高一数学等差数列的前n项和3
- 格式:ppt
- 大小:392.50 KB
- 文档页数:12
2012年高一数学春季班专题讲座 第4讲 等差数列及前N 项和(1)【知识点归纳】1、⑴数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式.⑵求通项公式的方法:①观察法;②公式法:任意数列}{n a 满足{11,(1),(2)n n n S n a S S n -==-≥;③作商法:12()n a a a f n = ,则(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩;④累加法:1()n na a f n +-=; ⑤累乘法:1()n na f n a +=. 2、等差数列的有关概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥. (2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-. (3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+. (4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=. 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素.只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 3、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列. (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k=+.(6)若等差数列{}n a 的前n 项和为n S ,则2121n n S a n -=-.(7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和.法一:由不等式组⎪⎪⎭⎫⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈.上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.【典型例题】例1____________.例2 已知ΔABC 的三个内角A 、B .C 成等差数列,其外接圆半径为1,且有22)cos(22sin sin =-+-C A C A .(1)求A 、B .C 的大小; (2)求ΔABC 的的面积.例3 ⑴已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__________;⑵数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为_____________;⑶一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D 例4 ⑴已知{}n a 的前n 项和满足2log (1)1n S n +=+,则n a =__________________;⑵数列{}n a 满足12211125222n na a a n +++=+ ,则n a =__________________;⑶数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______________;⑷已知数列{}n a 满足11a =,nn a a n n ++=--111(2)n ≥,则n a =_______________;⑸已知数列{}n a 满足11a =,11n n n a a n-+=(2)n ≥,则n a =__________________.例5 ⑴首项为-24的等差数列,前n 项和中9S 最小,则公差的取值范围是___________________;⑵等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =________________;⑶等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 ;⑷在等差数列中,11S =22,则6a =______;⑸设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n , 那么=nnb a ___________ .例6 ⑴等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.⑵在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则( )A 、1210,S S S 都小于0,1112,S S 都大于0B 、1219,S S S 都小于0,2021,S S 都大于0C 、125,S S S 都小于0,67,S S 都大于0D 、1220,S S S 都小于0,2122,S S 都大于0⑶若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是 .例7 项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数.例8 已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T .。
等差数列前n项和教学设计三维目标一、知识与技能掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.二、过程与方法通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.三、情感态度与价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感.重难点教学重点:等差数列的前n项和公式的理解、推导及应用.教学难点:灵活应用等差数列前n项和公式解决一些简单的有关问题.教具准备:多媒体课件、投影仪、投影胶片等教学过程:教学环节教学内容师生活动设计意图创设情境引入课题(1)引入一个历史上比较有名的求和例子:1+2+3+…+100的高斯的算法。
教师讲述高斯的故事。
学生思考:这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?引发学生对等差数列求和问题的兴趣;使学生发现等差数列任意的第k项与倒数第k项的和等于首项与末项的和这个规律。
也为接下来求前n个正整数1+2+3+…+n的和、求一般等差数列前n项和做好铺垫。
引导探究得出新知(2)将求和问题一般化:求1到n的正整数之和,即求1+2+3+…+n的问题。
该问题在前面思路的引导下可由学生轻松解决。
高斯的算法与一般等差数列求和还有一定距离,设置该问题,目的是引出求等差数列前n项和的一般方法“倒序相加法”,这样,很自然地就过渡到一般等差数列求和问题。
《等差数列前n项和》学情分析1、知识基础本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍.2、认知水平与能力高一学生已初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题。
高一数学复习考点知识讲解课件第2课时等差数列前n项和的性质及应用考点知识1.构造等差数列求和模型,解决实际问题.2.能够利用等差数列前n项和的函数性质求其前n项和的最值.3.理解并应用等差数列前n项和的性质.一、等差数列前n项和的实际应用问题1请同学们围绕身边的相关生活背景,发挥智慧,命制一个等差数列求和的应用题.提示我们学校会议室里的一排排座位;超市里摆放的水果;工地上的一堆钢管等.例1某单位用分期付款的方式为职工购买40套住房,共需1150万元,购买当天先付150万元,按约定以后每月的这一天都交付50万元,并加付所有欠款利息,月利率为1%,若交付150万元后的一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少钱?全部付清后,买这40套住房实际花了多少钱?解因购房时付150万元,则欠款1 000万元,依题意知分20次付款,则每次付款的数额依次构成数列{a n},则a1=50+1 000×1%=60,a2=50+(1 000-50)×1%=59.5,a3=50+(1 000-50×2)×1%=59,a4=50+(1 000-50×3)×1%=58.5,所以a n=50+[1 000-50(n-1)]×1%=60-12(n -1)(1≤n ≤20,n ∈N *).所以{a n }是以60为首项,-12为公差的等差数列.所以a 10=60-9×12=55.5,a 20=60-19×12=50.5.所以S 20=12×(a 1+a 20)×20=10×(60+50.5)=1 105.所以实际共付1 105+150=1 255(万元).反思感悟(1)本题属于与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体现.跟踪训练1《张邱建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布(不作近似计算).答案1629解析由题意知,该女每天的织布尺数构成等差数列{a n },其中a 1=5,S 30=390,设其公差为d ,则S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.二、等差数列中前n 项和的最值问题问题2根据上节课所学,等差数列前n 项和公式有什么样的函数特点?提示由S n =na 1+n (n -1)2d ,可知S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,当d ≠0时,S n 是常数项为0的二次函数.该函数的定义域是n ∈N *,公差的符号决定了该二次函数的开口方向,通项简记为S n =An 2+Bn .知识梳理等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组⎩⎨⎧ a n ≥0,a n +1≤0确定; 当a 1<0,d >0时,S n 有最小值,使S n 取得最值的n 可由不等式组⎩⎨⎧a n ≤0,a n +1≥0确定. (2)S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.注意点:(1)当a 1>0,d >0时S n 有最小值S 1,当a 1<0,d <0时S n 有最大值S 1;(2)S n 取得最大或最小值时的n 不一定唯一.例2在等差数列{a n }中,a 1=25,S 8=S 18,求前n 项和S n 的最大值.解方法一因为S 8=S 18,a 1=25,所以8×25+8×(8-1)2d =18×25+18×(18-1)2d , 解得d =-2.所以S n =25n +n (n -1)2×(-2)=-n 2+26n =-(n -13)2+169.所以当n =13时,S n 有最大值为169.方法二同方法一,求出公差d =-2.所以a n =25+(n -1)×(-2)=-2n +27.因为a 1=25>0,由⎩⎪⎨⎪⎧ a n =-2n +27≥0,a n +1=-2(n +1)+27≤0得⎩⎪⎨⎪⎧ n ≤1312,n ≥1212.又因为n ∈N *,所以当n =13时,S n 有最大值为169.方法三因为S 8=S 18,所以a 9+a 10+…+a 18=0.由等差数列的性质得a 13+a 14=0.因为a 1>0,所以d <0.所以a 13>0,a 14<0.所以当n =13时,S n 有最大值.由a 13+a 14=0,得a 1+12d +a 1+13d =0,解得d =-2,所以S 13=13×25+13×122×(-2)=169,所以S n 的最大值为169.方法四设S n =An 2+Bn .因为S 8=S 18,a 1=25,所以二次函数图象的对称轴为x =8+182=13,且开口方向向下,所以当n =13时,S n 取得最大值.由题意得⎩⎪⎨⎪⎧82A +8B =182A +18B ,A +B =25, 解得⎩⎪⎨⎪⎧A =-1,B =26,所以S n =-n 2+26n ,所以S 13=169,即S n 的最大值为169.反思感悟(1)等差数列前n 项和S n 最大(小)值的情形①若a 1>0,d <0,则S n 存在最大值,即所有非负项之和; ②若a 1<0,d >0,则S n 存在最小值,即所有非正项之和.(2)求等差数列前n 项和S n 最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用 ⎩⎨⎧ a n ≥0,a n +1≤0或⎩⎨⎧a n ≤0,a n +1≥0来寻找; ②运用二次函数求最值.跟踪训练2在等差数列{a n }中,a 10=18,前5项的和S 5=-15.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取最小值. 解(1)设等差数列的公差为d ,因为在等差数列{a n }中,a 10=18,S 5=-15, 所以⎩⎨⎧ a 1+9d =18,5a 1+52×4×d =-15,解得⎩⎪⎨⎪⎧a 1=-9,d =3,所以a n =3n -12,n ∈N *. (2)因为a 1=-9,d =3,a n =3n -12,所以S n =n (a 1+a n )2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478, 所以当n =3或4时,前n 项和S n 取得最小值为S 3=S 4=-18.三、等差数列中的片段和问题问题3等差数列{}a n 的前n 项和S n ,你能发现S n 与S 2n 的关系吗? 提示S 2n =a 1+a 2+…+a n +a n +1+…+a 2n =S n +(a 1+nd )+(a 2+nd )+…+(a n +nd )=2S n +n 2d ,同样我们发现S 3n =3S n +3n 2d ,这里出现了一个有意思的数列S n ,S 2n -S n =S n +n 2d ,S 3n -S 2n =S n +2n 2d ,…,是一个公差为n 2d 的等差数列. 知识梳理1.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .2.若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d 2. 3.在等差数列中,若S n =m ,S m =n ,则S m +n =-(m +n ). 例3已知S n 是等差数列{a n }的前n 项和,且S 10=100,S 100=10,求S 110. 解方法一设等差数列{a n }的首项为a 1,公差为d ,∵S 10=100,S 100=10,∴⎩⎨⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎪⎨⎪⎧ a 1=1099100,d =-1150.∴S 110=110a 1+110(110-1)2d =110×1099100+110×1092×⎝ ⎛⎭⎪⎫-1150=-110. 方法二∵S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100,…成等差数列,设公差为d ,∴该数列的前10项和为10×100+10×92d =S 100=10,解得d =-22,∴前11项和S 110=11×100+11×102×(-22)=-110.方法三由⎩⎨⎧⎭⎬⎫S n n 也是等差数列,构造新的等差数列b 1=S 1010=10,b 10=S 100100=110, 则d =19(b 10-b 1)=19⎝ ⎛⎭⎪⎫-9910=-1110, 所以b 11=S 110110=b 10+d =110+⎝ ⎛⎭⎪⎫-1110=-1, 所以S 110=-110.方法四直接利用性质S n =m ,S m =n ,S m +n =-(m +n ),可知S 110=-110. 反思感悟利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出a 1,d ,再求所求,是基本解法,有时运算量大些.(2) 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法.跟踪训练3等差数列{a n}的前m项和为30,前2m项和为100,求数列{a n}的前3m项的和S3m.解方法一在等差数列中,∵S m,S2m-S m,S3m-S2m成等差数列,∴30,70,S3m-100成等差数列.∴2×70=30+(S3m-100),∴S3m=210.方法二在等差数列中,S mm,S2m2m,S3m3m成等差数列,∴2S2m2m=S mm+S3m3m.即S3m=3(S2m-S m)=3×(100-30)=210.1.知识清单:(1)等差数列前n项和的实际应用.(2)等差数列前n项和的最值问题.(3)等差数列中的片段和问题.2.方法归纳:公式法、构造法、函数法、整体代换法.3.常见误区:等差数列前n项和性质应用的前提是等差数列.1.已知数列{a n }满足a n =26-2n ,则使其前n 项和S n 取最大值的n 的值为()A .11或12B .12C .13D .12或13答案D解析∵a n =26-2n ,∴a n -a n -1=-2(n ≥2,n ∈N *), ∴数列{a n }为等差数列.又a 1=24,d =-2,∴S n =24n +n (n -1)2×(-2)=-n 2+25n=-⎝ ⎛⎭⎪⎫n -2522+6254. ∵n ∈N *,∴当n =12或13时,S n 最大.2.等差数列{}a n 中,S 3=3,S 6=9,则S 12等于()A .12B .18C .24D .30答案D解析根据题意,得在等差数列{}a n 中,S 3,S 6-S 3,S 9-S 6,S 12-S 9,…也成等差数列,又由S 3=3,S 6=9,得S 6-S 3=6,则S 9-S 6=9,S 12-S 9=12,则S 12=S 3+(S 6-S 3)+(S 9-S 6)+(S 12-S 9)=3+6+9+12=30.3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为()A.825两B.845两C.865两D.885两答案C解析设10个兄弟由大到小依次分得a n ()n =1,2,…,10两银子,由题意可得 设数列{}a n 的公差为d ,其前n 项和为S n ,则由题意得⎩⎪⎨⎪⎧ a 8=6,S 10=100,即⎩⎨⎧ a 1+7d =6,10a 1+10×92d =100,解得⎩⎪⎨⎪⎧ a 1=865,d =-85.所以长兄分得865两银子.4.已知S n 是等差数列{}a n 的前n 项和,若a 1=-2,S 20222022-S 20202020=2,则S 20212021=________.答案2018解析∵S n 是等差数列{}a n 的前n 项和,∴⎩⎨⎧⎭⎬⎫S n n 是等差数列,设其公差为d .∵S 20222022-S 20202020=2,∴2d =2,d =1.∵a 1=-2,∴S 11=-2.∴S n n =-2+(n -1)×1=n -3.∴S 20212021=2018.课时对点练1.在等差数列{a n }中,a 1=1,其前n 项和为S n ,若S 88-S 66=2,则S 10等于() A .10B .100C .110D .120答案B解析∵{a n }是等差数列,a 1=1,∴⎩⎨⎧⎭⎬⎫S n n 也是等差数列且首项为S 11=1. 又S 88-S 66=2,∴⎩⎨⎧⎭⎬⎫S n n 的公差是1, ∴S 1010=1+(10-1)×1=10,∴S10=100.2.若等差数列{a n}的前m项的和S m为20,前3m项的和S3m为90,则它的前2m项的和S2m为()A.30B.70C.50D.60答案C解析∵等差数列{a n}中,S m,S2m-S m,S3m-S2m也成等差数列,∴2(S2m-S m)=S m+S3m-S2m,∴2(S2m-20)=20+90-S2m,∴S2m=50.3.已知数列{2n-19},那么这个数列的前n项和S n()A.有最大值且是整数B.有最小值且是整数C.有最大值且是分数D.无最大值和最小值答案B解析易知数列{2n-19}的通项公式为a n=2n-19,∴a1=-17,d=2.∴该数列是递增的等差数列.令a n=0,得n=192.∴a1<a2<a3<…<a9<0<a10<….∴该数列前n 项和有最小值,为S 9=9a 1+9×82d =-81.4.已知在等差数列{}a n 中,前n 项和为S n ,a 1>0,a 1010+a 1011=0,则当S n 取最大值时,n 等于()A .1010B .1011C .2020D .2021答案A解析在等差数列{}a n 中,a 1>0,a 1010+a 1011=0,故公差d <0,所以a 1010>0,a 1011<0,所以当S n 取最大值时,n =1010.5.“垛积术”是我国古代数学的重要成就之一,宋元时期数学家朱世杰在《四元玉鉴》中记载了“三角形垛”,其中的“落一形”堆垛就是每层为“三角形数”的三角锥的堆垛(俯视如图所示,顶上一层1个球,下一层3个球,再下一层6个球,…).若一“落一形”三角锥垛有6层,则该堆垛第6层的小球个数为()A .45B .36C .28D .21答案D解析由题意分析可得a 1=1,a 2=1+2=3,a 3=1+2+3=6,…,则“三角形数”的通项公式a n =n ()n +12,a 6=6×()6+12=21. 6.(多选)设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6=S 7>S 8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案ABD解析∵S5<S6=S7>S8,∴a6>0,a7=0,a8<0.∴d<0.∴S6与S7均为S n的最大值.S9-S5=a6+a7+a8+a9=2(a7+a8)<0.∴S9<S5,故C错.7.已知等差数列前n项和为S n,其中S5=8,S8=5,则S13=________.答案-13解析由性质S n=m,S m=n,S m+n=-(m+n)可知,S13=-13.8.已知在等差数列{a n}中,S n为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.答案5解析∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S 9-S 6=5.9.某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?解从第一辆车投入工作算起各车工作时间(单位:小时)依次设为a 1,a 2,…,a 25.由题意可知,此数列为等差数列,且a 1=24,公差d =-13.25辆翻斗车完成的工作量为a 1+a 2+…+a 25=25×24+25×12×⎝ ⎛⎭⎪⎫-13=500,而需要完成的工作量为24×20=480. ∵500>480,∴在24小时内能构筑成第二道防线.10.已知在等差数列{a n }中,a 1=9,a 4+a 7=0.(1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值?解(1)由a 1=9,a 4+a 7=0,得a 1+3d +a 1+6d =0,解得d =-2,∴a n =a 1+(n -1)·d =11-2n .(2)方法一a 1=9,d =-2,S n =9n +n (n -1)2·(-2)=-n 2+10n =-(n -5)2+25, ∴当n =5时,S n 取得最大值. 方法二由(1)知a 1=9,d =-2<0,∴{a n }是递减数列.令a n ≥0,则11-2n ≥0,解得n ≤112.∵n ∈N *,∴当n ≤5时,a n >0;当n ≥6时,a n <0.∴当n =5时,S n 取得最大值.11.已知等差数列{}a n 的前n 项和为S n ,若S 3S 6=14,则S 6S 12等于() A.18B.726C.14D.12答案C解析由等差数列的性质知S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,设S 3=k ,S 6=4k ()k ≠0,则S 9=3S 6-3S 3=9k ,S 12=3S 9-3S 6+S 3=16k ,所以S 6S 12=14. 12.已知等差数列{a n }的前n 项和为S n ,a 2=11,S 1515-S 77=-8,则S n 取最大值时的n为()A .6B .7C .8D .9答案B解析设数列{a n }是公差为d 的等差数列,则⎩⎨⎧⎭⎬⎫S n n 是公差为d 2的等差数列. 因为S 1515-S 77=-8,故可得8×d 2=-8,解得d =-2;则a 1=a 2-d =13,则S n =-n 2+14n =-(n -7)2+49,故当n =7时,S n 取得最大值.13.等差数列{}a n 的前n 项和为S n ,且a 1>0,S 4=S 9,当S n 最大时,n 等于()A .6B .7C .6或7D .13答案C解析因为S 4=S 9,所以4a 1+4×32d =9a 1+9×82d ,化简得a 1+6d =0,所以a 1=-6d ,因为a 1>0,所以d <0,所以S n =na 1+n (n -1)2d =-6dn +n (n -1)2d =d 2n 2-132dn ,它的图象是开口向下的抛物线,其对称轴为n =132,因为n ∈N *,所以当n =6或n =7时,S n 取得最大值.14.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为________.答案10解析由题意知钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.∴当n =19时,剩余钢管根数最少,为10根.15.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层()A .7B .8C .9D .10答案C解析设电梯所停的楼层是n (2≤n ≤12),则S =1+2+…+(n -2)+2[1+2+…+(12-n )]=(n -2)(n -1)2+2×(12-n )(13-n )2=32⎝ ⎛⎭⎪⎫n 2-533n +157=32⎝ ⎛⎭⎪⎫n -5362-53224+157, 开口向上,对称轴为n =536≈9,故S 在n =9时取最小值S min =3×92-53×9+3142=40. 16.已知{a n }为等差数列,S n 为数列{a n }的前n 项和,且S 7=7,S 15=75,求数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和T n .解设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d .21 / 21 ∵S 7=7,S 15=75, ∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧ a 1=-2,d =1,∴S n n =a 1+n -12d =-2+n -12, ∴S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,且其首项为-2,公差为12. ∴T n =14n 2-94n .。
等差数列的前N项和公式等差数列是指数列中任意两个相邻项之差保持不变的数列。
前N项和指的是数列前N项之和。
首先,我们来推导等差数列的通项公式。
设等差数列的第一项为a1,公差为d,第n项为an。
根据等差数列的定义可知,第2项为a2 = a1 + d,第3项为a3 = a1 + 2d,以此类推,第n项为an = a1 + (n-1)d。
我们可以把等差数列展开,得到:a1,a1+d,a1+2d,a1+3d,...,a1+(n-2)d,a1+(n-1)d将这些项相加,得到:S=(a1+a1+d+a1+2d+a1+3d+...+a1+(n-2)d+a1+(n-1)d)我们可以将等差数列中的每一项按照公差d进行分组,得到:S=(a1+a1+(n-1)d)+(a1+d+a1+(n-2)d)+(a1+2d+a1+(n-3)d)+...+(a1+(n-2)d+a1+d)+(a1+(n-1)d+a1)根据等差数列的恒等差性质,每一组中的两项之和都等于2a1+(n-1)d。
因此,上式可以进一步化简为:S=n(2a1+(n-1)d)这就是等差数列的前N项和公式,也被称为等差数列求和公式。
为了更好地理解该公式,我们可以举一个具体的例子。
假设有一个等差数列:2,5,8,11,14,求前四项的和。
首先,确定已知量:a1=2(第一项)d=5-2=3(公差)n=4(前四项)代入前N项和公式,可得:S=4(2+(4-1)3)=4(2+3*3)=4(2+9)=4*11=44因此,2,5,8,11的和为44除了使用前N项和公式,我们还可以利用等差数列的性质进行计算。
等差数列可以通过两种方法计算前N项的和:方法一:逐项相加。
通过将每一项相加,可以得到等差数列的前N项和。
在大多数情况下,这种方法适用于较小的N。
方法二:首项加末项乘N除以2、由于等差数列的第一项和最后一项之和等于N,将这两项相加,并乘以N除以2,即可得到前N项和。
这个方法适用于所有的等差数列。
《等差数列前n项和》教案设计一、教案背景1、面向学生:高一年级学生2、学科:数学3、课时:第一课时(共两课时)4、学生课前准备:预习《等差数列前n项和》的内容5、教师课前准备:包括资源的收集、课件的制作、活动的准备等,二、教学课题北师大版必修5第二章第二节《等差数列前n项和》,本节内容共需两个课时,本教案为第1课时教案。
三、教材分析数列是刻画离散现象的函数,是一种重要的数学模型。
人们往往通过离散现象认识连续现象,因此就有必要研究数列。
高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列前n项和公式的推导及其简单应用。
在推导等差数列前n项和公式的过程中,采用了:1.从特殊到一般的研究方法;2.等差数列的基本元表示;3.倒序相加求和。
不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。
四、教学方法教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。
探索与发现公式推导的思路是教学的重点。
如果直接介绍“倒序相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。
所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
应用公式也是教学的重点。
为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。
五、设计思想在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的。
高一数学等差数列前n 项和教案[学习目标] (一)知识目标等差数列前n 项和公式:S n = 及S n =na 1 + d(二)能力目标(1)感知等差数列前n 项和公式及其获取方法(2)会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题 (三)德育目标(1)增强学生的数学应用意识 (2)激发学生的数学学习兴趣 [学习重点]等差数列前n 项和公式的推导、理解及应用 [学习难点]应用等差数列前n 项和公式解决一些相关问题 [学习过程](一)感受生活 启动教学目标 从一幅图片及创设的下列生活情景入题:安阳钢铁集团为了充分利用空间,用V 字型支架存放某种型号的钢管(如示意图).最下面的一层放一根,往上每一层比下一层多放一根. ……………(1)当放5层时,共有( )根钢管 …………… (2)当放10层时,共有( )根钢管 (3)当放100层时,共有( )根钢管 (4)当放n 层时,共有( )根钢管问题设置从易到难,层层推进. 前2问学生可以很快做答,而第3问是高斯首末项结合运算的反映,要启发引导学生,第4问做为问题引出课题.(二)探求结论 初达数学目标 对于上面的问题,提炼成如下数学问题已知等差数列{a n } 中,首项为a 1,第n 项为a n ,求它的前n 项和S n .借助引题中第(3)问的算法,考虑首项与末项,第k 项与倒数第k 项的和相等(等差数列的性质),可以倒着顺序构造S n ,利用和求解,具体如下:S n =a 1+a 2+a 3…+a n-2+a n-1+a n ①n (a 1+a n )2n (n -1)2S n =a n +a n-1 +a n-2 …+a 3+a 2+ a 1 ②①+②得2S n =(a 1+a n )+(a 2+a n-1)+(a 3+a n-2)+…+(a n-2+a 3)+(a n-1+a 2)+(a n +a 1 )∵a 1+a n =a 2+a n-1=a 3+a n-2=…=a k +a n -k +1 ∴2S n =n (a 1+a n )即:S n =这样探求出了等差数列前n 项和公式,又考虑到等差数列的通项公式a n =a 1+(n -1)d ,可以做以简单计算得到:S n =na 1+ d到此我们将等差数列前n 项和公式给以推导, 这种利用倒序求和的方法我们应该去体会.(三)学以致用 达成教学目标“纸上得来终觉浅,绝知此事要躬行”利用下面的例题达到转化知识的目的 . 例1:已知等差数列{a n }中, (1)a 1=75,a 7=105, 求S 7及d (2)a 1=-10,d =4,S n =54,求n 及a 21 (3)S 5=25,S 100=100,求a 1及d分析:这三道题是对公式的应用,我们可以根据题目条件,合理选用两个公式结合通项公式, 建立方程或方程组求解.解:(1)根据等差数列前n 项和公式,得S 7= =630由a n =a 1+(n -1)d,得105=75+6d, 所以d =5 .(2)根据等差数列前n 项和公式,得-10n + ×4=54整理,得n 2-6n -27=0 解得:n 1=9, n 2=-3(舍去)由通项公式得a 21=-10+20×4=70 . (3)根据等差数列前n 项和公式,由题意得解得:a 1=1,d=2 .数学源于生活,又指导生活. 回归引题中提出的问题,利用等差数列前n 项和公式得S n=1+2+3+……+n = .在上面两道例题的基础上,总结解决问题的方法,在a 1、a n 、d 、S n 、n 五个量中如果知道其中三量,借助方程(组)思想,用待定系数法可求另两量.(知三求二)(四)碰撞高考 强化教学目标n (n -1)27×(75+105)225=5a 1+5×42 d 100 = 10a 1+10×92dn (n -1)2n (n -1)209年高考是实现我们梦想的时刻,让我们现在碰撞高考,提前触及,把握航向 (2006年·全国·4)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A 、8 B 、7 C 、6 D 、5分析:根据等差数列前n 项和公式有S 7= 而结果求a 4,要利用性质 a 1+a 7=2a 4,从而有7a 4=35,所以a 4=5 . 让学生做下面高考题(2003年春·北京·6)在等差数列{a n }中,已知S 5=20,那么a 3 =( ) A 、4 B 、5 C 、6 D 、7 通过做题,达到转化知识的目的 (五)巩固练习 检测教学目标为了检测学生学习的效果,设计如下练习题1、在等差数列{a n }中,已知a 1=16,a n =84,n=10,那么S 10等于( ) A 、50 B 、500 C 、1000 D 、50002、在等差数列{a n }中,已知S 8=172,a 1=4,那么d 等于( ) A 、4 B 、5 C 、6 D 、7 六、知识打包 回扣教学目标为了系统本节课内容,将知识小结如下:S n = S n =na 1+ d倒序求和法a n =a 1+(n -1)d 掌握与应用对于Sn 、an 、a1、n 、d 方程(组)思想 五个量“知三求二” (待定系数法)(七)尝试提高 巩固教学目标 课本P 118 习题3.3 第2题1、设S n 是等差数列{a n }的前n 项和,若S 12=84,S 20=460,则S 28=( )2、(2004年·福建·5)设S n 是等差数列{a n }的前n 项和,如果 =n (a 1+a n )2n (n -1)2a 5a 359那么 =( ) A 、1 B 、-1 C 、2 D 、[板书设计]在板书上突出线条显明,整体有致. 结合本节课特点,采用三主一辅的块式板书,最左边的为一 辅助板书,第二块为公式,第三块为例题,第四块为高考题.[教学设计]本节课是高一第一册上第三章等差数列前n 项和的第一课时,重点是两个等差数列前n 项和公式及其公式的简单应用.在推导求和公式时,要能利用倒序求和法求解,在应用时要能灵活选用公式.结合学生的年龄特征,心理特征以及教材内容的特点,扣紧数学大纲和考试大纲,采用情景引入——探求结论——结论升华——学以致用——高考触及——巩固练习——课堂打包——尝试提高,八步一体的教学框架.采用以目标教学为主线,全体学生为核心,师生互动为平台,讲练结合为手段的授课形式,达到知识转化的目的.以启发引导,共同探究的授课方法,突出教师主导,学生主体的双主作用. 贯穿数学源于实践又指导实践的思想,激发学生的学习兴趣,提高学生的解题能力.以激励鼓舞的词语为载体,提高学生的积极性、挑战性,培养学生良好情商.以分析的形成,解题的规范,思考的严谨,数学思想的渗透,培养学生的良好习惯,让学生从“学会”到“会学”.S 9S 512。
《等差数列前n项和》教案(高一年级第一册·第三章第三节)一、教材分析●教学内容《等差数列前n项和》人教版高中教材第三章第三节“等差数列前n项和"的第一课时,主要内容是等差数列前n项和的推导过程和简单应用●地位与作用高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列前n 项和公式的推导及其简单应用。
在推导等差数列前n项和公式的过程中,采用了:1。
从特殊到一般的研究方法;2。
逆序相加求和。
不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系.二、学情分析●知识基础:高一年级学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和.●认知水平与能力:高一学生已初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题。
●任教班级学生特点:我所任教的班级是普通班级,学生基础知识不是很扎实,处理抽象问题的能力还有待进一步提高.三、目标分析1、教学目标依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标.●知识与技能目标掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和.●过程与方法目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
●情感、态度与价值观目标获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
2、教学重点、难点根据教学内容和本校学生特点,我确定本节课的教学重点为:●重点等差数列前n项和公式的推导和应用。
●难点等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。
●重、难点解决的方法策略本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点.四、过程设计结合教材知识内容和教学目标,本课的教学环节及时间分配如下:五、教学过程教学环节活动说明创设情境:首先让学生欣赏一幅美丽的图片-—泰姬陵。