车轮制动时的受力学分析ppt课件
- 格式:ppt
- 大小:152.00 KB
- 文档页数:12
汽车制动系统ppt课件完整版x REPORTING2023 WORK SUMMARY目录•引言•制动系统基本原理•汽车制动系统主要部件及功能•汽车制动系统性能评价指标•汽车制动系统常见故障及排除方法•汽车制动系统维护与保养建议PART01引言制动系统是汽车安全行驶的关键部件,能够在紧急情况下使车辆迅速减速或停车,避免交通事故的发生。
保证行车安全制动系统的性能直接影响驾驶者的舒适感受,良好的制动系统能够使驾驶更加平稳、舒适。
提高驾驶舒适性合理的制动系统设计和使用能够减少车辆磨损,延长车辆使用寿命。
延长车辆使用寿命制动系统的重要性制动系统的发展历程机械制动阶段早期的汽车制动系统主要采用机械制动方式,通过机械传动机构实现制动。
液压制动阶段随着汽车技术的发展,液压制动系统逐渐取代了机械制动系统,成为主流制动方式。
电子制动阶段近年来,随着电子技术的飞速发展,电子制动系统逐渐应用于汽车制动领域,实现了更加智能化、精准化的制动控制。
制动系统的分类与组成分类根据制动方式的不同,汽车制动系统可分为盘式制动系统和鼓式制动系统;根据制动力的来源不同,可分为人力制动系统、动力制动系统和伺服制动系统。
组成汽车制动系统主要由制动器、制动主缸、制动轮缸、真空助力器、制动管路和制动踏板等组成。
其中,制动器是产生制动力的关键部件,制动主缸和制动轮缸是传递制动力的主要部件,真空助力器则用于增强制动踏板的力度。
PART02制动系统基本原理建立车辆制动过程的力学模型,分析制动力、制动力矩和制动距离等关键参数。
制动过程力学模型制动效能与稳定性制动过程影响因素阐述制动效能的评价指标,如制动距离、制动减速度等,并分析制动过程中的稳定性问题。
分析影响制动过程的因素,如车辆载荷、路面条件、轮胎与路面附着系数等。
030201制动过程力学分析介绍常用制动器的类型、结构和工作原理,如盘式制动器、鼓式制动器等。
制动器类型与结构阐述制动器的工作过程,包括制动蹄片的张开、制动鼓的旋转以及制动力的产生等。
第四章 汽车制动性第二节 制动时车轮受力分析制动时的汽车行驶方程式为)(i w f j F F F F F b ++-=(4-1)式中:b F 为汽车地面制动力。
由制动性的定义可知,滚动阻力0f ≈F ;制动时车速较低且迅速降低,即0w ≈F ;坡道阻力0i =F 。
所以,汽车行驶方程式可近似表达为jF F b =(4-2)一、地面制动力、制动器制动力和附着力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图4-1所示。
图4-1 制动时车轮受力条件制动器制动力μF 等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。
其大小为rT F /μμ=(4-3)式中:μT 是车轮制动器摩擦副的摩擦力矩。
制动器制动力μF 是由制动器结构参数所决定的。
它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。
从力矩平衡可得地面制动力b F 为rT F /μb =(4-4)地面制动力b F 是使汽车减速的外力。
它不但与制动器制动力μF 有关,受地面附着力ϕF 的制约。
图4-2 地面制动力、车轮制动力及附着力的关系图4-2给出了地面制动力、车轮制动力及附着力三者之间的关系。
当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。
开始时踏板力较小,制动器制动力μF 也较小,地面制动力b F 足以克服制动器制动力μF ,而使得车轮滚动。
此时,μb F F =,且随踏ϕFμxb =板力增加成线性增加。
但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力ϕF 或最大地面制动力bmax F ,即⎩⎨⎧==≤zz F F F F F ϕϕϕmax b b (4-5)当制动踏板力上升到一定值时,地面制动力b F 达到最大地面制动力ϕF F =max b ,车轮开始抱死不转而出现拖滑现象。
随着制动踏板力以及制动管路压力的继续升高,制动器制动力μF 继续增加,直至踏板最大行程,但是地面制动力b F 不再增加。
4.2.2 制动时车轮受力分析制动时的汽车行驶方程式为)(i w f j b F F F F F ++-= (4-1)式中:b F 为汽车地面制动力。
由制动性的定义可知,滚动阻力0≈f F ;制动时车速较低且迅速降低,即0≈w F ;坡道阻力0=i F 。
所以,汽车行驶方程式可近似表达为jb F F = (4-2)4.2.2.1 地面制动力、制动器制动力和附着力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图4-1所示。
制动器制动力μF 等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。
其大小为rT F /μμ= (4-3)式中:μT 是车轮制动器摩擦副的摩擦力矩。
制动器制动力μF 是由制动器结构参数所决定的。
它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。
从力矩平衡可得地面制动力bF 为rT F b /μ= (4-4)地面制动力b F 是使汽车减速的外力。
它不但与制动器制动力μF 有关,受地面附着力ϕF 的制约。
图4-1 制动时车轮受力条件图4-2 地面制动力、车轮制动力及附着力的关系图4-2给出了地面制动力、车轮制动力及附着力三者之间的关系。
当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。
开始时踏板力较小,制动器制动力μF 也较小,地面制动力b F 足以克服制动器制动力μF ,而使得车轮滚动。
此时,μF F b =,且随踏板力增加成线性增加。
但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力ϕF 或最大地面制动力max b F ,即⎩⎨⎧==≤z b zb F F F F F ϕϕϕmax (4-5)当制动踏板力上升到一定值时,地面制动力b F 达到最大地面制动力ϕF F b =max ,车轮开始抱死不转而出现拖滑现象。
随着制动踏板力以及制动管路压力的继续升高,制动器制动力μF 继续增加,直至踏板最大行程,但是地面制动力bF 不再增加。