1_ANSYS概述与静力分析
- 格式:ppt
- 大小:5.92 MB
- 文档页数:198
ANSYS静力学显式动力学1. 引言ANSYS是一款多功能的工程仿真软件,广泛应用于不同行业的产品设计、分析和优化中。
其中,静力学和显式动力学是ANSYS的两个重要模块,本文将对这两个模块进行全面、详细、完整且深入的探讨。
2. 静力学2.1 概述静力学是研究物体在静止状态下受力平衡的学科。
通过静力学分析,可以确定物体的受力情况、结构的稳定性以及构件的强度等信息。
2.2 ANSYS中的静力学分析ANSYS中的静力学分析模块可以通过建立几何模型、定义材料和边界条件来进行分析。
在分析过程中,可以考虑不同的加载情况,如静力加载和重力加载。
2.3 静力学分析的步骤静力学分析通常包括以下步骤: 1. 建立或导入模型:使用ANSYS的建模工具创建几何模型或导入现有模型。
2. 定义材料和属性:为模型定义材料特性和材料属性。
3. 定义边界条件:为模型的边界定义约束和加载条件。
4. 网格划分:将模型划分为离散的网格单元。
5. 求解分析:通过求解静力学方程,得到模型的受力状态。
6. 后处理:分析结果的可视化和数据输出。
3. 显式动力学3.1 概述显式动力学是一种研究物体在动力加载作用下的运动和响应的学科。
与静力学不同,显式动力学考虑了时间因素,可以模拟和预测物体在瞬态加载情况下的动态响应。
3.2 ANSYS中的显式动力学分析ANSYS中的显式动力学分析模块可以模拟各种动力加载条件下的物体运动和响应。
该模块可以用于模拟撞击、爆炸、碰撞、结构破坏等情况,并可以为工程师提供重要的设计参考信息。
3.3 显式动力学分析的步骤显式动力学分析通常包括以下步骤: 1. 建立或导入模型:与静力学分析相同,需要建立或导入模型。
2. 定义材料和属性:为模型定义材料特性和材料属性,以便模拟加载情况下的材料响应。
3. 定义边界条件:为模型的边界定义约束和加载条件,包括初始速度和力。
4. 网格划分:将模型划分为离散的网格单元。
5. 求解分析:通过求解显式动力学方程,得到模型在不同时间步长下的运动和响应。
ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE 工具之一。
CAE的技术种类CAE的技术种类有很多,其中包括有限元法(FEM,即Finite Element Method),边界元法(BEM,即Boundary Element Method),有限差法(FDM,即Finite Difference Element Method)等。
每一种方法各有其应用的领域,而其中有限元法应用的领域越来越广,现已应用于结构力学、结构动力学、热力学、流体力学、电路学、电磁学等。
ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。
前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。
软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。
该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。
ANSYS静力分析的简单步骤第一步,启动工作台软件,然后选择与启动DS模块弹出得界面。
第二步,导入三维模型。
根据操作步骤进行。
首先,单击“几何体”,选择“文件”,然后选择弹出窗口中的3D模型文件,如果当时catia文件格式不符,可以把三维图先转换为“.stp”的格式,即可导入。
第三步,选择零件材料:文件导入软件后,在这个时候,依次选择“几何”下的“零件”,并且在左下角的“Details of ‘Part’”中以调整零件材料属性,本次钟形壳的材料是刚。
第四步,划分网格:选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可在这一点上,你可以在左下角的“网格”对话框的细节调整网格的大小(体积元)。
第五步,添加类型分析:第一选择顶部工具栏上的“分析”按钮,添加需要的类型分析,因为我们需要做的是在这种情况下的静态分析。
所以选择结构静力。
第六步,添加固定约束:首先选择“Project”树中的“Static Structural”按钮,右键点击支持插入固定树。
这时候在左下角的“Details of ‘Fixed Support’”对话框中“Geometry”会被选中,会要求输入固定的支撑面。
在这种情况下,固定支架的类型是表面支持,确定六凹面(此时也可点击“Edge”来确定“边”)。
然后一直的按住“CTRL”键,连续选择其它几个弧面为支撑面,在点击“Apply”进行确认,第七步,添加载荷:选择“Project”树中的“结构静力”,右键选择“Insert”中的“Force”,然后在选择载荷的作用面,再次点击“Apply”按钮进行确定。
第八步,添加变形:右键点击选择“Project”树中的“Solution”,随后依次选择插入,变形,Total”,添加变形。
第九步,添加等效应变:右键单击“项目”的树,“>插入应变->解决方案->添加等效,等效应变。
第十步,添加等效应力:首先右键点击“Project”树中的“Solution—>Insert—> Stress—>Equivalent”,添加等效应力。
Ansys 静力分析一、实验目的通过实例建模,了解和学习ansys在工程中的模拟应用和建模二、实验内容主要参数:E=30GPa §=0.26 F=(8-Y)*170220 N三、实验步骤1、单元属性设置(1)单元类型选择。
由实验内容知所分析的对象是平面应力应变问题,可选择solid,8节点类型。
运行ansys软件,进入前处理界面单击Preprocessor –Element Type-双击Add/Edit/Delete-Add选择Solid-8node 82,然后单击ok按钮-close,图如下:(2)材料属性。
定义恒定的各向同性材料属性,选择Preprocessor-Material Props-Material Models-Structural-Linear-Elastic-Isotropic,设定EX值为30e9,PRXY 值为0.26,图如下:然后单击ok-Material-Exit2.、创建模型选择Preferences-Modeling-Create-Keypoints-In Active CS,创建8个点的坐标分别是1(0,0),2(5,0),3(5,3),4(3,11),5(1,11),6(1,8),7(1,3),8(0,3);依次连接各点创建面Preferences-Modeling-Create-Areas-Arbitrary-Through KPs,结果图如下:3、网格划分本例采用自由网格划分:Preprocessor-Meshing-Mesh-Areas-Free,效果图如上图:4、施加载荷(1)自由度约束。
约束模型底边以及与底边相邻两边的全部自由度;Preprocessor-Loads-Define Loads –Apply-Structural-Displacement-On Lines (2)加载力。
在点6,7的线上加载变力;Preprocessor-Loads-Define Loads–Apply-Functions-Define/Edit在等号后输入8*170220-170220*{Y},保存到指定文件夹并读取。
第1章 静力分析1.1 力的概念力在我们的生产和生活中随处可见,例如物体的重力、摩擦力、水的压力等,人们对力的认识从感性认识到理性认识形成力的抽象概念。
力是物体间的机械作用,这种作用可以使物体的机械运动状态或者使物体的形状和大小发生改变。
从力的定义中可以看出力是在物体间相互作用中产生的,这种作用至少是两个物体,如果没有了这种作用,力也就不存在,所以力具有物质性。
物体间相互作用的形式很多,大体分两类,一类是直接接触,例如物体间的拉力和压力;另一类是“场”的作用,例如地球引力场中重力,太阳引力场中万有引力等。
同时力有两种效应:一是力的运动效应,即力使物体的机械运动状态变化,例如静止在地面物体当用力推它时,便开始运动;二是力的变形效应,即力使物体大小和形状发生变化,例如钢筋受到横向力过大时将产生弯曲,粉笔受力过大时将变碎等。
描述力对物体的作用效应由力的三要素来决定,即力的大小、力的方向和力的作用点。
力的大小表示物体间机械作用的强弱程度,采用国际单位制,力的单位是牛顿(N )(简称牛)或者千牛顿(kN )(简称千牛),1kN =103N 。
力的方向是表示物体间的机械作用具有方向性,它包括方位和指向。
力的作用点表示物体间机械作用的位置。
一般说来,力的作用位置不是一个几何点而是有一定大小的一个范围,例如重力是分布在物体的整个体积上的,称体积分布力,水对池壁的压力是分布在池壁表面上的,称面分布力,同理若分布在一条直线上的力,称线分布力,当力的作用范围很小时,可以将它抽象为一个点,此点便是力的作用点,此力称为集中力。
由力的三要素知,力是矢量,记作F ,本教材中的黑体均表示矢量,可以用一有向线段表示,如图1-1所示,有向线段AB 的大小表示力的大小;有向线段AB 的指向表示力的方向;有向线段的起点或终点表示力的作用点。
1.2 静力学基本原理所谓静力学基本原理是指人们在生产和生活实践中长期积累和总结出来并通过实践反复验证的具有一般规律的定理和定律。
有限元分析软件ANSYS简介1、ANSYS程序自身有着较为强大三维建模能力,仅靠ANSYS的GUI(图形界面)就可建立各种复杂的几何模型;此外,ANSYS还提供较为灵活的图形接口及数据接口。
因而,利用这些功能,可以实现不同分析软件之间的模型转换。
“上海二十一世纪中心大厦”整体分析曾经由日本某公司采用美国ETABS软件计算,利用他们已经建好的模型,读入ANSYS并运行之,可得到计算结果,从而节省较多的工作量。
2、ANSYS功能(1)结构分析静力分析 - 用于静态载荷. 可以考虑结构的线性及非线性行为,例如: 大变形、大应变、应力刚化、接触、塑性、超弹及蠕变等.模态分析 - 计算线性结构的自振频率及振形. 谱分析是模态分析的扩展,用于计算由于随机振动引起的结构应力和应变 (也叫作响应谱或 PSD).谐响应分析 - 确定线性结构对随时间按正弦曲线变化的载荷的响应.瞬态动力学分析 - 确定结构对随时间任意变化的载荷的响应. 可以考虑与静力分析相同的结构非线性行为.特征屈曲分析 - 用于计算线性屈曲载荷并确定屈曲模态形状. (结合瞬态动力学分析可以实现非线性屈曲分析.)专项分析: 断裂分析, 复合材料分析,疲劳分析用于模拟非常大的变形,惯性力占支配地位,并考虑所有的非线性行为.它的显式方程求解冲击、碰撞、快速成型等问题,是目前求解这类问题最有效的方法. (2)ANSYS热分析热分析之后往往进行结构分析,计算由于热膨胀或收缩不均匀引起的应力. ANSYS功能:相变 (熔化及凝固), 内热源 (例如电阻发热等)三种热传递方式 (热传导、热对流、热辐射)(3)ANSYS电磁分析磁场分析中考虑的物理量是磁通量密度、磁场密度、磁力、磁力矩、阻抗、电感、涡流、能耗及磁通量泄漏等.静磁场分析 - 计算直流电(DC)或永磁体产生的磁场.交变磁场分析 - 计算由于交流电(AC)产生的磁场.瞬态磁场分析- 计算随时间随机变化的电流或外界引起的磁场电场分析用于计算电阻或电容系统的电场. 典型的物理量有电流密度、电荷密度、电场及电阻热等。