人教版-数学七年级上册-1.4 有理数的乘除法 第一课时
- 格式:ppt
- 大小:2.18 MB
- 文档页数:18
1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X (2)√(3)X (4)X (5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275. 【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x -2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b -1,a b=ab -1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.第2课时有理数的乘法运算律【知识与技能】使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.【过程与方法】通过对问题的探索,培养观察、分析和概括的能力.【情感态度】能面对数学活动中的困难,有学好数学的自信心.【教学重点】熟练运用运算律进行计算.【教学难点】灵活运用运算律.一、情境导入,初步认识想一想 上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做 你能运算吗?(1)2×3×4×(-5)(2)2×3×(-4)×(-5)(3)2×(-3)×(-4)×(-5)(4)(-2)×(-3)×(-4)×(-5)(5)-1×302×(-2012)×0由此我们可总结得到什么?【归纳结论】几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.需要注意的是,只要有一个因数为0,则积为0.二、思考探究,获取新知【教学说明】运用上面的结论,教师引导学生做教学中的例题.例 计算:(教材第31页例3)(1)(-3)×65×(-59)×(-41);(2)(-5)×6×(-54)×41. 【分析】(1)先找出其中负因数的个数为3个,故积的符号为负,再将绝对值相乘.(2)同理,我们可以找出其中负因数的个数为2个,故积的符号为正,再将绝对值相乘.(1)(-3)×65×(-59)×(-41) =-3×65×59×41=-89 (2)(-5)×6×(-54)×41 =5×6×54×41=6. 试一试 教材第32页练习.像上面的例题那样,规定有理数的乘法法则后,就可以使交换律、结合律与分配律在有理数乘法中仍然成立.下面我们来探究一下乘法运算律在有理数中的运用.探究 学生活动:按下列要求探索:1.任选两个有理数(至少有一个为负),分别填入□和○内,并比较两个结果:□×○=________和○×□________2.任选三个有理数(至少有一个为负),分别填入□、○和◇中,并比较计算结果:(□·○)·◇=________和□·(○·◇)=_________3.任选三个有理数(至少有一个为负),分别填入□、○和◇中,并比较计算结果:◇·(□+○)=_______和◇·□+◇·○=_______【归纳结论】有理数的乘法仍满足交换律,结合律和分配律.乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a ·b=b ·a. 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,再乘第三个数,积不变.用式子表示成(a ·b )·c=a ·(b ·c ).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示成:a (b+c )=ab+ac.三、典例精析,掌握新知例1 计算(-2009)×(-2010)×(-2011)×(-2012)×2013×(-2014)×0【分析】不管数字有多么复杂,只要其中有一个为0,则积为0.例2 计算:(1)-43×(8-34-1514); (2)191918×(-15). 【分析】(1)利用乘法分配律.(2)将191918换成20-191,再用分配律计算. 学生板演、练习.试一试教材第33页练习.2.计算题.【教学说明】以上两大题,均可让学生独立完成,然后第1大题可让学生举手回答,第2大题可让4位学生上台板演.【答案】1.(1)±9或±6(2)ab>0 ab<0(3)6.2832(4)101(5)-0.004(6)-15 141 -15 141 -5975 (7)0 (8)< <2.(1)-151 (2)68.78 (3)8 (4)-35995389 五、师生互动,课堂小结本节课我们的成果是探究出多个有理数的算法,以及有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.3.选做题.(2)已知x、y为有理数,如果规定一种新运算※,定义x※y=xy+1.根据运算符号的意义完成下列各题.①2※4;②1※4※0;③任意选取两个有理数(至少一个为负数)分别填入下例□与○内,并比较两个运算结果,你能发现什么?□※○与○※□④根据以上方法,设a、b、c为有理数.请与其他同学交流a※(b+c)与a ※b+a※c的关系,并用式子把它们表达出来.【答案】①9 ②1 ③相等④a※(b+c)+1=a※b+a※c本节课主要学习多个有理数相乘结果的符号的确定,乘法运算律在有理数乘法中的运用,教学时要强调在学习过程中自主探究,合作交流,让学生在学习过程中体会自主探究,合作交流的乐趣,形成主动探索问题的习惯.。
1.4 有理数的乘除法-第一课时1教学目标:1.1知识与技能①体会有理数乘法的实际意义;②掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算;③理解有理数乘法交换律、结合律和分配律;④能够根据不同的情况运用不同定律来简化运算。
1.2过程与方法①用实例引出有理数乘法的推导过程,用分类讨论的思想归纳出两数及多个数相乘的运算规律,感悟中、小学数学中的乘法运算的重要区别。
②通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。
1.3情感、态度与价值观通过用实例让学生自己探究出有理数乘法法则,及多个数连续相乘的运算方法,使学生感到获得成功的喜悦。
2教学重点、难点、易考点2.1教学重点:①应用法则正确地进行有理数乘法运算;②了解多个有理数相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算。
2.2教学难点:①乘法法则的探索过程及对法则的理解;②运用有理数的乘法解决问题。
3专家建议“数学教学是数学活动的教学”。
我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。
也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。
这一节课,介绍了有理数的乘法法则和乘法运算律,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。
4教学方法问题引入---------探究乘法法则--------有理数乘法的运算律--------交流讨论--------巩固练习5教学用具无6教学过程:6.1问题引入问题1:甲水库的水每天升高3cm,乙水库的水每天下降3cm,4 天后,甲、乙水库水位的总变化量是多少?【教师说明】如果用正号表示水位的上升、用负号表示水位的下降。
那么4 天后,甲水库水位的总变化量是:3+3+3+3 = 3×4 = 12 (cm)乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4= -12(cm)问题二:(−3)×4 = −12(−3)×3 =(−3)×2 =(−3)×1=(−3)×0=(−3)×(−1) =(−3)×(−2) =(−3)×(−3) =(−3)×(−4) =【教师说明】第二个因数从4开始到1,第二个因数每减少1,积增加3,第二个因数从0减少到—4,每减少1,积就增加3.6.2交流讨论由上述所列各式,你能看出两有理数相乘与它们的积之间的规律吗?【教师说明】通过对问题二的探究,不难得出,负数乘正数,得负数,并把绝对值相乘,负数乘0,得0,负数乘负数,得正数,并把绝对值相乘。