中含有Pb (N03 )2 16. 64 g,当与电解池串联的银库仑计中有0. 16 5 8 g 银沉积时就停止通电。
已知阳极部溶液质量为62. 50 g,经分析含有Pb (N0,) 2 l. 151 g ,计算Pb2 +的迁移数。
6. 以银为电极电解氧化银饵(KCN + AgCN )溶液时,Ag (s)在阴极上析出。
每通过1 mol 电子的电荷量,阴极部失去1. 40 mol 的Ag +和0. 8 mo!的CN一,得到0. 6 mol 的K +,试求:( 1)氧化银何配合物的化学表达式[Ag”CCN )m J•中n 、m 、z 的值3(2 )氟化银饵配合物中正、负离子的迁移数。
第八章 电解质溶液1.在300K 和100kPa 压力下,用惰性电极电解水以制备氢气。
设所用直流电的压强为5A ,电流效应为100%。
如欲获得13m 2()H g ,需通电多少时间?如欲获得13m 2()O g ,需通电多少时间?已知在该温度下的饱和蒸汽压为3565Pa解:已知300K 的饱和蒸汽压3565Pa ,外压为100kPa 则放出气体的分压为: 100 3.56596.435kPa -= 则放出2H 的物质的量为mol RTV P n O H 66.38300314.81435.9622)(=⨯⨯==分放出2O 的物质的量为mol RTV P n O O 66.38300314.81435.9622)(=⨯⨯==分则38.66296500Q ZF ξ==⨯⨯238.66296500414.5()53600438.66496500829()53600Q t h I O Z Q t h I ⨯⨯===⨯=⨯⨯∴===⨯而的 2.用电解NaCl 水溶液的方法制备NaOH ,在通电一段时间后,得到了浓度为31.0mol dm -⋅的NaCl 溶液30.6dm ,在与之串联的铜库伦计中析出了30.4()gCu s 。
试计算该电解池的电流效率。
解: 22Cu e Cu +-+−−→ Q zF ζ=实际 ξ=Cu Cu M W =130.40.47863.6gmol g mol -=⋅ 2965000.47892254()Q C =⨯⨯=实际Q zF ζ=理论 22222H O e H OH --+−−→+ξ•=26.00.1⨯=0.3 mol 2965000.357900()Q C =⨯⨯=理论电流效率为:57900100%62.8%92254Q Q =⨯=理论实际 或者由于电流经过溶液与库仑计,直接由两者物质的量求出电流效率,但两者得到的电子数应一致,每析出1molCu ,理论上得到2molNaOH 。
第八章电解质溶液本章要求:1.掌握电化学的基本概念和电解定律,了解迁移数的意义及常用的测定方法2.掌握电导率,摩尔电导率的意义及它们与溶液浓度的关系。
3.熟悉离子独立移动定律及电导测定的应用。
4.掌握迁移数与摩尔电导率,离子电迁移率之间的关系,能熟练地进行计算。
5.理解电解质的离子平均活度,平均活度因子的意义及计算方法。
6.了解强电解质溶液理论的基本内容及适用范围,并会计算离子强度及使用bye-huckel极限公式。
电化学主要是研究电能和化学能之间的互相转化及转化过程中相关规律的科学,电化学无论在理论上还是在生产实践活动中都是有着十分重要的作用。
§8.1 电化学中的基本概念和电解定律一.原电池和解池1.导体:能导电的物体称为导电体,简称导体大致可分为两类:第一类导体(电子导体):考电子的定向运动而导电,在导电过程中自身不发生化学变化,其导电能力随温度升高而降低。
第二类导体(离子导体):依靠离子的定向运动而导电,在导电过程中电极上要发生电化学反应特点:随温度升高,离子的运动速度加快,导电能力增强。
2.电池:用第一类导体联接两个电极并使电流在两极间流过,则构成外电路,这种装置就叫电池。
其构成必须包含有电解质溶液和电极两部分,可分为两类。
电解池:将电能转变为化学能的装置原电池:将化学能转变为电能的装置电极的分类:阳极:发生氧化反应针对电极反应的性质来分:阴极:发生还原反应正极:电势较高的电极针对电势的高低来分:负极:电势较低的电极第二类导体的电流由阴阳离子的移动而共同承担:①电流通过溶液是由正负离子定向迁移来实现②电流在电极与溶液界面处得以连续,是由于两电极上分别发生氧化还原反应使电子得失而形成。
二法拉第定律(电解定律)1.内容:①通电于电解质溶液之后,在电极上物质发生化学变化的物质的量与通入的电量成正比。
②若将几个电解池串联,通入一定的电量后,在各个电解池的电极上发生化学反应的物质的量相等。
第八章 电解质溶液一、根本内容电解质溶液属第二类导体,它之所以能导电,是因为其中含有能导电的阴、阳离子。
假设通电于电解质溶液,那么溶液中的阳离子向阴极移动,阴离子向阳极移动;同时在电极/溶液的界面上必然发生氧化或复原作用,即阳极上发生氧化作用,阴极上发生复原作用。
法拉第定律说明,电极上起作用的物质的量与通入的电量成正比。
假设通电于几个串联的电解池,那么各个电解池的每个电极上起作用的物质的量一样。
电解质溶液的导电行为,可以用离子迁移速率、离子电迁移率(即淌度)、离子迁移数、电导、电导率、摩尔电导率和离子摩尔电导率等物理量来定量描述。
在无限稀释的电解质溶液中,离子的移动遵循科尔劳乌施离子独立移动定律,该定律可用来求算无限稀释的电解质溶液的摩尔电导率。
此外,在浓度极稀的强电解质溶液中,其摩尔电导率与浓度的平方根成线性关系,据此,可用外推法求算无限稀释时强电解质溶液的极限摩尔电导率。
为了描述电解质溶液偏离理想稀溶液的行为,以及解决溶液中单个离子的性质无法用实验测定的困难,引入了离子强度、离子平均活度、离子平均质量摩尔浓度和平均活度因子等概念。
对稀溶液,活度因子的值可以用德拜-休克尔极限定律进展理论计算,活度因子的实验值可以用下一章中的电动势法测得。
二、重点与难点1.法拉第定律:nzF Q =,式中法拉第常量F =96485 C·mol -1。
假设欲从含有M z +离子的溶液中沉积出M ,那么当通过的电量为Q 时,可以沉积出的金属M 的物质的量n 为:FQn Z +=,更多地将该式写作F Q n Z =,所沉积出的金属的质量为:M F Q m Z =,式中M 为金属的摩尔质量。
2.离子B 的迁移数:B BB Q I t Q I ==,B B1t =∑ 3.电导:lAκl A R G ρ=⋅==11 (κ为电导率,单位:S·m -1) 电导池常数:cell lK A=4.摩尔电导率:m m V cκΛκ==(c :电解质溶液的物质的量浓度, 单位:mol·m -3,m Λ的单位:2-1S m mol ⋅⋅)5.科尔劳乌施经历式:m m (1ΛΛ∞=-6.离子独立移动定律:在无限稀释的电解质-+ννA C 溶液中,m m,m,Λνν∞∞∞++--=Λ+Λ,式中,+ν、-ν分别为阳离子、阴离子的化学计量数。
1、在300K 、100kPa 压力下,用惰性电极电解水以制备氢气。
设所用直流电的强度为5A ,电流效率为100%。
如欲获得1m 3 H 2(g ),需通电多少时间?如欲获得1m 3 O 2(g ),需通电多少时间?已知在该温度下水的蒸气压力为3565Pa 。
解:氧气或氢气的压力为p =101325Pa -3565Pa =97760Pa在1dm 3中氧气或氢气的物质的量为3119776018.31430039.19pV n RTPa m J mol K Kmol--=⨯=⋅⋅⨯= 产生1mol H 2需2 mol 电子。
获得1m 3氢气,需通电时间为:11239.192965005.151273425212.23min=420.2hn F t Imol C mol C ss --⨯=⨯⨯⋅=== 产生1mol O 2需4 mol 电子。
获得1dm 3氧气,需通电时间为: 11439.194965005.302546850424.47min=840.41hn F t Imol C mol C ss --⨯=⨯⨯⋅=== 2、用电解NaCl 水溶液的方法制备NaOH ,在通电一段时间后,得到了浓度为1.0mol ·dm -3的NaOH 溶液0.6 dm ,在与之串连的铜库仑计中析出了30.4g Cu(s )。
试计算改电解池的电流效率。
解:设发生反应的物质的基本单元为1e ,则发生如下反应:12Cu 2+ +e -=12Cu H 2O+ e -=OH -+H 2 Cl --e -=12Cl 2 所析出的Cu 的物质的量为:121230.40.95681163.54622Cu Cu Cu Cu Cu w w n mol M M ====⨯ 331.00.60.6Cl OH n n mol dm dm mol ---==⋅⨯=100%0.6100%0.956862.7%mol mol⨯=⨯=电极上产物的实际量电流效率=理论计算应得量3、用银作电极电解AgNO 3水溶液,通电一定时间后阴极上有0.078g 的Ag(s )析出。
第八章电解质溶液教学目的与要求:使学生了解和掌握理解离子在外电场下的迁移情况,明确电导、电导率、摩尔电导率、迁移数、离子淌度与离子独立移动定律等概念及其关系式,了解强电解质溶液的德拜—尤格尔互吸理论、翁萨格电导理论的基本观点与公式推导,强电解质溶液的化学势的表示方法,了解离子活度、平均活度、和平均活度系数的概念。
重点与难点:离子在外电场下的迁移情况,电导、电导率、摩尔电导率等概念,迁移数、离子淌度与离子独立移动定律等概念及其关系式,强电解质溶液的德拜—尤格尔互吸理论、翁萨格电导理论的基本观点与公式推导,强电解质溶液的化学势的表示方法,了解离子活度、平均活度、和平均活度系数的概念。
电化学是研究电能与化学能相互转化以及相关规律的科学。
电化学在各行业中的应用:1.电解金属、冶炼―电解铜以及其他金属,电镀。
电解法合成化学物质。
2.化学电源—化学电池。
3.金属的腐蚀机理研究及腐蚀的防护。
4.在基础理论研究中的应用。
电化学科学的内容:电解质溶液理论,可逆电化学过程,非平衡电化学过程。
§8.1电化学的基本概念和法拉第定律基本概念导体的分类:第一类导体(电子导电体),金属,石墨,导电能力随温度的升高而降低。
第二类导体(离子导体),电解质溶液,导电能力随温度的升高而增加。
电化学装置:电解池,将电能转化为化学能的装置。
原电池:将化学能转化为电能的装置。
电极的分类:正极和负极――以电势高低来划分。
阴极和阳极――以电极反应来划分。
电化学装置的结构和特点:CuCl溶液的电解电解池:(1)2电极反应:阳极(氧化) ()()g Cl e aq Cl 221→+-阴极(还原) ()s Cu e Cu 21212→++总反应: ()()g Cl s Cu CuCl 22212121+→离子的迁移方向:正离子向负极移动,负离子向正极移动(离子受电场力 的作用)。
电池: 44CuSO ZnSO -电池电池反应: 正极(阴极)()()s Cu e aq Cu →++22 负极(阳极)()()aq Zn e s Zn +→-22 总反应()()()()s Cu aq Zn aq Cu s Zn +→+++22 离子的迁移方向:正离子向正极移动,负离子向负极移动(离子受化学 力的作用)。
第八章 电解质溶液一、基本公式和内容提要 1、Faraday (法拉第)定律B Qn z F +=(8 - 1 - 1)B B Qm M z F+=(8 – 1 -2)2、离子电迁移率和迁移数 EEr u r u ll++==d d ,d d -- (8-2-1)defBB I t I=(8-2-2)I r I r t t I r r Ir r +++++====++,-----(8-2-3)u u t t u u u u ++++==++,----(8-2-4)B 11t t t t t +++=∑=∑+∑=,--(8-2-5)m,+m,mmt t ΛΛΛΛ∞∞+∞∞==,--(8-2-6)m,++m,u F u F ΛΛ∞∞∞∞==,--(8-2-7)3、电导、电导率、摩尔电导率1I G R U==- (8-3-1)1AG lκκρ==,(8-3-2)defm m V cκΛκ==(8-3-3)cell 1l K R R A κρ===(8-3-4)4、Kohlrausch(科尔劳奇)经验式m m 1ΛΛ∞=-(5、离子独立移动定律mm,+m,-m m,+m,-v v ΛΛΛΛΛΛ∞∞∞∞∞∞+-=+=+,(8-5)6、Ostwald (奥斯特瓦尔德)稀释定律 mmΛαΛ∞= (8-6-1)2m m m m Cc c K ΛΛΛΛ∞∞=-()(8-6-2)7、离子的平均活度、平均活度因子和电解质的平均质量摩尔浓度111defdefdefv v v v v v vvva a a m m m γγγ+-+-+-±+-±+-±+-===(),(),()(8-7-1)B v v vm a a a a a mγ+-±±±+-±===,(8-7-2)1、 离子强度def2B B B12I m z ∑=(8-8)9、Debye-Huckel(德拜-休克尔)的极限定律z A z γ±+=-lg (8-9-1)γ±=lg (8-9-2)电解质溶液之所以能导电,是由于溶液中含有能导电的正、负离子。
第八章 习题解答1、在300K 和100kPa 压力下,用惰性电极电解水以制备氢气。
设所用直流电的强度为5A ,电流效率为100%。
来电解稀H 2SO 4溶液,如欲获得1m 3氢气,须通电多少时间?如欲获得1m 3氧气,须通电多少时间?已知在该温度下水的饱合蒸气压为3565Pa 。
解 电解时放出气体的压力为 p=(100000-3565)Pa=96435Pa 1m 3气体的物质的量为311(96435)(1)/()38.6637(8.314)(300)Pa m n pV RT mol J K mol K --⨯===⋅⋅⨯ 氢气在阴极放出,电极反应为 2H ++2e -→H 2(g) 根据法拉第定律,It=ξzF=(Δn B /νB )·zF , t=(Δn B /νB I)·zF 放氢时,12=H ν,z=2,11(38.6637)2(96500)1492418.821(5)mol t C mol s C s --=⨯⨯⋅=⨯⋅。
氧气在阳极放出,电极反应为 2H 2O-4e -→O 2(g)+4H + 放氧时,12=O ν,z=4,11(38.6637)4(96500)2984837.641(5)mol t C mol s C s --=⨯⨯⋅=⨯⋅。
2、用电解NaCl 水溶液的方法制备NaOH ,在通电一段时间后,得到了浓度为1.0mol·dm -3的NaOH 溶液0.6dm 3,在与之串联的铜库仑计中析出了30.4g 的Cu(s)。
试计算该电解池的电流效率。
解 析出Cu(s)的反应为Cu 2++2e -→Cu电解NaCl 水溶液制备NaOH 的反应为 阴极上的反应 2H 2O+2e -→2OH -+H 2(g) 阳极上的反应 2Cl --2e -→Cl 2(g)电解总反应为 2H 2O+2NaCl →Cl 2(g)+H 2(g)+ 2NaOH即铜库仑计中若析出1molCu(s),则理论上在电解池中可得到2 mol 的NaOH 。
第八章电解质溶液1.在300K、100kPa压力下,用惰性电极电解水以制备氢气。
设所用直流电的强度为S A,电流效率为100%。
如欲获得1m'H,C剖,需通电多少时间?如欲获得1m'O,C剖,需通电多少时间?已知在该温度下水的饱和蒸气压为3565Pa。
2.用电解NaCl水溶液的方法制备NaOH,在通电一段时间后,得到了浓度为1.0mo!•dm-3的Na OH溶液0. 6dm3,在与之串联的铜库仑计中析出了30.4g Cu(s)。
计算该电解池的电流效率。
3.用银电极来电解AgN O,水溶液,通电一定时间后,在阴极上有0.078g的Ag(s)析出。
经分析知道阳极部含有水23.14g、Ag N Oa o.236g o已知原来所用溶液的浓度为每克水中溶有Ag N030.00739g,试分别计算A矿和N03的迁移数。
4.在298K时,用Ag I AgCl为电极,电解KC!的水溶液,通电前溶液中KC!的质量分数为四(KCl) =l.4941×10-3,通$..后在质量为120.99g的阴极部溶液中四(KCl)=l.9404×103,串联在电路中的银库仑计中有160.24mg的Ag沉积出来,求K+和Cl的迁移数。
5.在298K时,用Pb(s)作电极电解Pb(N0,)2溶液,该溶液的浓度为每1000g水中含有Pb(N03)2 16.64g,当与电解池串联的银库仑计中有0.1658g银沉积时就停止通电。
已知阳极部溶液质量为62.50 g,经分析含有Pb(N0,)2l.151g,计算Pb2+的迁移数。
6.以银为电极电解氧化银饵(KCN+AgCN)溶液时,Ag(s)在阴极上析出。
每通过1mol电子的电荷量,阴极部失去 1.40mol的Ag+和0.8mo!的CN一,得到0.6mol的K+,试求:(1)氧化银何配合物的化学表达式[Ag”CCN)m J•中n、m、z的值3(2)氟化银饵配合物中正、负离子的迁移数。
7.在298K时,用铜电极电解铜氨溶液,已知溶液中每1000g水中含Cu S04l5.96g,NH,17.0g,当有0.01mo!电子的电荷量通过以后,在103.66g阳极部溶液中含有 2.091g CuSO.、1.571g NH,.试求:(1)[Cu(NH,)x]+离子中的z值;(2)该配合物离子的迁移数。
8.298K时,在用界面移动法测定离子迁移数的迁移管中,首先注入一定浓度的某有色离子溶液,然后在其上面小心地注入浓度为0.01065mo!•dm-3的HCl水榕液,使其间形成一明显的分界面。
通人11.54mA的电流,历时22min,界面移动了15cm。
已知迁移管的内径为 1.0cm,试求H+的迁移数。
9.在用界面移动法测定H+的电迁移率(淌度)时,历时750s后,界面移动了4.0cm。
已知迁移管两极之间的距离为9.6cm,电位差为16.0V,设电场是均匀的,试求H+的电迁移率。
IO.某电导池内装有两个直径为0.04m并相互平行的圆形银电极,电极之间的距离为0.12m。
若在电导池内盛满浓度为0.1mo!•dm3的AgNO,溶液,施以20V的电压,则所得电流强度为o.1976A。
试计算电导池常数、溶液的电导、电导率和AgNO,的摩尔电导率。
11.用实验测定不同浓度KCI溶液的电导率的标准方法为,273.15K时,在I,n两个电导池中分别盛以不同液体并测其电阻。
当在I中盛Hg(!)时,测得电阻为o.99895nc1n是273.15K时,截面积为1mm2、长为1062.936mm的Hg()柱的电阻);当I和E中均盛以浓度约为3mo!•dm-3的H2SO,溶液时,测得E的电阻为I的0.107811倍。
若E中盛以浓度为 1.0mo!•dm3的KC!溶液时,测得电阻为11565n。
试求,C l)电导池I的电导池常数,(2)在273.15K时,该KCI溶液的电导率。
12.291K时,已知KC!和N aCl的元限稀释摩尔电导率分别为A;:;'(KC!)=1.2965×10-2S•m2•mol-1和A;:;'(NaCl)=1.086O×10→S•m2•mo!1,K+和Na+的迁移数分别为t(K+)=0.496,t(Na+)=O.397,试求在291K和无限稀释时,(1)KC!溶液中K+和Cl一的离子摩尔电导率;(2)N aCl溶液中Na+和Cl的离子摩尔电导率。
13.298K时,在某电导池内盛以浓度为0.01mol•dm→的KCI水溶液,测得电阻R为484.0n o当盛以不同浓度的N aCl水溶液时测得数据如下:c(NaCl)/(mol•m-3)0.5 1.0 2.0 5.0Am/CS•m2•mol-1) 1.253×10→ 1.244×10→ 1.233×10→ 1.211×10→已知298K时,0.01mo!•dm3的KC!水溶液的电导率叫KCl)=0.1412S•m1,试求:C l)NaCl水溶液在不同浓度时的摩尔电导率Am CNaCl);(2)以Am(Na Cl)对rc作图,求NaCl的元限稀释摩尔电导率11;:;'(NaCl)。
14.在某电导池中先后充以浓度均为0.001mol•dm寸的HCl、NaCl和Na N0,分别测得电阻为468.0、15800和16500。
已知Na N03溶液的摩尔电导率Am(Na NO,)=l.21×10→S•m2•mol-1,设这些都是强电解质,其摩尔电导率不随浓度而变。
试计算:C l)浓度为0.001mo!•dm→Na N03溶液的电导率;(2)该电导池的常数K,,n;(3)此电导池如充以浓度为0.001mo!•dm-3HN03溶液时的电阻及该HNO,溶液的摩尔电导率。
15.298K时测得SrSO,饱和水溶液的电导率叫溶液)1.482×102S·m-1,该温度时水的电导率叫水)l.496×10-'S•m l。
试计算该条件下SrSO,在水中的饱和溶液的浓度。
16.298K时,所用纯水的电导率k(H20)=l.60×10寸S•m-1.试计算该温度下PbSO,(s)饱和溶液的电导率。
已知PbSO4(s)的溶度积Ksp=1.60*10-817.291K时,纯水的电导率叫H20)=3.8×10→S·m叶,当H20(I)解离成H+和OH并达到平衡时,求该温度下H20(I)的摩尔电导率、解离度和H+的浓度。
已知这时水的密度为998.6kg•m-3.18.根据如下数据,求H,0(1)在298K时解离成H+和OH并达到平衡时的解离度和离子积常数Kw。
已知298K时,纯水的电导率K(H20)=5.5×10-6S.m-1,A(H+)=3.498×102S•m2.mol-1A(oH-)=1.98×102S•m2•mo[-1,水的密度为997.09kg•m-319.在298K时,浓度为0.01mo!•dm寸的HAc溶液在某电导池中测得电阻为2220Q。
巳知该电导池常数K四11=36.7m-1,试求该条件下HAc的解离度和解离平衡常数。
20.画出下列电导漓定的示意图:(1)用Na OH滴定ιH,OH;(2)用NaOH滴定HCI(3)用Ag NO,滴定K2CrO,;;(4)用BaCl,滴定Tl2SO,。
21.298K时,在某一电导池中充以0.1mo\•dm-3、电导率为0.14114S•m-i的KCI溶液,测得其电阻为525.fl。
当在该电导池内充以0.10mol•dm-3的NH3•H20溶液时,测得其电阻为20300,已知此时所用水的电导率为2×10-'S·m-10试求:(1)该NHa•H20溶液的解离度;(2)当该电导池充以纯水时的电阻值。
22.298K时,已知A:(N aCl)=1.086×10-2S•m2•mo!1,A:;:(NaOH)=2.172×1一2S•m2•mol-1和A:(NH,Cl)=1.298×10'S•m2•mo!1;NH,•H20在浓度为0.1mo!•dm-3时的摩尔电导率A咽 3. 09×10-•s.m2•mo1-1,浓度为0.01mo!•dm-3时的摩尔电导率Am=9.62×10-•s•m2•mo1-1。
试根据上述数据求N H,·H,O的两种不同浓度溶液的解离度和解离常数。
23.291K时,在一电场梯度为1ooo V•m一1的均匀电场中,分别放入含H+,K+、Cl的稀榕液,试求各个离子的迁移速率。
已知各溶液中的离子摩尔电导率分别为24.分别计算下列各溶液的离子强度,设所有电解质的浓度均为0.025mol•kg-1。
(1)Na Cl;(2)MgCl2;(3) CuSO,;(的LaCI,;(5)NaCl和LaCl,的混合溶液,浓度各为0.025mo!•kg1。
25.分别计算下列四种溶液的离子平均质量摩尔浓度m?,离子的平均活度电以及电解质的活度句。
浓度均为0. 01mo!•kg一1。
(1)NaCl(Y土0.904);(2)K2SO,(Y土O.715);(3)CuSO,(Y土0.444);(4)K3[Fe(CN),](Y土0.571)。
26.有下列不同类型的电解质:(1)HCl;(2)MgCl2;(3)CuS0,;(4)LaCl,;(5)Al2(S0,)3.设它们都是强电解质,当它们的溶液浓度分别都是0.025mo!•kg-1时,(1)试计算各种溶液的离子强度l;(2)试计算各种溶液的离子平均质量摩尔浓度m?;(3)用Debye-Hi.ickel公式计算离子平均活度因子y±(4)计算电解质的离子平均活度d士和电解质的活度a527.试用Debye-Hocke!修正公式计算298K时浓度为0.001rnol•kg1K3[Fe(CN)6]溶液的平均活度因子(已知实验值为0.80的。
28.在298K时,某溶液含MgCl2和ZnSO,的浓度均为0.002rnol•kg1,试用Debye-Hiick el极限公式求ZnSO,的离子平均活度因子。
29.在298K时,CO,Cg)饱和水溶液的电导率为1.87×10•s.m-1,已知该温度纯水的电导率为6.0×10-6S'ID I,假定只考虑碳酸的一级解离,并已知该解离常数K,9=4.31×10斗。
试求CO,(g)饱和水溶液的浓度。
30.在298K时,醋酸HAc的解离平衡常数k9=l.8×105,试计算在下列不同情况下醋酸在浓度为 1.0mo!•kg1时的解离度。