2.5有理数除法(预习)
- 格式:docx
- 大小:19.24 KB
- 文档页数:1
The world is always unpredictable, and a person's fate often changes in an instant.悉心整理助您一臂(页眉可删)关于初中数学有理数的除法知识点的归纳有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a (b≠0)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。
乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
上述的内容是有理数的除法运算知识要领,老师为大家整合的较为精略,详细的内容知识还需大家自己总结。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的.规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
有理数的除法【知识梳理】1、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除.0除以任何非0的数都得0.(注意:0不能作除数.)2、除法的法则也可以这样说,除以一个数,就等于乘以这个数的倒数.(注意:0没有倒数,即0不能作除数.)3、如何求一个数的倒数互为倒数的两个数乘积为1,所以知道其中一个数,求它的倒数就用1除以这个数即可. 如:求53-的倒数,1÷(53-)=35- 所以35-是53-的倒数. 4.几个非0的有理数相除,商的符号怎样确定?几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如:(-12)÷(-2)÷(-3)——三个负数相乘取负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数相乘取正=+(12÷2÷3)=2【重点、难点】有理数的除法法则、倒数的求法【典例解析】例1、 计算:(1)—42÷(—6);(2)25.1)1212(÷- 解:(1)—42÷(—6)=7;(2)25.1)1212(÷-=35541225-=⨯-. 说明: 不能整除的情况下,特别当除数是分数时,应将除法化为乘法来做.例2、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1分析:用“1÷此数”的方法,求这个数的倒数,再将所有的倒数从大到小连接起来. 解:1÷(-32)=-23 -32的倒数是-231÷(-2)=-21 -2的倒数是-21|21|=21,1÷21=2,21的倒数是2 1÷3=31 3的倒数是311÷(-1)=-1 -1的倒数是-1.∴2>31>-21>-1>-23注意:“-32的倒数是-23”,不能用“=”连接-32和-23,因为它们是不相等的,所以一般来说互为相反数的两个数不能用“=”连接,除了-1和1这两个数和它们的倒数外.例3、计算:(-5)÷(-7)÷(-15)分析:三个数连除,先确定商的符号——利用负数的个数;再将除法变为乘法——除以一个数等于乘以这个数的倒数;最后利用乘法法则进行运算.解:(-5)÷(-7)÷(-15)=-(5÷7÷15)——先确定符号 =-(5×71×151)——再将除法变乘法除数变为倒数 =-211例4、计算:72×(-8)÷(-12)点拨:乘除法是同级运算,它们进行混合时,可从左至右逐步计算,注意符号.还可以将式子中的除法变为乘法,直接进行乘法运算.注意:除法没有结合律,即“a ÷b ÷c =a ÷(b ÷c )”是错误的.解法一:72×(-8)÷(-12)——从左到右先乘法再除法逐步计算.=-(72×8)÷(-12)=-576÷(-12)=+48.解法二:72×(-8)÷(-12) =+(72×8×121)——确定符号,除法变乘法=48【过关试题】一、填空题:1、 -2的倒数是 ;-0.2的倒数是 ,负倒数是 。
教师版 2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0.2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义.3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算.【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 . 【考点】有理数的除法,简单方程.【分析】根据有理数的除法,可得答案.【解答】 [(-7.5)-□]÷(-221)=0,得 (-7.5) -□=0,解得□=-7.5,故答案为:-7.5.【点评】本题考查了有理数的除法,零除以任何非零的数都得零.例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20【考点】有理数的除法.【分析】先把除法转化为乘法,再根据有理数的乘法运算法则进行计算即可得解. 【解答】(-15)÷(-5)×51 =(﹣15)×(﹣51)×51 =15×51×51 =53. 故答案为:53.【点评】本题考查了有理数的除法,有理数的乘法,是基础题,要注意按照从左到右的顺序依次进行计算,不能随意简化.【夯实基础】 1、711-的倒数与7的相反数的商为( ) A .-8个 B .8 C .81- D .81 2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6÷)65(-=5C .(-0.375)÷(-3)=81D .-5÷)51(-=1 3、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为04、在算式647□-÷中“□”的所在的位置,填入下列运算符号,计算出来的值最小的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则acac b b a a++可能为 . 6、有理数a 、b 在数轴上是位置如图所示,则ba ab - 0. 7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-); (3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,第6题图若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. (1)试计算a 2= , a 3= ;(2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( )A .-24×(-81+61-41)=24×81-24×61+24×41 B .(-81+61-41)×(-48)=81×48-61×48+41×48 C .-24÷(-81+61-41)=24÷81-24÷61+24÷41 D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,b a <0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大12、已知a 是负整数,则a ,-a ,a 1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(b a +3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab +的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题: 计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+). 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.【中考链接】22.(2018•株洲)如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点FB. 点F 和点GC. 点F 和点GD. 点G 和点H23、(2019•山东省聊城市•3分)计算:(2131--)÷54= . 24、(2019•浙江嘉兴•4分)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).≠第22题图参考答案1、D2、C3、D4、C5、3或1或-16、<7、-5,-3 10、C 11、D12、B 13、D 14、6 15、-3 22、D 23、32-24、b <-a <a <-b 8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-); (3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-). 解:(1)原式=-7×1311×76×613×111=-1; (2)原式=15×3652536⨯=3; (3)原式=1217-÷)636164(-+ =1217-÷31=-441; (4)原式=3×38+15×(56-) =8-18=-10.9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)试计算a 2=53 , a 3= 25 ; (2)求a 2019的值. 解:由题意得:a 1=-32,a 2不难发现-32,53,25,这三个数反复出现. ∵2019÷3=673,其余数为0,16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a+b )+∴a =11,∵11.2的相反数为-11.2,之间的整数有-11~11共23个, ∴b =23,∴(a -b )÷(a +b=(1117、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值. 解:∵a、b 互为相反数,且a 、b 均不为0,∴a +b =0,∵c 、d 互为倒数,∴cd =1,03=+m ,∴2m+3=0,即2m=-3.mcd ba 63-+=cd m ba mb a )2(332)(9⨯-++ =0-3-3×(-3)×1=-3+9=6.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-) 解:(1)原式=202020194332211÷⋅⋅⋅÷÷÷÷ =202020192020342321=⨯⋅⋅⋅⨯⨯⨯⨯. (2)原式=(-2161+-43125+)⨯(-12) =(-21)⨯(-12)61+⨯(-12)-43⨯(-12)125+⨯(-12) =6-2+9-5=8.19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+). 解:解法一是错误的.在正确的解法中,解法三比较简捷.原式的倒数为(61-125+94-41+)÷(361-) =(61-125+94-41+)×(-36) =6-15+16-9=-2. 故原式=21-. 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).(1)相等,其结果均为7.(2)不相等. (-72)÷(-24-8)=49;(-72)÷(-24)+(-72)÷(-8)=12. 49≠12. (3)=;;不成立.21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.解:a =201820182018201920192019+⨯⨯-=12019201820182019-=⨯⨯-, b =201920192019202020202020+⨯⨯-=12020201920192020-=⨯⨯-, c =202020202020202120212021+⨯⨯-=12021202020202021-=⨯⨯-. ∴ (a +b +c )÷abc =(-1-1-1)÷(-1)⨯(-1)⨯(-1)=-3÷(-1)=3.≠≠学生版 2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0.2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义.3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算.【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 .例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20【夯实基础】1、711-的倒数与7的相反数的商为( )A .-8个B .8C .81-2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6C .(-0.375)÷(-53、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为0的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则ac ac b b a a ++可能为 .6、有理数a 、b 在数轴上是位置如图所示,则b a ab - 0.7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. (1)试计算a 2= , a 3= ;(2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( )A .-24×(-81+61-41)=24×81-24×61+24×41 B .(-81+61-41)×(-48)=81×48-61×48+41×48 第6题图C .-24÷(-81+61-41)=24÷81-24÷61+24÷41 D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,b a <0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大12、已知a 是负整数,则a ,-a ,a 1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(ba +3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab +的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题: 计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+).20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”). ≠21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.【中考链接】22.如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点F B. 点F 和点GC. 点F 和点GD. 点G 和点H 23、计算:(2131--)÷54= . 24、数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).第22题图。
有理数的乘除法混合运算混合运算.主要学习乘除法混合运算的相关法则.重点在于有理数乘除法的混合运算,同学们需要多加练习.1、有理数的混合运算(1)运算顺序:先乘方,后乘除,再加减;同级运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号.(2)去括号:括号前带负号,去括号后括号内各项要变号,即()a b a b -+=--,()a b a b --=-+.(3)各种运算定律和运算法则都适用于有理数运算.【例1】计算:(1)()2110.25362⎛⎫⎛⎫⎛⎫-+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()22231-⨯-⨯-;(3)()()()115551010---⨯÷⨯-.有理数乘除法混合运算内容分析模块一有理数乘除法混合运算知识精讲例题解析(1)()()28133-÷-⨯;(2)()41110.53---⨯;(3)34210215⎛⎫+÷⨯-- ⎪⎝⎭.【例3】计算:(1)()30.250.1250.754--+--+-;(2)32212355⎛⎫------- ⎪⎝⎭.【例4】计算:(1)()12332.50.75 1.415345⎛⎫⎛⎫-÷⨯-⨯÷-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()2452.41 4.12513.42183137⎡⎤⎛⎫⎛⎫÷-⨯----- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦.(1)22113115517⎛⎫-÷-⨯ ⎪⎝⎭;(2)221110.7523122⎛⎫++⨯+ ⎪⎝⎭.【例6】计算:(1)7377184812⎛⎫⎛⎫-÷-- ⎪ ⎪⎝⎭⎝⎭;(2)114723132456⎛⎫⎛⎫-+÷- ⎪ ⎝⎭⎝⎭.【例7】计算:(1)()()3211331232⎧⎫⎡⎤⎛⎫----+-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭;(2)()341313120.544104⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭.【例8】计算:63.8552 1.2573171 1.1739⎛⎫⨯⨯÷⎪⎝⎭⎛⎫+÷⨯⎪⎝⎭.【例9】计算:1231123126.323411⎡⎤⎛⎫⎛⎫++-⨯-⨯⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦271311⎛⎫÷--⎪⎝⎭.【例10】计算:()()()()()2222323287 348593258⨯-⨯---⨯-⎡⎤-⨯+⨯--+⨯⎣⎦.【例11】计算:52111111339369126912⎛⎫⎛⎫⎛⎫+-⨯++--+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11125691239⎛⎫⎛⎫+++⨯-⎪⎝⎭⎝⎭.【习题1】计算:(1)()5414772⎛⎫⎛⎫⎛⎫-⨯-÷--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()()23127123⎛⎫⎡⎤+--+-⨯ ⎪⎣⎦⎝⎭;(3)()()23223251833⎛⎫---⨯--÷-- ⎪⎝⎭;(4)113241777113610710718811⎛⎫⎛⎫-+÷-÷-⨯ ⎝⎭⎝⎭;(5)525228314183 4.37519129-⨯⎛⎫+÷ ⎪⎝⎭;随堂检测。
2.4 有理数的除法一、选择题1.计算 18÷(−3) 的结果等于( )A. -6B. 6C. -15D. 152.早在两千多年前,中国人已经开始使用负数,并应用到生产和生活中.中国人使用负数在世界上是首创.下列各式计算结果为负数的是( )A. 5+(−3)B. 5−(−3)C. 5×(−3)D. (−5)÷(−3) 3.下列四个运算中,结果最小的是( )A. 1+(−2)B. 1−(−2)C. 1×(−2)D. 1÷(−2) 4.如果×(−23)=1 ,则“”内应填的数是( )A. 32 B. 23 C. −23 D. −325.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若b+d =0,则下列结论正确的是( )A. b+c > 0B. ac > 1 C. ad > bc D. |a| > |b| 6.计算: 16×(−6)÷(−16)×6= ( ) A. 1 B. 36 C. -1 D. 6 7.若在“□”中填入一个整数,使分数2020□的值最接近-1,则“□”中所填的整数可能是( )A. −2019B. −2018C. −2017D. 20208.有两个正数 a , b ,且 a <b ,把大于等于 a 且小于等于 b 的所有数记作 [a,b] .例如,大于等于 1 且小于等于 4 的所有数记作 [1,4] .若整数 m 在 [5,15] 内,整数 n 在 [−30,−20] 内,那么 nm 的一切值中属于整数的个数为( )A. 5个B. 4个C. 3个D. 2个 9.有理数a ,b 在数轴上对应的点的位置如图所示,则a+b ab的值是( )A. 负数B. 正数C. 0D. 正数或0 10.在算式 (−23) (−23) 的中填上运算符号,使运算结果最大,这个运算符号是( )A. 加号B. 减号C. 乘号D. 除号二、填空题11.有时两数的和恰等于这两数的商,如 −4+2=(−4)÷2 , 43+23=43÷23 等.试写出另外1个这样的等式________.12.计算 (−17)÷(−7)= ________. 13.(−34)×(−12)÷(−214)= ________.14.如图,现有5张写着不同数字的卡片,请按要求完成下列问题:若从中取出2张卡片,乘积的最大值是________.商的最小值是________.15.在6,﹣5,﹣4,3四个数中任取两数相乘,积记为A ,任取两数相除,商记为B ,则A ﹣B 的最大值为________.16.已知 |a|=3 , |b|=4 ,且3b a<0 ,则 a −3b = ________.17.在数 −22 与 18 之间插入三个数,使得这五个数中每相邻的两个数在数轴上对应的点之间的距离相等,则这五个数之和是________18.已知a|a |+b|b |+c|c |=−1 , 则abc|abc |的值为________ 三、解答题 19.计算. (1)(−58)÷143×(−165)÷(−67) ; (2)-3- [−5+(1−0.2×35)÷(−2)] ;(3)(413−312) ×(-2)-2 23 ÷ (−12) ;20.如图,按程序框图中的顺序计算,当运算结果小于或等于100时,则将此时的值返回第一步重新运箅,直至运算结果大于100才输出最后的结果.若输入的初始值为1,则最后输出的结果是多少?21.计算6÷(﹣12+13),方方同学的计算过程如下,原式=6 ÷(−12)+6 ÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.22.阅读:比较1011与910的大小.方法一:利用两数差的正负来判断.因为1011-910= 1110>0,所以1011>910.方法二:利用两数商,看商是大于1还是小于1来判断.因为1011÷910= 10099>1,所以1011>910.请用以上两种方法,比较-45和-56的大小.23.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?24.暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成下列各问题:(1)从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是________,积为________.(2)从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是________,商为________.(3)从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法(可加括号),使其运算结果为24,写出运算式子.(写出一种即可)25.小华在课外书中看到这样一道题:计算: 136÷(14+112−718−136)+(14+112−718−136)÷136.她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.答案一、选择题1.解: 18÷(−3)=−6 故答案为:A2.A. 5+(−3) =2,不符合题意, B. 5−(−3) =8,不符合题意, C. 5×(−3) =-15,符合题意, D. (−5)÷(−3) = 53,不符合题意,故答案为:C.3.解:A 、 1+(−2)=−1 , B 、 1−(−2)=3 , C 、 1×(−2)=−2 , D 、 1÷(−2)=−12 , ∵ −2<−1<−12<3 , ∴ 1×(−2) 结果最小. 故答案为:C.4.解: 1÷(−23)=−32 . 故答案为:D. 5.解:∵b+d =0,由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d , A 、∵b+d =0, ∴b+c <0, 故A 不符合题意; B 、 ac <0, 故B 不符合题意; C 、ad <bc <0, 故C 不符合题意; D 、|a|>|b|=|d|, 故D 正确; 故答案为:D.6. 16×(−6)÷(−16)×6 =16×6×6×6 =36 . 故答案为:B .7.解:当 □=−2019, ∴−1−(−20202019)=12019,当 □=−2018, ∴−1−(−20202018)=22018, 当 □=−2017, ∴−1−(−20202017)=32017, 当 □=2020, ∴20202020−(−1)=2, ∵12019<22018<32017<2,∴□=−2019, 故答案为:A .8.解:∵整数 m 在 [5,15] 内,整数 n 在 [−30,−20] 内 ∴5≤m ≤15,-30≤n ≤-20 ∴−305≤n m ≤−2015,即 −6≤n m ≤−43 ∴ nm 的一切值中属于整数有-2、-3、-4、-5、-6. 故答案为A.9.根据数轴可得: 0<a <1 , b <−1 , 所以 a +b <0 , ab <0 , 因为两数相除,同号得正,异号得负, 所以a+b ab>0 ,故答案为:B.10.解: (−23) + (−23) = −43 ; (−23) - (−23) =0;(−23) × (−23) = 49 ; (−23) ÷ (−23) =1; −43 <0< 49 <1,则使运算结果最大时,这个运算符合是÷, 故答案为:D . 二、填空题11.解: −92+3=−92÷3 , 12+(−1)=12÷(−1) . 故答案为: −92+3=−92÷3 . 12.解:原式 =(−17)×(−17)=149故答案为: 149 .13.解: (−34)×(−12)÷(−214) =(−34)×(−12)×(−49) =−16 . 故答案为: −16 .14.解:若从中取出2张卡片,使这2张卡片上数字的乘积最大, 则乘积的最大值是:(﹣8)×(﹣3)=24, 则商的最小值是:(4)÷(-1)=﹣4, 故答案为:24,﹣7.15.解:A 的最大值为:(﹣5)×(﹣4)=20, B 的最小值为:(﹣5)÷3= −53 ,∴A ﹣B 的最大值为:20 20−(−53)=653.故答案为:653.16.解:∵ |a|=3 ,∴a=±3, ∵ |b|=4 ,∴b=±4, ∵3b a<0 ,∴a 、b 为异号,∴a=3,b=-4或a=-3,b=4,∴a-3b=3-3×(-4)=15或a-3b=-3-3×4=-15 故答案为:15或-15.17.解:18-(-22)=40, 40÷4=10,则这三个数为:-22+10=-12, -22+10×2=-2,-22+10×3=8; ∴这五个数之和为,-22+(-12)+(-2)+8+18=-10. 故答案为=-10.18.解:∵a|a |+b|b |+c|c |=−1∴a 、b 、c 有两个负数,一个正数, ∴abc|abc |=abc abc =1.故答案为:1. 三、解答题19. (1)解:原式= −58×314×165×76=−12(2)解:原式=-3- [−5+(1−15×35)×(−12)] =-3+ 5+(1−325)×12 =2 1125 (3)解:原式= 56 ×(-2)+163=3 23 20. 解:1× 12 ÷(- 14 )= -2<100;-2×12÷(- 14)=4<100;4×12÷(- 14)= -8<100;-8×12÷(- 14)=16<100;16×12÷(- 14)= -32<100;-32×12÷(- 14)=64<100;64×12÷(- 14)= -128<100;-128×12÷(- 14)=256>100;故输出为256.21.解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣36+ 26)=6÷(﹣16)=6×(﹣6)=﹣3622. 解:方法一:因为45- 56=- 130<0,所以45< 56,从而- 45>- 56.方法二:因为45÷56= 2425<1,所以45< 56,从而- 45>- 56.23. (1)解:由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,0.7-0.4=0.3(亿元)∴可得出乙比甲多亏0.3亿元.(2)解:甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元,2.4÷6=0.4(亿元);乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元,-1.2÷6=-0.2(亿元).∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元24. (1)-5和-3;15(2)-5和+3;−53(3)解:把24分解因数,可得到2×12=24,3×8=24,4×6=24等形式.当2×12=24时,2=(-3)-(-5),12=3×4则[(-3)-(-5)]×3×4=12故答案为:卡片数字为:-3,-5,+3,+4当3×8=24时,可得-3×(-8)=24,则-8=(-5)-3则-3×[(-5)-3]=24.同理可继续推导.解:(1)要想乘积最大,必须积为正数才有最大值,选择同号的两个数相乘则有(+3)×(+4)=12,(-5)×(-3)=15积最大为15,所以选择卡片-5和卡片-3( 2 ) 要想商最小,必须商为负数才最小值,选择异号的两个数相除且被除数的绝对值要大于除数的绝对值.则有(-5)÷3= −53,(-5)÷4= −54,4÷(-3)= −43商最小为−53,所选择卡片-5和卡片+3故答案为:(1)-5和-3,15 ;(2) -5和+3 −53;(3) −3×[−5−(+3)]+0(答案不唯一)25. (1)解:前后两部分互为倒数(2)解:先计算后一部分比较方便.(14+112−718−136)÷136=(14+112−718−136)×36=9+3﹣14﹣1=﹣3(3)解:因为前后两部分互为倒数,所以136÷(14+112−718−136)=﹣13(4)解:根据以上分析,可知原式= −13+(−3)=﹣3 13。
2.5有理数除法
预习目标: 1,了解有理数倒数的意义,会求有理数的倒数
2;理解有理数除法的运算法则
3,会用有理数的除法法则进行计算
预习重点:1,会求有理数的倒数
2,能进行有理数的除法运算
预习任务: 1,阅读教材57—58页了解有理数倒数的意义
求下列个数的倒数(1)--14 (2)-2.25 (3)--3/5
2,阅读教材理解有理数的除法法则,并记忆
3,阅读例4 例5 思考有理数的除法法则是怎样应用的
预习诊断:
1,乘积为1的两个数互为--------
2,除以一个数,等于乘以这个数的--------
3,两数相除,同号得------ 异号的------- 并把------
4,计算。
(1)(-12)÷0.002 (2)0÷(-125)
(3)(-5/8)÷(-3/4) (4) (-6)÷(-4) ÷(-6/5)
预习质疑:
1。