5.6几何证明举例(5)HL
- 格式:ppt
- 大小:723.50 KB
- 文档页数:16
直角边斜边定理hl证明直角边斜边定理是一个简单而重要的几何原理,它可以帮助我们计算和理解直角三角形的性质。
在本文中,我将详细介绍直角边斜边定理的概念和证明过程,希望能帮助读者更好地理解该定理的原理和应用。
1. 何为直角边斜边定理直角边斜边定理又被称为毕达哥拉斯定理,它阐述了直角三角形的边长关系。
直角三角形是一种具有一个内角为90度的三角形,其中包括一个直角,即一个内角等于90度的角。
根据直角边斜边定理,直角三角形的两个直角边的平方和等于斜边的平方。
2. 直角边斜边定理的证明过程为了证明直角边斜边定理,我们可以利用几何知识和代数运算。
假设直角三角形的两个直角边分别为 a 和 b,斜边为 c。
我们可以通过以下证明过程来得到直角边斜边定理。
证明过程:(1)根据勾股定理,我们知道在任何三角形中,两直角边的平方和等于斜边的平方。
即 a^2 + b^2 = c^2。
(2)我们可以通过几何推导来证明这一点。
假设直角边 a 为底边,在直角三角形中构造一个以 a 为底边,长度为 b 的线段 perpendicular bisector。
这个线段将底边 a 平分,并且与斜边 c 相交于直角点和直角边 b 的中点。
(3)根据几何性质,我们知道这个线段将直角三角形分成了两个全等的直角三角形。
我们可以得到两个全等三角形中的对应边长关系,即 a = b 和直角边 a 的上半部分长度为 b/2。
(4)使用平行线性质,我们还可以得出斜边 c 分成的两条线段之间的关系。
即 c = a + b/2。
(5)将这些等式代入勾股定理的公式中,我们有 a^2 + b^2 = (a + b/2)^2,然后展开和化简这个方程,我们可以得到 a^2 + b^2 =c^2。
(6)根据这个推导过程,我们证明了直角边斜边定理,即直角三角形的两个直角边的平方和等于斜边的平方。
3. 直角边斜边定理的应用直角边斜边定理在几何学和实际生活中具有广泛的应用。
对于任何给定两条直角边的长度,我们可以利用直角边斜边定理来计算斜边的长度。
hl判定定理
HL判定定理是证明两个直角三角形全等的定理,通过证明两个直角三角形斜边和直角边对应相等来证明两个三角形全等。
具体表述为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为HL)是一种特殊判定方法。
其中,H是hypotenuse (斜边)的缩写,L是leg(直角边)的缩写。
需要注意的是,这个定理的前提是一定要是直角三角形。
另外,这个定理可以和SSS(三边全等定理)相互转化。
也就是说,如果两个三角形的三边分别对应相等,那么这两个三角形也一定全等。
hl全等的书写格式HL全等(HL congruence),是数学中一个重要的概念,通常用于证明等价的几何图形。
HL全等的概念是基于两个三角形之间的三个相等或相似条件。
在本文中,将介绍HL全等的定义、性质、证明方法以及一些例题。
1. HL全等的定义:在平面几何中,如果两个三角形的一个对应的边长相等,而另外一个对应的边长和夹角相等,则这两个三角形是HL全等的。
2. HL全等的性质:- HL全等是三角形全等的一个重要条件,说明两个三角形的对应的边长和夹角相等。
- 由HL全等可推出两个三角形的三个对应的边长和三个对应的夹角都相等,即两个三角形是全等的。
- HL全等是三角形全等中较常用的一个条件,尤其适用于右三角形的证明。
3. HL全等的证明方法:证明两个三角形全等通常是通过两个三角形的对应的边长和夹角的相等性来实现的。
以下是一种常用的HL全等证明方法:- 首先,通过给定条件找到两个对应的边长相等的边,并标记为AB和DE。
- 其次,找到两个对应角度相等的角,并标记为∠A、∠D。
- 然后,使用给定的条件或已知的性质,得到两个对应的边长相等的边,并使用∠A、∠D的等于性质得出两个对应的角度相等的角。
- 最后,根据两个三角形的两个对应的边长和一个对应的角度相等,得出两个三角形是HL全等的。
4. HL全等的例题:以下是一个使用HL全等证明的例题:已知:△ABC,△EDF是直角三角形,AB=DE,∠B=∠E。
证明:△ABC ≌△EDF。
解法:根据已知条件,我们可以得到AB=DE,∠B=∠E。
接下来,根据右三角形的性质,可以得到∠A=∠D。
因此,根据HL全等的定义和证明方法,我们可以得出△ABC ≌△EDF。
总结:HL全等是数学中用于证明等价的几何图形的一个重要概念。
它基于两个三角形的对应的边长相等和一个对应的角度相等的条件。
通过应用HL全等的定义和证明方法,可以推导出两个三角形是全等的。
HL全等特别适用于证明右三角形的全等关系。
hl全等的书写格式HL全等的书写格式是指几何题目中,对于两个或多个几何图形之间的关系进行描述时,使用的书写方式和规则。
在一般的几何课程中,HL全等是一种比较常见的几何证明方法,它适用于证明两个三角形完全重合的情况,以及不同的几何形状之间的等价性问题。
下面将介绍HL全等的书写格式。
1. HL全等的定义首先需要了解的是HL全等的定义。
HL全等是指,在两个三角形各自的角相同,连同对应的两个边分别相同的情况下,这两个三角形是完全重合的,也就是它们共位于同一平面内的相同位置。
如果已知两个三角形ABC、DEF,它们的两个边AB、AC与对应边DE、DF相等,并且角A与角D相同,角C与角F相同,则可以使用HL全等来证明这两个三角形完全重合。
2. HL全等的书写规则在使用HL全等证明两个三角形相等时,需遵守以下几个书写规则:需清晰地标出两个三角形的名称,如ABC、DEF。
需标出两个三角形的相同角,如角A、角D。
需标出两个三角形的相同边,如边AB、边DE。
需标出对于相同边的垂直或平行关系,如某个三角形的BC边垂直于DE边。
需标出其他需要使用的定理或定义,如等角三角形的边比例定理。
3. 小技巧在对于两个三角形之间使用HL全等进行证明时,除了需要满足以上几个书写规定之外,还可以注意以下小技巧:标记出两个三角形各自的同名角、同名边以及相应垂直线段,可使证明过程更为清晰明了。
将两个三角形的边、角、垂直线段等用数列形式表示,可使解题过程更加方便。
在书写过程中使用简单的语言表达,增加读者的易读性。
4. HL全等证明的示例以在平面直角坐标系内证明所示图形相等为例。
设三角形ABC与三角形DEF分别位于直角坐标系中的(1,2)、(4,5)和(4,2)、(7,5)四个点上,则有:∣BC∣=∣EF∣;∣AB∣=∣DE∣;角A≌角D;BC∥EF。
根据上述性质,可列出以下等式:∣AB∣2=∣DE∣2+(∣BC∣+3)2;∣BC∣2=∣EF∣2+(∣AB∣+3)2;根据前面所述的替代数列,可将上述等式化简为以下形式:a2=b2+(c+k)2;b2=d2+(a+k)2;其中,a=AB,b=BC,c=EF,d=DE,k=3。
hl证三角形全等的格式hl证三角形全等的格式在几何学中,全等三角形是指具有完全相同大小和形状的两个三角形。
在证明两个三角形全等时,我们可以使用不同的方法和格式。
其中一种常用的证明方法是使用hl证法,即横边-腿法。
这种证法简单明了,易于理解,因此在教学和解题中被广泛使用。
hl证法的格式如下:1. 我们假设两个三角形ABC和DEF是全等的。
我们需要证明AB = DE,BC = EF,∠B = ∠E。
2. 根据hl证法,我们知道如果两个三角形的一条边与另一个三角形的对应边相等,并且两个三角形的一条边与对应边的夹角相等,那么这两个三角形就是全等的。
3. 根据假设,我们已经知道AB = DE。
接下来,我们需要证明BC = EF和∠B = ∠E。
4. 通过观察三角形ABC和DEF的图形,我们可以发现它们的结构相似,并且BC和EF分别是这两个三角形的一个共同边。
这里可以引入类似三角形的概念。
5. 在类似三角形中,相似的两个三角形具有相似的角度。
我们可以得到∠B = ∠E。
6. 接下来,我们需要证明BC = EF。
由于我们已经知道AB = DE,我们可以通过BC = AB + AC和EF = DE + DF来得出这个结论。
我们可以通过将BC和EF分别表示为AB + AC和DE + DF来展开证明。
7. 通过展开BC和EF,我们可以得到BC = DE + AC + DF。
由于我们已经知道AB = DE,我们可以将AC + DF表示为AE。
我们可以得到BC = AB + AE = AB + DE = EF。
8. 我们可以得出结论:AB = DE,BC = EF,∠B = ∠E。
根据hl证法,我们可以证明三角形ABC和DEF是全等的。
在实际解题中,对于三角形全等的证明,我们可以根据问题自身的条件进行选择合适的证明方法。
对于某些问题而言,hl证法可能是最简便的证明方法之一。
除了求证全等三角形外,理解全等三角形的概念对于解决其他几何问题也很重要。
直角三角形hl证明步骤
两个直角三角形的一条直角边和斜边对应相等,这两个直角三角形是全等三角形。
在全等三角形证明中,直角三角形由于其特殊性,有专属于直角三角形的判定方法。
斜边、直角边定理,斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL”。
直角三角形性质
1、直角三角形两直角边的平方和等于斜边的平方。
∠BAC=90°,则AB²+AC²=BC²(勾股定理)。
2、在直角三角形中,两个锐角互余。
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
HL定理的证明过程一、引言HL定理是经典计算机科学中的一个重要定理,它解决了一个关于并行计算的基本问题。
本文将详细探讨HL定理的证明过程,旨在帮助读者深入理解这个定理的背后原理和推导过程。
二、HL定理的定义在开始证明HL定理之前,我们需要先来了解HL定理的准确定义。
HL定理(Hennie-Lin定理)指出:对于一个有限自动机,如果它可以模拟另一个有限自动机的行为,则它可以通过一个有限自动机模拟任意有限自动机的行为。
三、证明过程3.1 有限自动机的定义首先,我们需要明确什么是有限自动机。
一个有限自动机可以表示为一个五元组(Q, Σ, δ, q0, F),其中:•Q 是有限状态集合;•Σ 是有限输入字母表;•δ 是从状态集合Q × Σ 到 Q 的转换函数;•q0 是初始状态;• F 是接受状态集合。
3.2 有限自动机的模拟我们希望证明一个有限自动机A可以模拟另一个有限自动机B的行为。
换句话说,即使输入B的状态和输入集合不同,A仍然能够模拟B对于相同输入的响应。
为了说明这一点,我们可以使用输入串的归纳法。
假设输入串w的长度为n,我们需要证明A能够模拟B对于w的响应。
3.3 归纳基础对于长度为1的输入串,归纳基础是显而易见的。
如果A的初始状态和B的初始状态相同,并且A和B在相同的输入字母上产生相同的输出状态,则A可以模拟B对于长度为1的输入串的响应。
3.4 归纳假设在归纳步骤中,假设A能够模拟B对于长度小于等于k的输入串的响应。
3.5 归纳步骤我们需要证明A能够模拟B对于长度为k+1的输入串的响应。
首先,考虑输入串w的前k个字符,记为w1。
根据归纳假设,A能够模拟B对于w1的响应。
即,A能够达到与B的状态相同,并且产生相同的输出状态。
接下来,我们需要分析w的第k+1个字符,记为c。
根据有限自动机的定义,存在一个转换函数δ,它将A的当前状态和输入字符c映射到下一个状态。
根据B的定义,存在一个转换函数δ’,它将B的当前状态和输入字符c映射到下一个状态。
全等三角形hl的证明方法-概述说明以及解释1.引言1.1 概述本篇文章主要讨论全等三角形hl的证明方法。
在几何学中,全等三角形是具有相同边长和角度的三角形。
在证明全等三角形时,我们可以运用几何学中的一些基本定理和性质。
作为本篇文章的概述部分,我们将简要介绍全等三角形的重要性以及证明方法的目的。
全等三角形在几何学中具有重要的地位,它们能够帮助我们解决许多几何问题,例如计算未知边长或角度、证明图形的相似性等。
研究全等三角形的证明方法可以增进我们对三角形的认识,并提高解题能力和逻辑思维能力。
本文将主要讨论全等三角形的证明方法。
全等三角形的证明方法包括:SSS(边-边-边)准则、SAS(边-角-边)准则、ASA(角-边-角)准则、AAS(角-角-边)准则以及HL(斜边-直角边)准则等。
我们将详细讲解每一种准则的使用条件和证明步骤,以便读者能够灵活运用这些方法进行全等三角形的证明。
通过学习和掌握这些全等三角形的证明方法,读者将能够提高自己的几何证明能力,并能够更好地应用到解决实际问题中。
同时,本文也展望了全等三角形证明方法的未来发展,并指出了一些可能的研究方向。
接下来的章节将详细介绍三角形的定义和性质,全等三角形的定义,以及全等三角形的证明方法。
通过深入学习这些内容,读者将能够更好地理解和应用全等三角形的证明方法,为进一步探索几何学的奥妙打下坚实基础。
1.2文章结构1.2 文章结构在本文中,我们将按照以下结构来讨论全等三角形hl的证明方法。
首先,我们将在引言部分对全等三角形的概念进行简要说明,包括其定义和性质。
这将为后续的证明方法提供重要的基础。
接着,在正文部分的第2.1节,我们将详细介绍三角形的定义和性质。
我们将讨论三角形的基本构成要素,并探讨它们之间的关系。
这些知识将为我们理解全等三角形的概念和证明方法奠定基础。
紧接着,在正文部分的第2.2节,我们将给出全等三角形的定义。
我们将详细解释什么是全等三角形,以及它们在几何中的意义和应用。
5.6 几何证明举例证明:在Rt△ABC中,∠C=90°∴BC2=AB2-AC2(勾股定理).同理, B/C/2= A/B/2-A/C/ 2∵AB=A/B/,AC=A/C/∴BC=B/C/∴Rt△ABC≌Rt△A/B/C/(SSS)学生总结,得出命题。
体会文字、图形、符号的转换方法以及把命题的文字语言转换成几何图形和符号语言的重要性,发展学生推理能力和表达能力。
三、知识运用:例:如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离BD与CD相等吗?请说明你的理由。
(学生思考并完成)四、知识巩固1、判断:满足下列条件的两个三角形是否全等?为什么?(1)一个锐角及这个锐角的对边对应相等的两个直角三角形。
(2)一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形.(3)两直角边对应相等的两个直角三角形.2、如图,已知∠ACB=∠BDA=900, 要使△ABC≌△BAD, 还需要什么条件?CA BD五、小结同学们,通过本节课的学习,你都有哪些收获?通过互相讨论相互补充培养学生合作意识,体验成功的喜悦六、作业布置P188 9、10题2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,已知AB ∥DC ,则添加下列结论中的一个条件后,仍不能判定四边形ABCD 是平行四边形的是( )A .AO=COB .AC=BDC .AB=CD D .AD ∥BC2.小明参加100m 短跑训练,2019年2~5月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”.请你小明5年(60个月)后短跑的成绩为( ) (温馨提示:日前100m 短跑世界记录为9秒58) 月份2 3 4 5 成绩(秒)15.6 15.4 15.2 15 A .3s B .3.8s C .14.8s D .预测结果不可靠3.一元一次不等式组x a x b >⎧⎨>⎩的解集为x >a ,则a 与b 的关系为( ) A .a >bB .a <bC .a ≥bD .a ≤b 4.若分式x 2x 1-+的值为0,则x 的值为 A .﹣1 B .0 C .2 D .﹣1或25.函数2x -x 的取值范围为( )A .x≥0B .x≥﹣2C .x≥2D .x≤﹣26.一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为( )A .34B .12C .314D .277.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1211+x x 的值为( ) A .2B .-1C .-12D .-28.如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是().A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.2B.-2C.1 D.﹣110.下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x二、填空题11.如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE 的中点A′处.若原正方形的边长为12,则线段MN的长为_____.12.49的平方根为_______13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.14.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____.15.已知直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =532,CD =5,那么∠D 的度数是_____. 16.正方形111A B C O ,2221A B C C ,3332A B C C ,...按如图的方式放置,点1A ,2A ,3A ...和点1C ,2C ,3C ...分别在直线1y x =+和x 轴上,则点2019B 的坐标为_______.17.若23a b =,则2a b b +=________. 三、解答题18.如图所示,已知:Rt△ABC 中,∠ACB=90°.作∠BAC 的平分线AM 交BC 于点D ,在所作图形中,将Rt△ABC 沿某条直线折叠,使点A 与点D 重合,折痕EF 交AC 于点E ,交AB 于点F ,连接DE 、DF ,再展回到原图形,得到四边形AEDF.(1)试判断四边形AEDF 的形状,并证明;(2)若AB=10,BC=8,在折痕EF 上有一动点P ,求PC+PD 的最小值.19.(6分)已知一次函数y=2x 和y=-x+4.(1)在平面直角坐标中作出这两函数的函数图像(不需要列表);(2)直线l 垂直于x 轴,垂足为点P (3,0).若这两个函数图像与直线l 分别交于点A ,B .求AB 的长. 20.(6分)如图,ABC ∆中,90C ∠=︒.(1)用尺规作图法在BC 上找一点D ,使得点D 到边AC 、AB 的距离相等(保留作图痕迹,不用写作法);(2)在(1)的条件下,若1CD =,30B ∠=︒,求AB 的长.21.(6分)阅读材料:小华像这样解分式方程572x x =- 解:移项,得:5702x x -=- 通分,得:5(2)70(2)x x x x --=- 整理,得:2(5)0(2)x x x +=-分子值取0,得:x+5=0 即:x =﹣5经检验:x =﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是 ;(2)试用小华的方法解分式方程2216124x x x --=+-22.(8分)解方程:(1)1277x x x-=-- (2)2x 2﹣2x ﹣1=023.(8分)用无刻度的直尺绘图.(1)如图1,在ABCD 中,AC 为对角线,AC=BC ,AE 是△ABC 的中线.画出△ABC 的高CH (2)如图2,在直角梯形ABCD 中,90o D ∠=,AC 为对角线,AC=BC ,画出△ABC 的高CH . 24.(10分)如图,函数(0,0)k y x k x=>>的图象经过(1,4)A ,(,)B m n ,其中1m ,过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连结AD ,DC ,CB ,AC 与BD 相交于点E .(1)若ABD △的面积为4,求点B 的坐标;(2)四边形ABCD 能否成为平行四边形,若能,求点B 的坐标,若不能说明理由;(3)当AC BD =时,求证:四边形ABCD 是等腰梯形.25.(10分)(1)分解因式:a 3-2a 2b +ab 2;(2)解方程:x 2+12x +27=0参考答案一、选择题(每题只有一个答案正确)1.B【解析】根据平行四边形的判定定理依次判断即可.【详解】∵AB ∥CD ,∴∠ABD=∠BDC ,∠BAC=∠ACD ,∵AO=CO ,∴△ABO ≌△CDO ,∴AB=CD ,∴四边形ABCD 是平行四边形,故A 正确,且C 正确;∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,故D 正确;由AC=BD 无法证明四边形ABCD 是平行四边形,且平行四边形的对角线不一定相等,∴B 错误;故选:B.【点睛】此题考查了添加一个条件证明四边形是平行四边形,正确掌握平行四边形的判定定理并运用解题是关键. 2.D【解析】【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y 与x 之间是一次函数的关系,可设y=kx+b ,利用已知点的坐标,即可求解.【详解】解:(1)设y=kx+b 依题意得215.6315.4k b k b +=⎧⎨+=⎩, 解得0.216k b =-⎧⎨=⎩, ∴y= -0.2x+1.当x=60时,y= -0.2×60+1=2.因为目前100m 短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D .本题考查了一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.C【解析】【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.【详解】∵一元一次不等式组x ax b>⎧⎨>⎩的解集是x>a,∴根据不等式解集的确定方法:大大取大,∴a≥b,故选C.【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.4.C【解析】【分析】根据分式值为零的条件可得x﹣2=0,再解方程即可.【详解】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选C.5.C【解析】∵函数y∴x-2≥0,∴x≥2;故选C。