高考数学(人教A版-理)一轮复习配套讲义:第2篇-第10讲-变化率与导数、导数的计算
- 格式:doc
- 大小:153.00 KB
- 文档页数:9
变化率与导数、导数的计算[考纲]1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数[仅限于形如y =f (ax +b )的复合函数]的导数.知 识 梳 理1.函数的变化率快慢.3.平均变化率也可以用式子Δy Δx 表示,ΔyΔx有什么几何意义?答 Δx 表示x2-x1是相对于x1的一个“增量”;Δy 表示f(x2)-f(x1).观察图象可看出,Δy Δx = f(x2)-f(x1)x2-x1 表示曲线y =f(x)上两点(x1,f(x1))、(x2,f(x2))连线的斜率.1.导数的概念(1)函数y =f (x )在x =x 0处的导数①定义:称函数y =f (x )在x =x 0处的瞬时变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或.②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)称函数f ′(x )=f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数设u =v (x )在点x 处可导,y =f (u )在点u 处可导,则复合函数f [v (x )]在点x 处可导,且f ′(x )=f ′(u )·v ′(x ). [感悟·提升]1.“过某点”与“在某点”的区别曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,如(6)中点(1,3)为切点,而后者P(x0,y0)不一定为切点.2.导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点,如(4).三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积,如(9).考点一导数的计算【例1】分别求下列函数的导数:(1)y=e x·cos x;(2)y=x-sin x2cosx2;(3)y=ln(2x+1)x.规律方法(1)本题在解答过程中常见的错误有:①商的求导中,符号判定错误;②不能正确运用求导公式和求导法则,在第(3)小题中,忘记对内层函数2x +1进行求导.(2)求函数的导数应注意:①求导之前利用代数或三角变换先进行化简,减少运算量;②根式形式,先化为分数指数幂,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.【训练1】(1)(2013·江西卷改编)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.(2)若f(x)=3-x+e2x,则f′(x)=________.考点二导数的几何意义【例2】(1)(2013·广东卷)若曲线y=kx+ln x在点(1,k)处的切线平行于x轴,则k=________.(2)设f(x)=x ln x+1,若f′(x0)=2,则f(x)在点(x0,y0)处的切线方程为____________________.规律方法(1)导数f′(x0)的几何意义就是函数y=f(x)在点P(x0,y0)处的切线的斜率.第(1)题要能从“切线平行于x轴”提炼出切线的斜率为0,进而构建方程,这是求解的关键,考查了分析问题和解决问题的能力.(2)在求切线方程时,应先判断已知点Q(a,b)是否为切点,若已知点Q(a,b)不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.【训练2】(1)(2012·新课标全国卷)曲线y=x(3ln x+1)在点(1,1)处的切线方程为____________________.(2)若函数f(x)=e x cos x,则此函数图象在点(1,f(1))处的切线的倾斜角为().A.0 B.锐角C.直角D.钝角考点三导数运算与导数几何意义的应用【例3】(2013·北京卷)设l为曲线C:y=ln xx在点(1,0)处的切线.(1)求l的方程;(2)试证明:除切点(1,0)之外,曲线C在直线l的下方.规律方法(1)准确求切线l的方程是本题求解的关键;第(2)题将曲线与切线l的位置关系转化为函数g(x)=x-1-f(x)在区间(0,+∞)上大于0恒成立的问题,进而运用导数研究,体现了函数思想与转化思想的应用.(2)当曲线y=f(x)在点P(x0,f(x0))处的切线平行于y轴(此时导数不存在)时,切线方程为x=x0;当切点坐标不知道时,应首先设出切点坐标,再求解.【训练3】(2014·济南质检)设函数f(x)=a e x+1a e x+b(0<a<1).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=32x,求a和b的值.1.理解导数的概念时,要注意f′(x0),(f(x0))′与f′(x)的区别:f′(x)是函数y =f(x)的导函数,f′(x0)是f(x)在x=x0处的导数值,是常量但不一定为0,(f(x0))′是常数一定为0,即(f(x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.求曲线的切线时,要分清在点P处的切线与过点P的切线的区别.营养餐求曲线切线方程考虑不周【典例】(2014·杭州质检)若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x 和y=x2+a都相切,则a的值是().A.1 B.1 64C.1或164D.1或-164[防范措施](1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P的切线与在点P处的切线的差异.(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算.【自主体验】函数y=ln x(x>0)的图象与直线y=12x+a相切,则a等于().A.2ln 2 B.ln 2+1C.ln 2 D.ln 2-1自助餐基础巩固题组一、选择题1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于().A.-1 B.-2 C.2 D.02.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=().A.2 B.6C.-2 D.4 3.(2014·济南质检)设曲线y=x+1x-1在点(3,2)处的切线与直线ax+y+1=0垂直,则a=().A.2 B.-2C .-12 D.124.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点横坐标为( ). A .-2 B .3 C .2或-3 D .25.(2014·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ). A.13 B.12 C.23 D .1 二、填空题6.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.7.(2013·南通一调)曲线f (x )=f ′(1)e e x -f (0)x +12x 2在点(1,f (1))处的切线方程为________.8.若以曲线y =13x 3+bx 2+4x +c (c 为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b 的取值范围是________.三、解答题9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.10.已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.能力提升题组一、选择题1.(2014·北京西城质检)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( ).A .1B .3C .-4D .-82.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( ). A .A >B >C B .A >C >B C .B >A >C D .C >B >A 二、填空题3.(2014·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则x 12013log +x22013log +…+x20122013log的值为________.三、解答题4.(2013·福建卷改编)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)当实数a >0时,求函数f (x )的极值.。