自然电位测井及应用
- 格式:pptx
- 大小:1.17 MB
- 文档页数:24
一、SP(自然电位)曲线和GR(自然伽马)曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。
在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。
又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。
在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。
用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。
其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。
另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。
沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。
GR曲线主要测量地层的放射性。
1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。
影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。
自然电位测井的研究与应用自然电位测井是常规电法测井方法之一,应用范围较广泛,主要用于砂泥岩剖面,是划分和评价储集层的重要方法之一。
文章从自然电位的成因入手,介绍了自然电位的原理,分析了自然电位曲线的特点,结合现场实际测井经验,阐述了影响自然电位测井的实际因数。
标签:电动势;自然电位;岩性;测井1 地层中自然电位的成因1.1 自然电位的理论分析裸眼井中由于泥浆和地层水的矿化度有所不同,地层压力和泥浆柱压力也有差异,会在井壁附近产生电化学过程,产生自然电动势。
(1)扩散电动势(Ed)的产生。
如果将两种不同浓度的NaCl溶液放在一个水槽的两端,中间用渗透性隔膜分离时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,迁移过程中因离子的迁移速率不同,造成溶液接触面两侧富集正负电荷,当接触面附近正、负离子迁移速度相同时,电荷富集停止,但离子还在扩散,达到一种动平衡,此时接触面附近的電动势会保持一定值,这个电动势叫扩散电动势。
(2)扩散吸附电动势(Eda)。
将两种不同浓度的NaCl溶液用泥岩隔膜分开,因为泥岩有一种特殊性质。
泥质颗粒基本由含有硅或铝的晶体组成,由于晶格中的硅或铝离子被低价的离子所取代,泥质颗粒表面带负电,为了达到电平衡,必须吸附阳离子,这样,就相当于泥岩具有渗透阳离子的能力,而阴离子不能通过,在渗透压的作用下,浓度高的溶液中阳离子会通过泥岩向浓度低的方向渗透,这样就会造成浓度大的一方富集了负电荷,浓度小的一方富集了正电荷。
该过程产生的电动势叫扩散吸附电动势。
1.2 测井过程中自然电动势成因分析在淡水泥浆钻井时,地层水矿化度小于泥浆滤液矿化度,在井筒内,砂岩段靠近井壁的地方负电荷富集,地层内靠近井壁的地方正电荷富集,导致井筒泥浆的电势低于地层电势,因而在砂岩段形成扩散电位;在泥岩段,在井筒内靠近井壁的地方正电荷富集,地层中负电荷富集,导致井筒泥浆的电势高于地层电势。
自然电位,自然伽马测井曲线在文15块的应用(二)自然电位与自然伽马测井在文15块的应用自然电位是指地层本身在静电场中所呈现的电位差,而自然伽马测井则是利用地层放射性元素自发放射的伽马射线进行测量和分析。
在文15块中,自然电位和自然伽马测井可以应用于以下方面:1.地层识别自然伽马测井曲线可以用于地层的识别和界定,因为不同的地层含有不同的放射性元素。
比如,在文15块中,火山岩层中含有较高的钾元素和放射性矿物质,因此其自然伽马测井曲线值较高。
而沉积岩层中则含有较低的钾元素和放射性矿物质,其自然伽马测井曲线值相对较低。
2.含气量评价自然伽马测井曲线可以用于评价储层中的气含量,因为天然气中含有较高的放射性同位素(40K和238U),会对自然伽马测井曲线产生影响。
通过分析自然伽马测井曲线的变化,可以得出储层中天然气的含量和分布情况。
3.沉积环境分析自然电位和自然伽马测井曲线可以用于沉积环境的分析。
在文15块中,火山岩、红色泥岩、砾岩等地层的自然伽马测井曲线和自然电位值都较高,这可能与这些地层受到了较强的自然辐射有关。
而湖相沉积会造成稳定的沉积环境,其自然伽马测井曲线和自然电位值相对较低。
4.矿产资源勘探自然伽马测井可以用于勘探铀、钍等放射性矿产资源,因为这些矿产含有较高的放射性同位素。
通过对自然伽马测井曲线的分析,可以确定矿化带的位置和范围,进而指导勘探工作。
在文15块中,火山岩中常含有铀、钍等矿产,其自然伽马测井曲线值也较高,可以作为勘探的重要参考。
以上是自然电位与自然伽马测井在文15块的应用。
这些方法可以为石油勘探和地质研究提供有力的支持,对于揭示地质构造和资源分布具有重要的意义。
5.岩性判别自然伽马测井曲线也可以用于岩性的判别。
例如,在文15块中,砂岩和页岩之间存在Page电位差,即在砂岩中Page电势比页岩高。
而自然伽马测井曲线中的流体响应现象也可以用于确定岩石的孔隙度和渗透率。
6.流体识别自然电位可以用于识别含水层和含油气层。
自然电位测井自然电位测井的基本原理、曲线形态、影响因素、地质应用。
测量自然电位随井深变化的曲线,用于划分岩性和研究储集层性质。
其测井的基本方法如下:如图所示,在井内放一测量电极M,地面放一测量电极N,将M 电极沿井筒移动,即可测出一条井内自然电位变化的曲线。
要对所测的SP曲线进行地质解释,首先应该了解自然电位是怎样产生的,它与地层的那些件质有关.一、自然电位产生的原因井内自然电位产生的原因是复杂的,对于油气井来说,主要有以下两个原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。
②地层压力与泥浆柱压力不同而引起的过滤电动势。
实践证明,在油气井中,这两种电动势以扩散电动势和吸附电动势占绝对优势。
1.扩散电位当两种不同浓度的溶液被半透膜隔开,离子在渗透压作用下,高浓度溶液的离子将穿过半透膜向较低浓度的溶液中移动。
这种现象叫扩散,形成的电位叫扩散电位,在油井中,此种扩散有两种途径:一是高浓度一方通过砂岩向低浓度泥浆中扩散;二是通过泥岩向泥浆中扩散。
其扩散电位大小取决于①正负离子的运移率(单价离子在强度为1伏特/厘米的电场作用下的移动速度);②温度、压力;③两种溶液的浓度差;④浓度、离子类型及浓度差。
离子由砂岩向泥浆中扩散时,由于Cl-比Na+的运移率大,因此在砂岩高浓度一侧聚集多余的正电荷,而在泥浆中聚集负电荷。
离子量移动到一定程度,形成动态平衡,此时电位叫扩散电位,经实验,扩散电位Ed可由以下公式求得:Ed=Kdlg(Cw/Cmf)Kd-扩散电位系数,与盐类的化学成份及温度有关。
在井中,18℃时若地层水浓度Cw 等于10倍的泥浆溶液矿化度Cmf时,经理论推算:kd=-11.6mv,其中负号表示低度一方井中的电位低Cmf、Cw-泥浆滤液和地层水矿化度。
当溶液矿化度不高时,溶液浓度与电阻率成反比,即Ed=Kdlg(Cw/Cmf)=Kdlg(Rmf/Rw) Rmf,Rw-泥浆滤液和地层水电阻率12. 吸附电位(隔膜作用-砂岩通过泥岩与泥浆之间交换离子)因为泥岩结构、化学成分等与砂岩不同,因此与泥浆之间形成的电位差大,且符号与扩散电位相反,这是由于粘土矿物表面具有选择吸附负离子的能力。
自然电位测井及应用一、自然电位的产生井内自然电位产生的原因是复杂的,对于油气井来说,主要有以下两个原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。
②地层压力与泥浆柱压力不同而引起的过滤电动势。
实践证明,在油气井中,这两种电动势以扩散电动势和吸附电动势占绝对优势。
二、自然电位的曲线特征由于泥岩(或页岩层)岩性稳定,在一个井段内邻近的泥岩自然电位测井曲线显示为一条电位不变的直线,将它作为自然电位的基线,这就是所谓的泥岩基线。
在渗透性砂岩地层处,自然电位曲线偏离泥岩基线。
在足够厚度的地层中,曲线达到固定的偏移程度,后者定为砂岩线。
自然电位曲线的异常幅度就是地层中点的自然电位与基线的差值。
渗透性地层的自然电位可以偏向泥岩基线的左边(负异常),或右边(正异常),它主要取决于地层水和泥浆滤液的对比矿化度,当地层水矿化度大于泥浆滤液矿化度时,自然电位显示为负异常。
当地层水矿化度小于泥浆滤液矿化度时,自然电位显示为正异常。
如果泥浆滤液的矿化度与地层水矿化度大致相等时,自然电位偏转幅度很小,曲线无显著异常。
综上所述,自然电位曲线具有如下特点:(1)当地层、泥浆是均匀的,上下围岩岩性相同时,自然电位曲线对地层中心对称;(2)在地层顶底界面处,自然电位变化最大,当地层较厚(大于四倍井径)时,可用曲线“半幅点”确定地层界面;(3)测量的自然电位幅度,为自然电流在井内产生的电位降,它永远小于自然电流回路总的电动势;(4)渗透性砂岩的自然电位,对泥岩基线而言,可向左(“负”)或向右(“正”)偏转,它主要取决于地层水和泥浆滤液的相对矿化度。
自然电位曲线的影响因素:A、地层温度的影响:同样的岩层,由于埋藏深度不同,其温度不同,也就造成K d(扩散电位系数)和K da(扩散吸附电位系数)值有差别,这就导致了同样岩性的岩层,由于埋藏深度不同,产生的自然电位曲线幅度有差异。
B、地层水和泥浆滤液中含盐浓度比值的影响:∆U sp主要取决于自然电场的总电动势SSP,而SSP的大小取决于岩性和C w,因此,在一定的范围内,C w和C mf差别大,造成自然C mf电场的电动势高,曲线变化明显。
自然电位,自然伽马测井曲线在文15块的应用(一)自然电位,自然伽玛测井曲线在文15块的应用什么是自然电位和自然伽玛测井曲线?自然电位和自然伽玛测井曲线是两种地球物理测井技术,它们能够对地下岩石的性质、含油气程度等进行分析和识别。
自然电位(SP)测井是指将针对地下岩石中离子的自然分布所产生的电位信号进行测量和记录。
在油气勘探中,自然电位的变化能够对应不同深度和含油气程度的地层。
自然伽玛测井是通过记录地下自然辐射的伽玛射线强度变化来分析地层的物性和组成。
这种测井技术能够识别不同的岩石类型和目标层,也能够判断地层是否含有放射性物质。
文15块特征文15块是位于中国东海南部的一个海域油气勘探区域,它的地质特征主要包括:•由白垩系陆源碎屑岩、张家港组、青龙山组等构成的沉积层•浅海到近岸浅海的环境,受潮汐调节影响•低或中等成熟度的油气,以及与之相关的地层构造和地层圈闭自然电位和自然伽玛测井在文15块中的应用在文15块中,自然电位和自然伽玛测井曲线具有以下应用:1. 确认地层边界和岩性通过记录自然电位和自然伽玛曲线,可以在地层中确定不同层位和边界。
由于岩石的物性、组成和厚度等因素会对自然电位和自然伽玛产生影响,所以这些曲线能够提供较为准确的地层分类和识别。
2. 研究油气运移规律和圈闭特征文15块中的油气主要聚集在岩石孔隙和构造圈闭中,自然电位和自然伽玛曲线能够为研究这些圈闭的特征提供数据支撑。
例如,自然电位在圈闭上会形成正负极性反转的现象,而自然伽玛曲线则能够反映圈闭中油气的厚度和有无。
3. 评价油气含量和成熟度自然电位能够反映不同深度地层的含盐程度和流体性质,从而可以对油气含量进行初步估算。
同时,自然伽玛曲线还能够表示油气组分中的碳-氢比,从而提供油气成熟度的信息。
结论总的来说,自然电位和自然伽玛测井曲线是重要的地球物理测井技术,在油气勘探中起着至关重要的作用。
在文15块这一海域油气勘探区域,这两种技术也有着广泛的应用,为勘探和开发工作提供了重要的支持。