2018年高三数学高考考前综合提升训练:概率与统计(解析版附后)
- 格式:docx
- 大小:85.68 KB
- 文档页数:8
专题12 概率和统计一.基础题组1. 【2014课标Ⅰ,理5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.18B.38C.58D.78【答案】D2. 【2013课标全国Ⅰ,理3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.3. 【2011全国新课标,理4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34【答案】A 【解析】4. 【2012全国,理 15】(某一部件由三个电子元件按下图方式连接而成,元件 1或元件 2正 常工作,且元件 3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服 从正态分布 N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过 1 000小时的概率为__________.【答案】385. 【2014课标Ⅰ,理 18】从某企业生产的某种产品中抽取 500件,测量这些产品的一项质量指标值,由测量结果 得如下图频率分布直方图:(I )求这 500件产品质量指标值的样本平均值和样本方差 s 2 (同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标 Z 服从正态分布N,,其中 近似为样2本平均数,2 近似为样本方差 s 2 .(i )利用该正态分布,求 P187.8 Z212.2;(ii )某用户从该企业购买了 100件这种产品,记 X 表示这 100件产品中质量指标值位于区间187.8,212.2的产品件数.利用(i )的结果,求EX . 附: 150 12.2若 ZN则P Z 0.6826 ,~,2PZ。
专题概率与统计一、选择题1.【2018黑龙江齐齐哈尔八中三模】如图,四边形ABCD为正方形,G为线段BC的中点,四边形AEFG 与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为()A. 13B.25C.38D.12【答案】A2.【2018河南漯河中学三模】在不等式组02{02xy≤≤≤≤表示的平面区域内任取一个点(),P x y,则1x y+≤的概率为()A. 12B.14C.18D.112【答案】C 【解析】所以概率为11248=,故选C。
3.【湖南株洲两校联考】在不等式组10{20x yx yy-+≥+-≤≥所表示的平面区域内随机地取一点M,则点M恰好落在第二象限的概率为()A. 23B.35C.29D.47【答案】C 【解析】不等式组10{20x yx yy o-+≥+-≤≥所表示的平面区域为一直角三角形,其面积为1393224⨯⨯=点P恰好落在第二象限平面区域为一直角三角形,其面积为111122⨯⨯=∴点P 恰好落在第二象限的概率为12294=故答案选C4.【2018东北名校联考】据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布()22000,100N ,则在此期间的某一天,太阳岛的人数不超过2300的概率为( )附;若()2,X N μσ~,()0.6826(22)0.9544(33)0.9974P x P x P x μσμσμσμσμσμσ-<≤+=-<≤+=-<≤+=A. 0.4987B. 0.8413C. 0.9772D. 0.9987 【答案】D点睛:关于正态总体在某个区间内取值的概率的求法.要充分利用正态曲线的对称性和曲线与x 轴之间的面积为1.且曲线是单峰的,它关于直线x μ=对称,从而关于x μ=对称的区间上概率相等.有()()1P X a P X a <=-≥, ()()P x a P X a μμ<-=≥+.5.【2018江西宜春二模】某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取容量为81的样本,则在高一、高二、高三三个年级抽取的人数分别为( ) A. 28、27、26 B. 28、26、24 C. 26、27、28 D. 27、26、25 【答案】A【解析】根据题意得,用分层抽样在各层中的抽样比为81156054052020=++则在高一年级抽取的人数是15602820⨯=人 高二年级抽取的人数是15402720⨯=人 高三年级抽取的人数是15202620⨯=人 故答案选A6.【2018江西宜春中学二模】五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为 A.12 B. 1532 C. 1132 D. 516【答案】C7.【2018山西山大附中四调】在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布()1,1N -的密度曲线)的点的个数的估计值为( )(附:若()2,X N μσ~,则()0.6827P X μσμσ-<≤+=, ()220.9545P X μσμσ-<≤+=.)A. 906B. 2718C. 1359D. 3413 【答案】C【解析】由于曲线C 为正态分布()1,1N -的密度曲线,21,1,1μσσ=-== , (01)P x <≤=11[(31)(20)(22)()]22P x P x P x P x μσμσμσμσ⎤⎡-<≤--<≤=-<≤+--<≤+⎥⎢⎦⎣()10,95450.68270.13592=-=,在如图所示的正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值为100000.13591359⨯=个点,选C.8.【2018黑龙江大庆四校联考】已知的取值如下表所示:若与线性相关,且,则()A. 2.2B. 2.9C. 2.8D. 2.6【答案】D9.【2018河南名校联考】已知随机变量()~7,4X N,且(59),(311)P X a P X b<<=<<=,则(39)P X<<=()A.2b a-B.2b a+C.22b a-D.22a b-【答案】B【解析】由正态分布的对称性知,(39)(37)+(79)222b a a bP X P X P X+<<=<<<<=+=,故选B.10.【2018河南名校联考】现有2个正方体,3个三棱柱,4个球和1个圆台,从中任取一个几何体,则该几何体是旋转体的概率为()A. B. C. D.【答案】C【解析】由题意知共有10个几何体,其中旋转体为球和圆台,共5个,根据古典概型,从中任取一个几何体,则该几何体是旋转体的概率.11.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m的值为()A. 0.013B. 0.13C. 0.012D. 0.12【答案】C12.【2018广东德庆香山中学一模】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布()21000,50N,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为( )A. 15B.12C.35D.38【答案】D【解析】三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为12P=,设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常},C={该部件的使用寿命超过1000小时}则P(A)=1−(1−P)2,P(B)= 12,∵事件A,B为相互独立事件,事件C为A. B同时发生的事件∴P(C)=P(AB)=P(A)P(B)= 313 428⨯=.本题选择D 选项.13.【2018河南漯河中学一模】如图,圆O : 222x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.24π B. 34π C. 22π D. 32π 【答案】B 【解析】略 二、解答题14.【2018四川德阳三校联考】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).某市随机抽取10户同一个月的用电情况,得到统计表如下:若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A 居民用电户用电410度时应交电费多少元?现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;以表中抽到的10户作为样本估计全市..的居民用电,现从全市中依次抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值. 【答案】(1)分布列见解析, ()910E ξ=(2)6k = 【解析】试题分析:(1)10户共有3户为第二阶梯电量用户,所以ξ可取0,1,2,3,分别求其概率,即可列出分布列,计算期望;(2)由题意抽到的户数符合二项分布,设抽到K 户概率最大,解不等式组,再根据*k N ∈即可求出. 试题解析:故ξ的分布列是所以()721719012324404012010E ξ=⨯+⨯+⨯+⨯= 可知从全市中抽取10户的用电量为第一阶梯,满足3~10,5X B ⎛⎫ ⎪⎝⎭,可知()10103255k kk p X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭()0,1,2,3,10k =32321555510103232155551010(((({((((k k k k C CC C+-≥≥,解得283355k ≤≤, *k N ∈ 所以当6k =时,概率最大,所以6k =15.【2018齐齐哈尔八中三模】某教师调查了100名高三学生购买的数学课外辅导书的数量,将统计数据制成如图所示的条形图.(1)若该教师从这100名学生中任取2人,记这2人所购买的数学课外辅导书的数量之和为X ,求3X >的概率;(2)从这100名学生中任取2人,记Y 表示这2人所购买的数学课外辅导书的数量之差的绝对值.求Y 的分布列和数学期望.【答案】(1)881990;(2)()23E Y =试题解析:(1)依题意, 3X ≤的情况包括()11,和()12,,所以3X >的概率为211010221001008811990C C C C --=(2)Y 的可能取值为0, 1, 2,则()222105040210041099C C C P Y C ++===, ()111110505040210050199C C C C P Y C +===, ()11104021008299C C P Y C ===. 故Y 的分布列为:故()4150820129999993E Y =⨯+⨯+⨯=. 16.【2018福建四校联考】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱。
2018年高考数学冲刺易错点:概率与统计试题(附答案)
5 c 概率与统计
一、高考预测
计数原理、概率统计部分是高中数学中使用时最多的一个知识板块,高考对该部分的考查分值也较多.从近几年的情况看,该部分考查的主要问题是排列组合应用问题,二项式定理及其简单应用,随机抽样,样本估计总体,线性回归分析,独立性检验,古典概型,几何概型,事的独立性,随机变量的分布、期望和方差,正态分布的简单应用,在试卷中一般是2~3个选择题、填空题,一个解答题,试题难度中等或者稍易.预计--2分
所以随机变量的取值为0,1,2 记从六只动物中选取两只所有可能结果共有 15种 ----5分
012
P
分别列为
期望 ---6分
17、一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数,,,,,.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
18、“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名。
”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n 小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植品种B.。
第二节 统计与概率综合及统计案例题型138 抽样方式2013年1.(2013江西文5)总体有编号为01,02,,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ).A .08B .07C .02D .012.(2013湖南文3) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件, 60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为的样本进行调查,其中从丙车间的产品中抽取了件,则n =( ).A. B.10 C.12 D.132014年 1.(2014四川文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( ).A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取70人,则n =( ). A.100B.150C.200D.2503.(2014广东文6)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ).A.50B.40C.25D.20 4.(2014湖南文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ).A.123p p p =<B. 231p p p =<C.132p p p =<D.123p p p == 5.(2014湖北文11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总 数为件.6.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.2015年1.(2015四川文3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是().A. 抽签法B. 系统抽样法C. 分层抽样法D. 随机数法1.解析按照各种抽样方法的适用范围可知,应使用分层抽样.故选C.2.(2015福建文13)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.2.解析由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=(人).3.(2015北京文4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为().A.90B. 100C. 180D.3003.解析依题意,老年教师人数为900320180160043004300⨯=(人).故选C.2017年1.(2017江苏卷3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.1.解析按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件).20330443454365577783210题型139 样本分析——用样本估计总体2013年1. (2013四川文7)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据茎 叶图如图所示.以组距为将数据分组成[)[)[)[)0551030353540,,,,,,,,时,所作的频率分布直方图是( ).A.B.C . D.2. (2013山东文10)将某选手的个得分去掉个最高分,去掉一个最低分,个剩余分数的平均分为91.现场作的个分数的茎叶图后来有个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为( )A.11616 B.367 C.36D. 3.(2013辽宁文5) 某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)[)[)20404060608080100,,,,,,,.若低于60分的人数是15人,则该班的学生人数是( ).A. 45B. 508779401091x/分C. 55D. 604.(2013江苏则成绩较为稳定(方差较小)的那位运动员成绩的方差为5.(2013湖北文12)某学员在一次射击测试中射靶10次,命中环数如下:7879,,,,5491074,,,,,,则(1)平均命中环数为; (2)命中环数的标准差为.6. (2013辽宁文16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为,样本方差为,且样本数据互不 相同,则样本数据中的最大值为.2014年1.(2014陕西文9)某公司10位员工的月工资(单位:元)为1210,,x x x ,其均值和方差分别为和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ).A.,22100s +B.100x +,22100s +C.,2sD. +100,2s2.(2014山东文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)[)[)[)[]12,13,13,14,14,15,15,16,16,17,将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有人,则第三组中有疗效的人数为( ).A. B. C. 12 3.(2014江苏6位:cm ),所得数据均在区间[]80130,上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm .kPa(加上原点处数字0)4.(2014新课标Ⅰ文18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定? 5.(2014北京文18)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:100 90 80 110 /cmO75 85 95 105(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).6. (2014新课标Ⅱ文19)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.7.(2014(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.2015年1.(2015重庆文4)重庆市2013年各月的平均气温(C)数据的茎叶图如下:0 8 91 2 5 82 0 03 3 8 3 1 2则这组数据的中位数是( ).A. 19B.20C. 21.5D. 23 1. 解析 将茎叶图各数据从小到大排列,中位数为2020202+=.故选B . 2.(2015湖南文2) 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.13 0 0 3 4 5 6 6 8 8 8 914 1 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 8 15 0 1 2 2 3 3 3若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[]139,151上的运动员人数是( ).A. 3B. 4C. 5D. 62. 解析 由茎叶图可知,在区间]151,139[的人数为20,再由系统抽样的性质可知人数为435720=⨯人.故选B. 3.(2015湖北文2) 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ).A .134石B .169石C .338石D .1365石 3.解析 设一石米中有粒谷,这批米内夹谷石,则281534254x n n ⋅=⋅,得153428169254x ⨯=≈.故选B.4.(2015山东文6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的天,将这天中14时的气温数据(单位:℃)制成如图所示的茎叶图. 考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ). A. ①③B. ①④C. ②③D. ②④4.解析 由茎叶图可知,甲的数据为26,28,29,31,31;乙的数据为28,29,30,31,32. 所以()12628293131295x =⨯++++=甲,()12829+303132305x =⨯+++=乙. 所以x x <甲乙,①正确; 又()()()()()2222221182629282929293129312955s ⎡⎤=-+-+-+-+-=⎣⎦甲; ()()()()()22222212830293030303130323025s ⎡⎤=-+-+-+-+-=⎣⎦乙. 可得22s s >甲乙,所以s s >甲乙.④正确.故选B.5.(2015广东文12) 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为.5.解析 因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,又样本数据121x +,221x +,⋅⋅⋅,21n x +的和为()122n x x x n ++++,所以样本数据的均值为21x +=11.评注本题考查均值的性质.6.(2015湖北文14)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.30.9],内,其频率分布直方图如图所示. (1)直方图中的=.(2)在这些购物者中,消费金额在区间[0.50.9],内的购物者的人数为./万元a6. 解析 由频率分布直方图及频率和等于,可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=, 所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.7.(2015广东文17)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图所示./度(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[)220,240的用户中应抽取多少户? 7.解析()1由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 得0.0075x =.(2)由图可知,月平均用电量的众数是2202402302+=. 因为()0.0020.00950.011200.450.5++⨯=<, 又()0.0020.00950.0110.0125200.70.5+++⨯=>,所以月平均用电量的中位数在[)220,240内.设中位数为,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=, 得224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=(户); 月平均用电量为[)240,260的用户有0.00752010015⨯⨯=(户); 月平均用电量为[)260,280的用户有0.0052010010⨯⨯=(户); 月平均用电量为[]280,300的用户有0.0025201005⨯⨯=(户). 抽取比例为11125151055=+++,所以从月平均用电量在[)220,240的用户中应抽取12555⨯=(户).2016年1.(2016山东文3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.,样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ). A.56 B.60 C.120 D.1401. D 解析 由图可知组距为2.5,每周的自习时间少于22.5小时的频率为0.30=2.5×)0.1+0.02(,所以,每周自习时间不少于22.5小时的人数是140=0.301×200)(-人.故选D.2.(2016上海文4)某次体检,位同学的身高(单位:m )分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是(m ).2.1.76解析 将数据从小到大排序1.69,1.72,1.76,1.78,1.80,故中位数为1.76.3.(2016江苏4)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.3. 0.1解析由题意得 5.1x =,故()22222210.40.300.30.40.15s=++++=./小时17.54.(2016四川文16)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)00.50.5,1⋅⋅⋅,,,[]4,4.5分成组,制成了如图所示的频率分布直方图.(1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于吨的人数.请说明理由;(3)估计居民月均用水量的中位数.4.解析 ()由频率分布直方图,可知:月用水量在[]0,05.的频率为0.080.5=0.04.⨯ 同理,在[)(][)[)[)[)0.5,1 1.5,222.53,3.5 3.5,44,4.5,,,,,,等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.04+0.08+0.21+0.25+0.06+0.04+0.020=0.5+0.5a a -⨯⨯,解得0.30.a =(2)由(1)得,100位居民月均水量不低于吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于吨的人数为3000000.13=36000.⨯(3)设中位数为x 吨.因为前组的频率之和为0.040.080.15+0.21+0.250.730.5++=>, 而前4组的频率之和为0.040.080.150.210.480.5+++=<,所以2 2.5.x <… 由()0.5020.50.48x ⨯-=-,解得 2.04.x =故可估计居民月均用水量的中位数为2.04吨.5.(2016北京文17)某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图: (1)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当3w =时,估计该市居民该月的人均水费.5. 解析 (1)由用水量的频率分布直方图知,该市居民该月用水量在区间[](](](](]0.5,1,1,1.5,1.5,2,2,2.5,2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15. 所以该月用水量不超过立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w 至少定为.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=10.5用水量(立方米)(元).2017年1.(2017全国1文2)为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:kg )分别为12n x x x ⋯,,,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ).A .12n x x x ⋯,,,的平均数 B .12n x x x ⋯,,,的标准差 C .12n x x x ⋯,,,的最大值 D .12n x x x ⋯,,,的中位数 1. 解析 刻画评估这种农作物亩产量稳定程度的指标是标准差.故选B. 2.(2017山东卷文8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件). 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ).A. 3,5B. 5,5C. 3,7D. 5,72. 解析 由于甲组中位数为65,故5y =,计算得乙组平均数为66,故3x =.故选A.题型140 统计图表与概率的综合2013年1. (2013陕西文5)对一批产品的长度(单位: 毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[)2025,上为一等品, 在区间[)1520,和区间[)2530,上为二等品, 在区间[)1015,和[]3035,上为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( ).毫米O0.060.040.02A. 0.09B. 0.20C. 0.25D. 0.452. (2013重庆文6) 下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[)2230, 内的概率为( ).A. 0.2B. 0.4C. 0.5D. 0.6开始结束3. (2013安徽文17)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙 (1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12x x ,,估计12x x -的值. 4.(2013广东文17)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?(3)在(2)中抽出的个苹果中,任取个,求重量在[)80,85和[)95,100中各有的概率.5. (2013四川文1812324,,,,这24个整数中都可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为的 概率()123i P i =,,; (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序 重复运行次后,统计记录了输出y 的值为()123i i =,,的频数 以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(123)i i =,,的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.6. (2013湖南文18)某人在如图所示的直角边长为米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过米.(1(2)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率.2014年1.(2014重庆文17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示:7632(I )求频率分布直方图中的值;(II )分别求出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中任选2人,求此2人的成绩都在[)7060,中的概率.2015年1.(2015全国Ⅱ文3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ).A. 逐年比较,2008年减少二氧化碳排放量的效果显著B. 2007年我国治理二氧化碳排放显现成效C. 2006年以来我国二氧化碳年排放量呈逐渐减少趋势D. 2006年以来我国二氧化碳年排放量与年份正相关2010年2012年2009年2013年2004年2006年2007年2008年2011年2005年190020001.解析由柱形图可以看出,我国二氧化硫排放量呈下降趋势,故年排放量与年份是负相关关系,依题意,需选不正确的.故选D.命题意图 本题考查统计的基本知识,要注意读懂题意和图表,理解相关性有正相关和负相关. 2.(2015安徽文17)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[)40,50,[)50,60,,[)80,90,[]90,100.(1)求频率分布图中的值;(2)估计该企业的职工对该部门评分不低于80分的概率;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.2. 解析 (1)由频率分布直方图可知,()0.0040.0180.02220.028101a +++⨯+⨯=, 解得0.006a =.(2)由频率估计概率,评分不低于80分的概率为()0.0220.018100.4+⨯=. (3)由频率分布直方图可知:在[)40,50内的人数为0.00410502⨯⨯=(人), 在[)50,60内的人数为0.00610503⨯⨯=(人).设[)40,50内的2人评分分别为12,a a ,[)50,60内的3人评分分别为123,,A A A ,则从[)40,60的受访职工中随机抽取2人,2人评分的基本事件有()12,a a ,()11,a A ,()12,a A ,()13,a A ,()21,a A ,()22,a A ,()23,a A ,()12,A A ,()13,A A ,()23,A A ,共10种.其中2人评分都在[)40,50的概率为110. 3.(2015全国Ⅱ文18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得出A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表(1)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.3. 分析 (1) 根据题意通过两地区用户满意度评分的频率分布直方图可以看出B 地区用户满意评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,A 地区用户的评分满意度比较分散;(2)由直方图得()A P C 的估计值为0.6.()B P C 的估计值为0.25,所以A 地区的用户满意度等级为不满意的概率大.解析 (1)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A 地区用户的满意度等级为不满意的概率大.记A C 表示事件:“A 地区用户的满意度等级为不满意”;B C 表示事件:“B 地区用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B P C 的估计值为()0.0050.02100.25+⨯=.所以A 地区用户的满意度等级为不满意的概率大.评注 高考中对统计与概率的考查,主要建立在实际问题中,特别要能读懂题意,分析题目中的数据,并对数据进行处理,在解答中要注意概率的计算方法.2016年1.(2016全国甲文18)某险种的基本保费为a (单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求()P A 的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求()P B 的估计值;(3)求续保人本年度平均保费的估计值.1.解析 (1)由所给数据知,事件A 发生当且仅当一年内出险次数小于,所以()60500.55200P A +==. (2)由所给数据知,事件B 发生当且仅当一年内出险次数大于等于且小于等于,所以3030()0.3200P B +==. (3)由题所求分布列为调查名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.1020.05 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.2.(2016山东文16)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若3xy …,则奖励玩具一个; ②若8xy …,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.2.解析 用数对(),x y 表示儿童参加活动先后记录的数,则基本事件空间Ω与点集(){},|,,14,14S x y x y x y=∈∈N N 剟剟一一对应.因为S 中元素个数是4416,⨯=所以基本事件总数为16.n =(1)记“3xy …”为事件A .则事件A 包含的基本事件共有个,即()()()()()1,1,1,2,1,3,2,1,3,1, 所以()5,16P A =即小亮获得玩具的概率为516. (2)记“8xy …”为事件B ,“38xy <<”为事件C .3421则事件B 包含的基本事件共有6个,即()()()()()()2,4,3,3,3,44,2,4,3,4,4,所以()63.168P B == 则事件C 包含的基本事件共有个,即()()()()()1,4,2,2,2,3,3,2,4,1,所以()5.16P C = 因为35,816> 所以小亮获得水杯的概率大于获得饮料的概率. 3.(2016全国乙文19)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示台机器在三年使用期内需更换的易损零件数,y 表示台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若19n =,求y 与x 的函数解析式;(2)若要求 “需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买19个还是20个易损零件?3.解析(1)当19x …时,192003800y =⨯=(元);当19x >时,()19200195005005700y x x =⨯+-⨯=-(元),所以3800,,195005700,,19x x y x x x ∈⎧=⎨-∈>⎩N N ….(2)由柱状图可知更换易损零件数的频率如表所示.所以更换易损零件数不大于18的频率为:,更换易损零件数不大于19的频率为:0.060.160.240.240.700.5+++=>,故n 最小值为19.(3)若每台都购买19个易损零件,则这100台机器在购买易损零件上所需费用的平均数为:10019200205002105004000100⨯⨯+⨯+⨯⨯=(元);若每台都够买20个易损零件,则这100台机器在购买易损零件上所需费用的平均数为 10020200105004050100⨯⨯+⨯=(元).因为40004050<,所以购买台机器的同时应购买19个易损零件.2017年1.(2017全国3卷文3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳1.解析由图易知月接待游客量是随月份的变化而波动的,有上升也有下降,所以选项A错误.故选A.评注与2016年的雷达图考法类似,近年来,对各类图形与图表的理解与表示成为高考的一个热点,总体来说,此类题型属于基础类题型,用排除法解此类问题会比较快,但要注意题目要求选择错误的一项,如果审题不仔细可能会造成失分!2.(2017全国2卷文19)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg)的某频率直方图如图所示. (1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg”,估计A的概率;(修图:下面表中原点处加数字0)箱产量/kg箱产量/kg。
2018年高考统计与概率专题(全国卷1文)2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B(全国卷1理)2.如图,正方形ABCD 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积.【解析】:()21212=82r S P S r ππ==,故而选B 。
(全国卷2理)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种(全国卷2文)6。
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB 。
63πC 。
42π D.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B 。
(天津卷)文(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。
从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)45(B)35(C)25(D)15(全国卷2文)11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C。
1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s=错误!。
(3)方差:s2=错误.【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示错误!,频率=组距×频率组距。
(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a.(2)数据x1,x2,…,x n的方差为s2。
①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( ×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(√)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.(×)1。
专题9概率与统计一、选择题1.【2018福建数学基地联考】在下列各图中,两个变量具有相关关系的图是A. (1)(2)B. (1)(3)C. (2)(4)D. (2)(3) 【答案】D【解析】(1)为函数关系;(2)显然成正相关;(3)显然成负相关;(4)没有明显相关性. 故选D.点睛:易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.【2018福建数学基地联考】等差数列1239,,......x x x x 的公差为1,若以上述数据1239,,......x x x x 为样本,则此样本的方差为A.B. C. 60 D. 30 【答案】A3.【2018福建数学基地联考】如图是2014年在某电视节目中七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A. 84,4.84B. 84,1.6C. 85,1.6D. 85,4【答案】C【解析】由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据84,84,86,84,87的平均数为=85,方差为[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]==1.6.故选C.4.【2018衡水金卷高三联考】2017年8月1日是中国人民解放军建军90周年,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米,面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是()A. B. C. D.【答案】B【解析】根据题意可估计军旗的面积大约是.故选B.5.【2018衡水永州一模】用计算机在间的一个随机数,则事件“”发生的概率为()A. 0B. 1C.D.【答案】C6.【2018湖南两市九月调研】若正方形ABCD边长为4,E为四边上任意一点,则AE的长度大于5的概率等于()A.B.C.D.【答案】D7.【2018广东珠海高三摸底】如图在ABC∆中,在线段AB上任取一点P,恰好满足)A.B.C.D.【答案】D设AB靠近A的三等分点为D,所以线段AB上任取一点P,恰好的点P在线段DB上,D.8.【2018吉林长春一模】已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A. 92,94B. 92,86C. 99,86D. 95,91 【答案】B【解析】 由茎叶图可知,中位数为92,众数为86. 故选B.9.【2018湖北重点高中联考】在矩形ABCD 中, 2AB =, 1AD =,点P 为矩形ABCD 内一点,则使得1AP AC ⋅≥的概率为( )A.18 B. 14 C. 34 D. 78【答案】D()A. B. C. D.【答案】C【解析】在区间[0,1]上随机选取两个数x和y,对应的区间为边长为1的正方形,面积为1,在此条件下满足y⩾|x的区域面积为本题选择C选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此即可求得概率.二、填空题11.【2018江西赣州红色七校联考】某书法社团有男生30名,妇生20名,从中抽取一个5人的样本,恰好抽到了2名男生和3名女生。
概率与统计热点一统计与统计案例以实际生活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出估计,判断.常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生数据处理能力.【例1】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元。
在机器使用期间,如果备件不足再购买,则每个500元。
现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数。
(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解(1)当x≤19时,y=3 800;当x〉19时,y=3 800+500(x-19)=500x-5 700。
所以y与x的函数解析式为y=错误!(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0。
46,不大于19的频率为0.7,故n的最小值为19。
(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1(3 800×70+4 300×20+4 800×10)=4 000,100若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1(4 000×90+4 500×10)=4 050.100比较两个平均数可知,购买1台机器的同时应购买19个易损零件。
升级增分训练概率与统计1.(2017·重庆适应性测试)据我国西部各省(区,市)2015年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间28,38)上的频率是()A.0.3B.0.4C.0.5 D.0.7解析:选A依题意,由图可估计人均地区生产总值在区间28,38)上的频率是1-(0.08+0.06)×5=0.3,选A.2.(2016·全国丙卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确,故D错误.3.(2016·福建省毕业班质量检测)某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x 与销售利润y 的统计数据如下表:由表中数据,得线性回归方程l :y =bx +a ⎝ ⎛⎭⎪⎪⎫b ^=∑i =1n(x i-x -)(y i-y -)∑i =1n(x i-x -)2,a ^=y --b ^x -,则下列结论错误的是( )A.b^>0 B.a ^>0C .直线l 过点(4,8)D .直线l 过点(2,5) 解析:选D 因为x =4,y =8, 所以回归直线l 过样本的中心点(4,8), 所以选项C 正确;因为b ^=1.4>0,a ^=y --b ^x -=8-1.4×4=2.4>0, 所以选项A 、B 都是正确的;y ^=1.4x +2.4,因为1.4×2+2.4=5.2≠5,所以点(2,5)不在直线l 上,所以选项D 是错误的,故选D.4.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,得到结果如下:x =72,y =71,∑i =16x 2i =79,∑i =16x i y i =1 481.则销量每增加1千箱,单位成本约下降________元(结果保留5位有效数字). 附:回归直线的斜率和截距的最小二乘法公式分别为:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x .解析:由题意知b^=1 481-6×72×7179-6×⎝ ⎛⎭⎪⎫722≈-1.818 2,a^=71-(-1.818 2)×72≈77.364, 所以y ^=-1.818 2x +77.364, 所以销量每增加1千箱, 则单位成本约下降1.818 2元. 答案:1.818 25.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(1)分别求出甲、乙两组数据的中位数,并比较两组数据的分散程度(只需给出结论);(2)甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(3)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 解:(1)甲组数据的中位数为78+792=78.5, 乙组数据的中位数为75+822=78.5.从茎叶图可以看出,甲组数据比较集中,乙组数据比较分散. (2)由茎叶图知,甲组中60,70)的人数为1,故c =0.01. 70,80)的人数为5人,故a =0.05.80,90),90,100]的人数分别为2人, 故b =0.02.(3)从甲、乙两组数据中各任取一个,得到的所有基本事件共有100个,其中满足“两数之差的绝对值大于20”的基本事件有16个,故所求概率P =16100=425.6.(2017·合肥质检)某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x 个月)和市场占有率(y %)的几组相关对应数据:(1)根据上表中的数据,用最小二乘法求出y 关于x 的线性回归方程; (2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月).附:b^=∑i =1nx i y i -n x -·y -∑i =1n x 2i -n x-2,a ^=y -b ^x -.解:(1)由数据得x -=15(1+2+3+4+5)=3, y -=15(0.02+0.05+0.1+0.15+0.18)=0.1,∑i =15x i y i =0.02+2×0.05+3×0.1+4×0.15+5×0.18=1.92.∑i =15x 2i =12+22+32+42+52=55.5x - y -=5×3×0.1=1.5, 5x -2=45,故b^=1.92-1.555-45=0.042.a^=0.1-0.042×3=-0.026,所以线性回归方程为y^=0.042x-0.026.(2)由上面的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加1个月,市场占有率都增加0.042个百分点.由y^=0.042x-0.026>0.5,解得x≥13,故预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.7.(2016·北京高考)某市居民用水拟实行阶梯水价,每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解:(1)由用水量的频率分布直方图,知该市居民该月用水量在区间0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).8.(2016·云南省统测)某校高二年级共有1 600名学生,其中男生960名,女生640名.该校组织了一次满分为100分的数学学业水平模拟考试.根据研究,在正式的学业水平考试中,本次成绩在80,100]的学生可取得A等(优秀),在60,80)的学生可取得B等(良好),在40,60)的学生可取得C等(合格),不到40分的学生只能取得D等(不合格).为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成30,40),40,50),50,60),60,70),70,80),80,90),90,100]七组加以统计,绘制成如图所示的频率分布直方图.(1)估计该校高二年级学生在正式的数学学业水平考试中成绩不合格的人数;(2)请你根据已知条件将下列2×2列联表补充完整.并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)解:(1)设抽取的100名学生中,本次考试成绩不合格的有x 人, 根据题意得x =100×1-10×(0.006+0.012×2+0.018+0.024+0.026)]=2. 据此估计该校高二年级学生在正式的数学学业水平考试中成绩不合格的人数为2100×1 600=32.(2)根据已知条件得2×2列联表如下:∵K 2=100×(12×34-6×48)260×40×18×82≈0.407<2.706,∴没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.。
概率与统计热点一常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列.解依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4).则P(Ai )=C i4⎝⎛⎭⎪⎫13i⎝⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P(A2)=C24⎝⎛⎭⎪⎫132⎝⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3+A4,且A3与A4互斥,∴P(B)=P(A3+A4)=P(A3)+P(A4)=C34⎝⎛⎭⎪⎫133×23+C44⎝⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4.且A1与A3互斥,A与A4互斥.则P(ξ=0)=P(A2)=827,P(ξ=2)=P(A1+A3)=P(A1)+P(A3)=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P(A 0+A 4)=P(A 0)+P(A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P(ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B.设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P(A)=P(ξ=1)P(η=3)+P(ξ=2)P(η=2)+P(ξ=3)·P(η=1) =14×827+1124×49+14×29=13, P(AB)=P(ξ=3)·P(η=1)=14×29=118,∴所求概率为P(B|A)=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)P(A)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4) =P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3)+P(A 1)P(B 2)· P(A 3)P(A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P(X =2)=P(A 1A 2)+P(B 1B 2)=P(A 1)P(A 2)+P(B 1)·P(B 2)=59,P(X =3)=P(B 1A 2A 3)+P(A 1B 2B 3)=P(B 1)P(A 2)P(A 3)+P(A 1)P(B 2)P(B 3)=29,P(X =4)=P(A 1B 2A 3A 4)+P(B 1A 2B 3B 4)=P(A 1)P(B 2)P(A 3)P(A 4)+P(B 1)P(A 2)P(B 3)P(B 4)=1081, P(X =5)=1-P(X =2)-P(X =3)-P(X =4)=881. 故X 的分布列为E(X)=2×59+3×29+4×81+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D 面试,求X的分布列和数学期望.解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P(A)=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511. ②X 的所有可能取值为0,1,2,P(X =0)=C 24C 26=25,P(X =1)=C 12C 14C 26=815,P(X =2)=C 22C 26=115.所以X 的分布列为E(X)=0×25+1×815+2×115=15=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解 (1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件:“A 地区用户的满意度等级为非常满意”; C B1表示事件:“B 地区用户的满意度等级为不满意”; C B2表示事件:“B 地区用户的满意度等级为满意”, 则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥, C =C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2) =P(C B1C A1)+P(C B2C A2) =P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,即P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,故P(C)=1020×1620+820×420=0.48. 热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i=8010=8, y =1n ∑n i =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元). 【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b ^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X). 解 (1)完成2×2列联表如下:K 2=10060×40×55×45≈8.249>6.635, 故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25. 由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P(X =i)=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3).X 的分布列为均值E(X)=np =3×25=5, 方差D(X)=np(1-p)=3×25×⎝⎛⎭⎪⎫1-25=1825.。
2018年高三数学高考考前综合提升训练:概率与统计(用时40分钟,满分80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32D .3,9,13,27,36,542.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x A.y ^=x -1 B.y ^=x +1 C.y ^=12x +88D.y ^=176 3.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 34.一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲、乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙掷骰子向上的点数的概率为( ) A.29 B.14 C.512D.125.在一次学业水平测试中,小明成绩在60~80分的概率为0.5,成绩在60分以下的概率为0.3,若规定考试成绩在80分以上为优秀,则小明成绩为优秀的概率为( ) A .0.2B .0.3C .0.5D .0.86.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( )A.116B.18C.14D.127.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( ) A.16 B.13 C.12D.388.在区间(-5,5)内随机地取出一个实数a ,使得不等式2+a -a 2>0成立的概率是( ) A.110 B.310 C.510D.7109.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( ) A.13 B.512 C.12D.71210.已知函数f (x )=log 2x ,若在[1,4]上随机取一个实数x 0,则使得f (x 0)≥1成立的概率为( ) A.13 B.12 C.23D.3411.从等腰直角△ABC 的斜边AB 上任取一点P ,则△APC 为锐角三角形的概率是( ) A .1 B.12 C.13D.1612.20名志愿者中女生8人,男生12人,按性别用分层抽样方法从中抽取5人,再从5人中抽取2人,则至少抽到一名女生的概率是( ) A.12 B.14 C.25D.710二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.甲、乙两名同学在5次数学测验中的成绩统计如茎叶图所示,则甲、乙两人5次数学测验的平均成绩依次为________.14.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为________.15.在长为16 cm 的线段AB 上任意取一点C ,以CA ,CB 为邻边长做一个矩形,则该矩形面积大于60 cm 2的概率为________.16.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心.在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.2018年高三数学高考考前综合提升训练:概率与统计(解析版)(用时40分钟,满分80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32D .3,9,13,27,36,54解析:选B.系统抽样是等间隔抽样,故选B.2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x A.y ^=x -1 B.y ^=x +1 C.y ^=12x +88D.y ^=176 解析:选 C.由已知得x =176,y =176,因为点(x ,y )必在回归直线上,代入选项验证可知C 正确.3.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3解析:选A.由相关系数的定义,以及散点图所表达的含义可知r 2<r 4<0<r 3<r 1,故选A. 4.一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲、乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙掷骰子向上的点数的概率为( ) A.29B.14C.512D.12解析:选C.依题意,所求的概率等于5+4+3+2+136=512,故选C.5.在一次学业水平测试中,小明成绩在60~80分的概率为0.5,成绩在60分以下的概率为0.3,若规定考试成绩在80分以上为优秀,则小明成绩为优秀的概率为( ) A .0.2 B .0.3 C .0.5D .0.8解析:选A.小明成绩为优秀的概率P =1-0.5-0.3=0.2,故选A.6.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( )A.116B.18C.14D.12解析:选B.依题意可知样本点的中心为⎝ ⎛⎭⎪⎫34,38, 则38=13×34+a ,解得a =18. 7.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( ) A.16 B.13 C.12D.38解析:选C.依题意,将题中的两张卡片排在一起组成两位数共有6种情况,其中奇数有3种情况,因此所求的概率等于36=12,故选C.8.在区间(-5,5)内随机地取出一个实数a ,使得不等式2+a -a 2>0成立的概率是( ) A.110 B.310 C.510D.710解析:选B.2+a -a 2>0, 得-1<a <2. 所以由几何概型知其概率为2--5--=310,故选B.9.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( ) A.13 B.512 C.12D.712解析:选A.从2名男生和2名女生中任选两人在星期六、星期日参加某公益活动,每天一人,共有12种选法,其中星期六安排一名男生,星期日安排一名女生的结果有4种,所求概率为412=13,故选A.10.已知函数f (x )=log 2x ,若在[1,4]上随机取一个实数x 0,则使得f (x 0)≥1成立的概率为( ) A.13 B.12 C.23D.34解析:选C.由f (x 0)=log 2x 0≥1,解得x 0≥2,故所求概率是4-24-1=23,故选C.11.从等腰直角△ABC 的斜边AB 上任取一点P ,则△APC 为锐角三角形的概率是( ) A .1 B.12 C.13D.16解析:选B.依题意,取AB 的中点M ,连接CM ,则CM ⊥AB ,结合图形分析可知,当点P 介于点B ,M (不含点B ,M )之间时,△APC 为锐角三角形,因此所求的概率等于12,故选B.12.20名志愿者中女生8人,男生12人,按性别用分层抽样方法从中抽取5人,再从5人中抽取2人,则至少抽到一名女生的概率是( ) A.12 B.14 C.25D.710解析:选D.每个人被抽到的概率为520=14,由分层抽样知,女生要抽8×14=2人,男生要抽3人,记女生为n 1,n 2,记男生为m 1,m 2,m 3,现从中抽取2人,则总的基本事件为(n 1,n 2),(n 1,m 1),(n 1,m 2),(n 1,m 3),(n 2,m 1),(n 2,m 2),(n 2,m 3),(m 1,m 2),(m 1,m 3),(m 2,m 3),共10个,至少有一个女生的基本事件数为7个,故概率P =710,故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.甲、乙两名同学在5次数学测验中的成绩统计如茎叶图所示,则甲、乙两人5次数学测验的平均成绩依次为________.解析:由茎叶图可得x 甲=72+74+88+85+965=83,x 乙=77+79+81+93+905=84.答案:83,8414.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为________.解析:由题知组距为10,根据频率分布直方图得(0.04+0.03+0.02+2a )×10=1,解得a =0.005. 答案:0.00515.在长为16 cm 的线段AB 上任意取一点C ,以CA ,CB 为邻边长做一个矩形,则该矩形面积大于60 cm 2的概率为________.解析:设CA =x (x ∈(0,16)),则CB =16-x ,故矩形的面积S =x (16-x ),令x (16-x )>60,解得6<x <10,故所求概率P =10-616=14.答案:1416.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心.在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 解析:依题意得知,所求的概率等于⎝ ⎛⎭⎪⎫π×12×2-12×43π×13π×12×2=23.2答案:3。