第一章 微积分学的理论基础__第五节 连续函数
- 格式:ppt
- 大小:3.28 MB
- 文档页数:57
第一章 函数、极限、连续重点:1、求函数的极限(最重要的方法是L ’P 法则)2、无穷小的比较3、考察分段函数在分段点的连续性4、间断点的判定及分类5、介值定理 一、函数1、函数的定义及表示法【理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系式】 函数概念 ()y f x =函数的两要素 ⎧⎨⎩定义域对应规则函数的表示方法① 显函数: ()y f x =② 隐函数:由方程(,)0F x y =确定的函数()y y x =.例:1y y xe +=确定了()y y x =⇒01x y==.③ 参数方程表示的函数:由方程()()x x t y y t =⎧⎨=⎩确定的函数()y y x =.例:2ln(1)arctan x t y t⎧=+⎨=⎩ 确定了()y f x =.④ 积分上限函数: ()()xax f t dt Φ=⎰.例:2311()(1)3xx t dt x Φ==-⎰⑤ 概率表示的函数:()()F x P X x =≤, 其中X 为随机变量,x 为实数.⑥ 分段函数:自变量不同范围内用不同式子表示的一个函数.【例】 ,0()sin ,0a x x f x x x x +≥⎧⎪=⎨<⎪⎩ ; 1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ .如 A. 绝对值表示的函数 11111x x y x xx -≥⎧=-=⎨-<⎩ ; B. 极限表示的函数 2211()lim111nnn x x x f x x x x x x →∞⎧<-⎪=⋅==⎨+⎪->⎩; C. 其他形式 2022101()max{1,}12x x f x x xx ≤≤≤≤⎧==⎨<≤⎩ .10sgn()0010x y x x x >⎧⎪===⎨⎪-<⎩-------符号函数[]y x =--取整函数.2、函数的性质 【了解函数的有界性,单调性,周期性,奇偶性】①.有界性:()f x 在某区间I 内有定义,若存在0M >,对任意x I ∈,总有()f x M ≤, 则称()f x 在某区间I 内有界.否则称()f x 在某区间I 内无界.例:2111sin1,(0);arctan ,();,1,()2121xx x x x R x R xx e π≤≠≤∈≤<∈++. ②.单调性:()f x 在某区间I 内有定义,若12,x x I ∀∈,当12x x <时12()()f x f x ≤,就称()f x 单调上升;当12x x <时,12()()f x f x ≥,就称()f x 单调下降. 不含等号时称严格单增(或单减).③.奇偶性:若()()f x f x -=, 则称()f x 为偶函数,偶函数的图形关于y 轴对称; 若()()f x f x -=-,则称()f x 为奇函数,奇函数的图形关于原点对称.④.周期性:()()(0)f x T f x T +=≠. (主要是三角函数)【例1】讨论()ln(f x x =+的奇偶性. 【奇函数】 【例2】 设sin ()tan xf x x x e=⋅⋅,则()f x 是( ).A. 偶函数B. 无界函数C. 周期函数D. 单调函数. 【解】 因为 2x k ππ→+时, ()f x →∞,所以()f x 非有界即为无界函数.3、 基本初等函数 【掌握基本初等函数的性质及图形】 (反、对、幂、三、指)① 常数函数---y C =② 幂函数---y x μ= (μ为常数)例:21,y x y y x===③ 指数函数---x y a = (0,1a a >≠) ,x y e =④ 对数函数---log a y x = (0,1a a >≠) , ln y x =, lg y x = ⑤ 三角函数---sin ,cos ,tan y x y x y x===⑥ 反三角函数---arcsin ,arctan y x y x==4、 复合函数、反函数、初等函数 【了解反函数和隐函数的概念,理解复合函数及分段函数的概 念,了解初等函数的概念】① 复合函数 (),()[()y f u u x y f x ϕϕ==⇒=;f 为外层函数,ϕ称为内层函数.② 反函数 ()y y x =的反函数为1()x fy -=或1()y fx -=.【例】3y x x y =⇒=⇒=3y x =的反函数.【例】 sin xy e= 看作是由 ,sin uy e u x == 复合而成的复合函数.③ 初等函数:由六类基本初等函数经过有限次四则运算及有限次复合运算而得的用一个数学式子 表示的函数. 注意:分段函数一般不是初等函数。
微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
微积分中的函数极限与连续性在微积分这门学科中,函数极限与连续性是两个极为重要的概念。
它们不仅是微积分理论的基础,也在解决各种实际问题中发挥着关键作用。
让我们先从函数极限说起。
想象一下,有一个函数 f(x),当 x 趋近于某个特定的值 a 时,函数 f(x) 的值会越来越接近一个确定的数 L ,那么我们就说函数 f(x) 在 x 趋近于 a 时的极限是 L 。
这里的“趋近”可以是从左边趋近,也可以是从右边趋近。
举个简单的例子,比如函数 f(x) =(x 1) /(x 1) ,当 x 趋近于1 时,分母和分子都趋近于 0 。
但是,如果我们直接把 x = 1 代入函数,会得到 0/0 这种不确定的形式。
然而,当 x 非常接近但不等于 1 时,比如 10001 或者 09999 ,我们会发现函数的值非常接近 1 。
所以,我们就说这个函数在 x 趋近于 1 时的极限是 1 。
函数极限的定义是非常严谨和精确的。
用数学语言来表述,就是对于任意给定的一个很小的正数ε ,都存在一个正数δ ,使得当 0 <|x a| <δ 时,|f(x) L| <ε 成立。
这个定义虽然看起来有点复杂,但它的核心思想就是说,只要 x 与 a 足够接近(但不等于 a ),那么 f(x) 与 L 的差距就可以任意小。
了解了函数极限,接下来谈谈函数的连续性。
一个函数在某一点处连续,直观地说,就是当自变量在这一点处有一个很小的变化时,函数值也会有一个相应的很小的变化,而且函数在这一点没有“跳跃”或者“断裂”。
比如说,常见的一次函数 y = x + 1 ,在其定义域内的每一点都是连续的。
因为无论 x 怎么变化,只要变化量很小,函数值 y 的变化也会很小,而且图像是一条连续不断的直线。
再看一个稍微复杂点的例子,函数 f(x) =|x| 。
在 x = 0 处,当 x从负数趋近于 0 时,f(x) 的值趋近于 0 ;当 x 从正数趋近于 0 时,f(x)的值也趋近于 0 ,并且 f(0) = 0 。
高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。
具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。
2. 掌握极限四则运算法则。
3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。
5。
理解函数在一点连续的概念,理解区间内(上)连续函数的概念。
6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。
7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。
第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。
4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。
4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。
关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。
如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。
张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。
……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。
第一章 函数、极限、连续重点:1、求函数的极限(最重要的方法是L ’P 法则)2、无穷小的比较3、考察分段函数在分段点的连续性4、间断点的判定及分类5、介值定理 一、函数1、函数的定义及表示法【理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系式】 函数概念 ()y f x =函数的两要素 ⎧⎨⎩定义域对应规则函数的表示方法① 显函数: ()y f x =② 隐函数:由方程(,)0F x y =确定的函数()y y x =.例:1yy xe +=确定了()y y x =⇒01x y==.③ 参数方程表示的函数:由方程()()x x t y y t =⎧⎨=⎩确定的函数()y y x =.例:2ln(1)arctan x t y t⎧=+⎨=⎩ 确定了()y f x =.④ 积分上限函数: ()()xax f t dt Φ=⎰.例:2311()(1)3xx t dt x Φ==-⎰⑤ 概率表示的函数:()()F x P X x =≤, 其中X 为随机变量,x 为实数.⑥ 分段函数:自变量不同范围内用不同式子表示的一个函数.【例】 ,0()sin ,0a x x f x x x x +≥⎧⎪=⎨<⎪⎩ ; 1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ .如 A. 绝对值表示的函数 11111x x y x xx -≥⎧=-=⎨-<⎩ ;B. 极限表示的函数 2211()lim111nnn x x x f x x x x x x →∞⎧<-⎪=⋅==⎨+⎪->⎩; C. 其他形式 2022101()max{1,}12x x f x x xx ≤≤≤≤⎧==⎨<≤⎩ .10sgn()0010x y x x x >⎧⎪===⎨⎪-<⎩-------符号函数[]y x =--取整函数.2、函数的性质 【了解函数的有界性,单调性,周期性,奇偶性】①.有界性:()f x 在某区间I 内有定义,若存在0M >,对任意x I ∈,总有()f x M ≤, 则称()f x 在某区间I 内有界.否则称()f x 在某区间I 内无界.例:2111sin1,(0);arctan ,();,1,()2121xx x x x R x R xx e π≤≠≤∈≤<∈++. ②.单调性:()f x 在某区间I 内有定义,若12,x x I ∀∈,当12x x <时12()()f x f x ≤,就称()f x 单调上升;当12x x <时,12()()f x f x ≥,就称()f x 单调下降. 不含等号时称严格单增(或单减).③.奇偶性:若()()f x f x -=, 则称()f x 为偶函数,偶函数的图形关于y 轴对称; 若()()f x f x -=-,则称()f x 为奇函数,奇函数的图形关于原点对称.④.周期性:()()(0)f x T f x T +=≠. (主要是三角函数)【例1】讨论()ln(f x x =的奇偶性. 【奇函数】 【例2】 设sin ()tan xf x x x e=⋅⋅,则()f x 是( ).A. 偶函数B. 无界函数C. 周期函数D. 单调函数. 【解】 因为 2x k ππ→+时, ()f x →∞,所以()f x 非有界即为无界函数.3、 基本初等函数 【掌握基本初等函数的性质及图形】 (反、对、幂、三、指)① 常数函数---y C =② 幂函数---y x μ= (μ为常数)例:21,y x y y x===③ 指数函数---xy a = (0,1a a >≠) ,xy e =④ 对数函数---log a y x = (0,1a a >≠) , ln y x =, lg y x = ⑤ 三角函数---sin ,cos ,tan y x y x y x===⑥ 反三角函数---arcsin ,arctan y x y x==4、 复合函数、反函数、初等函数 【了解反函数和隐函数的概念,理解复合函数及分段函数的概 念,了解初等函数的概念】① 复合函数 (),()[()y f uu x y f x ϕϕ==⇒=;f 为外层函数,ϕ称为内层函数.② 反函数 ()y y x =的反函数为1()x fy -=或1()y fx -=.【例】3y x x y =⇒=⇒3y x =的反函数.【例】 sin xy e= 看作是由 ,sin uy e u x == 复合而成的复合函数.③ 初等函数:由六类基本初等函数经过有限次四则运算及有限次复合运算而得的用一个数学式子 表示的函数. 注意:分段函数一般不是初等函数。
第一章 函数、极限、连续重点:1、求函数的极限(最重要的方法是L ’P 法则)2、无穷小的比较3、考察分段函数在分段点的连续性4、间断点的判定及分类5、介值定理 一、函数1、函数的定义及表示法【理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系式】 函数概念 ()y f x =函数的两要素 ⎧⎨⎩定义域对应规则函数的表示方法 ① 显函数: ()y f x =② 隐函数:由方程(,)0F x y =确定的函数()y y x =.例:1yy xe +=确定了()y y x =⇒01x y==.③ 参数方程表示的函数:由方程()()x x t y y t =⎧⎨=⎩确定的函数()y y x =.例:2ln(1)arctan x t y t ⎧=+⎨=⎩确定了()y f x =.④ 积分上限函数: ()()xax f t dt Φ=⎰.例:2311()(1)3xx t dt x Φ==-⎰⑤ 概率表示的函数:()()F x P X x =≤, 其中X 为随机变量,x 为实数.⑥ 分段函数:自变量不同范围内用不同式子表示的一个函数.【例】 ,0()sin ,0a x x f x x x x +≥⎧⎪=⎨<⎪⎩ ; 1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ . 如 A. 绝对值表示的函数 11111x x y x xx -≥⎧=-=⎨-<⎩ ;B. 极限表示的函数 2211()lim 0111n nn xx x f x x x x x x →∞⎧<-⎪=⋅==⎨+⎪->⎩; C. 其他形式 2022101()max{1,}12x x f x x xx ≤≤≤≤⎧==⎨<≤⎩ .10sgn()0010x y x x x >⎧⎪===⎨⎪-<⎩-------符号函数[]y x =--取整函数.2、函数的性质 【了解函数的有界性,单调性,周期性,奇偶性】①.有界性:()f x 在某区间I 内有定义,若存在0M >,对任意x I ∈,总有()f x M ≤, 则称()f x 在某区间I 内有界.否则称()f x 在某区间I 内无界.例:2111sin1,(0);arctan ,();,1,()2121xx x x x R x R xx eπ≤≠≤∈≤<∈++. ②.单调性:()f x 在某区间I 内有定义,若12,x x I ∀∈,当12x x <时12()()f x f x ≤,就称()f x 单调上升;当12x x <时,12()()f x f x ≥,就称()f x 单调下降. 不含等号时称严格单增(或单减).③.奇偶性:若()()f x f x -=, 则称()f x 为偶函数,偶函数的图形关于y 轴对称; 若()()f x f x -=-,则称()f x 为奇函数,奇函数的图形关于原点对称.④.周期性:()()(0)f x T f x T +=≠. (主要是三角函数)【例1】讨论()ln(f x x =的奇偶性. 【奇函数】 【例2】 设sin ()tan xf x x x e=⋅⋅,则()f x 是( ).A. 偶函数B. 无界函数C. 周期函数D. 单调函数. 【解】 因为 2x k ππ→+时, ()f x →∞,所以()f x 非有界即为无界函数.3、 基本初等函数 【掌握基本初等函数的性质及图形】 (反、对、幂、三、指)① 常数函数---y C =② 幂函数---y x μ= (μ为常数)例:21,y x y y x===③ 指数函数---x y a = (0,1a a >≠) ,xy e =④ 对数函数---log a y x = (0,1a a >≠) , ln y x =, lg y x = ⑤ 三角函数---sin ,cos ,tan y x y x y x===⑥ 反三角函数---arcsin ,arctan y x y x==4、 复合函数、反函数、初等函数 【了解反函数和隐函数的概念,理解复合函数及分段函数的概 念,了解初等函数的概念】① 复合函数 (),()[()y f uu x y f x ϕϕ==⇒=;f 为外层函数,ϕ称为内层函数.② 反函数 ()y y x =的反函数为1()x fy -=或1()y fx -=.【例】3y x x y =⇒=⇒3y x =的反函数.【例】 sin xy e= 看作是由 ,sin uy e u x == 复合而成的复合函数.③ 初等函数:由六类基本初等函数经过有限次四则运算及有限次复合运算而得的用一个数学式子 表示的函数. 注意:分段函数一般不是初等函数。