数学活动-轴对称共20页
- 格式:ppt
- 大小:2.22 MB
- 文档页数:20
参加第三届全国“教学中的互联网搜索”优秀教案评选活动青岛版小学五年级数学(上册)第二单元轴对称图形山东省高密市井沟镇呼家庄小学王化聚[教学内容]青岛版义务教育课程标准实验教科书数学五年级上册第17-20页。
[教学目标]1、通过生活中的实例进一步认识“轴对称”的现象,也进一步理解“轴对称图形”和“对称轴”的含义。
2、能识别较复杂的轴对称图形并能确定其对称轴;能画出图形的另一半并使它成为轴对称图形。
3、在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创作等数学活动过程,逐步发展学生的空间观念。
4、在活动中培养学生合作、探究、交流、反思的意识。
体会数学与现实生活的密切联系,进一步感受数学的美。
[教学过程]一、创设情境,导入新课1、师启发谈话:同学们,一提到2008年,你首先会想到什么?在奥运会上你最想看到什么?师述:当五星红旗缓缓升起的时候,每一个中国人都会感到无比的骄傲和自豪。
因为国旗就是一个国家的象征。
2、出示图片:信息窗1的部分图片和一些不属于轴对称特点的图片提问:你能把它们按图形的特点分成两类吗?(学生可以自己动脑分类、有困难的也可以在小组中交流)讨论:为什么这样分?(学生动脑思考,并回答)对于古巴的国旗是否是对称图形,意见可能不一致。
说明我们需要进一步去研究对称图形的特征。
3、揭示课题:今天我们就来共同进一步研究对称图形。
对称图形也分好几类,小学阶段只研究其中的一类——轴对称图形。
(板书课题)前面我们已确认的对称的旗帜图片,都可以看作是轴对称图形。
二、探究新知(一)动手操作,理解概念1、尝试用剪刀创作一个轴对称图形,动手前先想一想,用什么方法能使你剪得又快又能保证得到的肯定是一个轴对称图形。
(学生尝试动手剪,教师巡视。
)互相欣赏剪出的作品。
交流剪的方法。
(先将纸对折,然后再剪。
)为什么这样做?2、小组探究:先判断一组交通图标是否是轴对称图形,再结合自己前面的动手剪与交流的结论,小组合作研究轴对称图形有什么特征?小组汇报交流,帮助学生理解概念。
部编版小学数学四年级下册《图形的运动(二)-轴对称》环节五:轴对称性质的运用初步练习环节六:轴对称性质的运用环节七巩固拓展全课总结质吗?看来这两条性质在所有的轴对称图形中都存在,具有普遍性。
(师把刚才的?擦去)(4)轴对称性质的运用练习师:运用轴对称的性质,我们可以快速的找到已知点的对称点,你能找到下面各点的对称点吗?在图中标出来。
学生活动,反馈。
师:如果把我们找到的这些对称点顺次连接起来,会是一个什么图形?3.教学例2课件出示例2 主题图(1)你能画出这个对称图形的另一半吗?师:引导学生先想象,再出示活动要求:(1)先想象画完后图形的样子;(2)思考应该怎么画?先画什么?再画什么?(3)自己画在数学书上,注意作图整洁美观。
(4)画完后组内交流怎样画得又好又快。
学生小组交流后汇报。
(3)师课件演示画法,在演示的过程中设置两处错误,加深学生对轴对称性质的理解与应用。
师:小结先根据对称轴来确定一些关键点的位置;数出关键点到对称轴的距离;在对称轴的另一侧找出关键点的对应点;根据这个图形的形状,连接各对应点。
4.美图欣赏对称知识在我们生活中被广泛应用,图形是对称的(课件出示)古今中外,许多建筑就是对称的课件出示【巩固拓展】1、把对称图形的另一半补充完整。
(书83页做一做)2、下面的图形是从哪张纸上剪下来的,连一连。
(练习二十第5题)3、下面是运用轴对称的性质画的图形,画得对吗?(学生判断后让学生调整,启发学生能用两种方法调整。
)4.动手实践,深化体验。
引导学生结合对称图形的特点,在方格子上创造一个轴对称图形。
(先动手设计,再展示自己的作品,说一说如何设计的。
)师:通过今天的学习,你有哪些收获?个)对发现的规律进行验证。
至少有80%的学生能运用轴对称的性质来找已知点的对称点。
在上一个练习探究的基础上,学生基本能够独立有序观察,并大胆在组内交流,能正确补全图形,初步说出补全图形的方法。
至少85%的学生能正确完成练习目标检测作业1、画出下面图形的对称轴。
初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。
初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。
问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。
二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。