连续性方程的物理意义
- 格式:docx
- 大小:11.29 KB
- 文档页数:1
第3章流体动力学基础教学要点一、教学目的和任务1、本章目的1)使学生掌握研究流体运动的方法2)了解流体流动的基本概念3)通过分析得到理想流体运动的基本规律4)为后续流动阻力计算、管路计算打下牢固的基础2、本章任务1)了解描述流体运动的两种方法;2)理解描述流体流动的一些基本概念,如恒定流与非恒定流、流线与迹线、流管、流束与总流、过水断面、流量及断面平均流速等;3)掌握连续性方程、伯努利方程、动量方程,并能熟练应用于求解工程实际问题动量方程的应用二、重点、难点1、重点:流体流动中的几个基本概念,连续性方程,伯努利方程及其应用,动量方程及其应用。
2、难点:连续性方程、伯努利方程以及与动量方程的联立应用。
三、教学方法本章讲述流体动力学基本理论及工程应用,概念多,容易混淆,而且与实际联系密切。
所以,必须讲清楚每一概念及各概念之间的联系和区别,注意讲情分析问题和解决问题的方法,选择合适的例题和作业题。
流体动力学:是研究流体运动规律及流体运动与力的关系的力学。
研究方法:实际流体→理想流体→实验修正→实际流体流体动力学:研究流体运动规律及流体与力的关系的力学。
3.1 流体运动要素及研究流体运动的方法一、流体运动要素表征流体运动状态的物理量,一般包括v、a、p、ρ、γ和F等。
研究流体的运动规律,就是要确定这些运动要素。
(1)每一运动要素都随空间与时间在变化;(2)各要素之间存在着本质联系。
流场:将充满运动的连续流体的空间。
在流场中,每个流体质点均有确定的运动要素。
二、研究流体运动的两种方法研究流体运动的两种方法:拉格朗日法和欧拉法。
(1,质点的运动要素是初始点坐标和时间的函数。
用于研究流体的波动和震荡等(2)欧拉法(“站岗”的方法)欧拉法是以流场中每一空间位置作为研究对象,而不是跟随个别质点。
其要点:分析流动空间某固定位置处,流体运动要素随时间的变化规律;分析流体由某一空间位置运动到另一空间位置时,运动要素随位置的变化规律。
《传递工程基础》复习题第一单元传递过程概论本单元主要讲述动量、热量与质量传递的类似性以及传递过程课程的内容及研究方法。
掌握化工过程中的动量传递、热量传递和质量传递的类似性,了解三种传递过程在化工中的应用,掌握牛顿粘性定律、付立叶定律和费克定律描述及其物理意义,理解其相关性。
熟悉本课程的研究方法。
第二单元动量传递本单元主要讲述连续性方程、运动方程。
掌握动量传递的基本概念、基本方式;理解两种方程的推导过程,掌握不同条件下方程的分析和简化;熟悉平壁间的稳态层流、圆管内与套管环隙中的稳态层流流动情况下连续性方程和奈维-斯托克斯方程的简化,掌握流函数和势函数的定义及表达式;掌握边界层的基本概念;沿板、沿管流动边界层的发展趋势和规律;边界层微分和积分动量方程的建立。
第三单元热量传递本单元主要讲述热量传递基本方式、微分能量方程。
了解热量传递的一般过程和特点,进一步熟悉能量方程;掌握稳态、非稳态热传导两类问题的处理;对一维导热问题的数学分析方法求解;多维导热问题数值解法或其他处理方法;三类边界问题的识别转换;各类传热情况的正确判别;各情况下温度随时间、地点的分布规律及传热通量。
结合实际情况,探讨一些导热理论在工程实践中的应用领域。
第四单元传量传递本单元主要介绍传质的基本方式、传质方程、对流传质系数;稳定浓度边界层的层流近似解;三传类比;相际传质模型。
掌握传质过程的分子扩散和对流传质的机理;固体中的分子扩散;对流相际传质模型;熟悉分子扩散微分方程和对流传质方程;传质边界层概念;沿板、沿管的浓度分布,传质系数的求取,各种传质通量的表达。
第一部分 传递过程概论一、填空题:1. 传递现象学科包括 动量 、 质量 和 热量 三个相互密切关联的主题。
2. 化学工程学科研究两个基本问题。
一是过程的平衡、限度;二是过程的速率以及实现工程所需要的设备。
3. 非牛顿流体包括假塑性流体,胀塑性流体,宾汉塑性流体 (至少给出三种流体)。
水力学期末考试题及答案一、选择题(每题2分,共20分)1. 流体力学中,流体的连续性方程描述的是()。
A. 质量守恒B. 能量守恒C. 动量守恒D. 热量守恒答案:A2. 在理想流体中,下列哪项特性是不存在的?()A. 粘性B. 可压缩性C. 惯性D. 重力答案:A3. 根据伯努利方程,流体在管道中流动时,流速增加时,压力会()。
A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B4. 流体静力学中,液体静压力与深度的关系是()。
A. 与深度无关B. 与深度成正比C. 与深度成反比D. 与深度的平方成正比答案:B5. 流体动力学中,雷诺数是用来描述流体流动的()。
A. 粘性效应B. 惯性效应C. 压缩性效应D. 重力效应答案:A6. 流体通过孔板时,孔板的直径越小,流体的流速()。
A. 越大B. 越小C. 不变D. 先增大后减小答案:A7. 流体力学中的欧拉方程描述的是()。
A. 流体的静力平衡B. 流体的动力学平衡C. 流体的热力学平衡D. 流体的化学反应答案:B8. 在流体力学中,流体的粘性系数是一个()。
A. 常数B. 变量C. 函数D. 向量答案:B9. 流体力学中的纳维-斯托克斯方程是用来描述()。
A. 流体的静力平衡B. 流体的动力学平衡C. 流体的热力学平衡D. 流体的化学反应答案:B10. 流体力学中,流体的密度与温度的关系是()。
A. 与温度无关B. 与温度成正比C. 与温度成反比D. 先成正比后成反比答案:C二、填空题(每题2分,共20分)1. 流体力学中的连续性方程可以表示为:_______。
答案:\( \frac{\partial \rho}{\partial t} + \nabla \cdot(\rho \mathbf{u}) = 0 \)2. 流体力学中,雷诺数的表达式为:_______。
答案:\( Re = \frac{\rho v L}{\mu} \)3. 流体力学中,伯努利方程可以表示为:_______。
流体力学总结+复习第一章 绪论一、流体力学与专业的关系流体力学——是研究流体(液体和气体)的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
研究对象:研究得最多的流体是液体和气体。
根底知识:牛顿运动定律、质量守恒定律、动量〔矩〕定律等物理学和高等数学的根底知识。
后续课程:船舶静力学、船舶阻力、船舶推进、船舶操纵等都是以它为根底的。
二、连续介质模型连续介质:质点连续地充满所占空间的流体。
流体质点(或称流体微团) :忽略尺寸效应但包含无数分子的流体最小单元。
连续介质模型:流体由流体质点组成,流体质点连续的、无间隙的分布于整个流场中。
三、流体性质密度:单位体积流体的质量。
以表示,单位:kg/m 3。
0limA V m dmV dVρ∆→∆==∆ 重度:单位体积流体的重量。
以 γ 表示,单位:N/m 3。
0lim A V G dGV dVγ∆→∆==∆ 密度和重度之间的关系为:g γρ=流体的粘性:流体在运动的状态下,产生内摩擦力以抵抗流体变形的性质。
,其中μ为粘性系数,单位:N ·s /m 2=Pa ·sm 2/s 粘性产生的原因:是由流动流体的内聚力和分子的动量交换所引起的。
牛顿流体:内摩擦力按粘性定律变化的流体。
非牛顿流体:内摩擦力不按粘性定律变化的流体。
四、作用于流体上的力质量力〔体积力〕:其大小与流体质量〔或体积〕成正比的力,称为质量力。
例如重000lim,lim,limy xzm m m F F F Y Z mm m→→→=== 外表力:五、流体静压特性特性一:静止流体的压力沿作用面的内法线方向特性二:静止流体中任意一点的压力大小与作用面的方向无关,只是该点的坐标函数。
六、压力的表示方法和单位绝对压力p abs :以绝对真空为基准计算的压力。
相对压力p :以大气压p a 为基准计算计的压力,其值即为绝对压力超过当地大气压的数值。
连续性方程的物理意义
连续性方程是质量守恒定律(见质量)在流体力学中的具体表述形式。
它的前提是对流体采用连续介质模型,速度和密度都是空间坐标及时间的连续、可微函数。
在物理学里,连续性方程(continuityequation)乃是描述守恒量传输行为的偏微分方程。
由于在各自适当条件下,质量、能量、动量、电荷等等,都是守恒量,很多种传输行为都可以用连续性方程来描述。
连续性方程乃是定域性的守恒定律方程。
与全域性的守恒定律相比,这种守恒定律比较强版。
在本条目内的所有关于连续性方程的范例都表达同样的点子──在任意区域内某种守恒量总量的改变,等于从边界进入或离去的数量;守恒量不能够增加或减少,只能够从某一个位置迁移到另外一个位置。