一次函数与正比例函数
- 格式:ppt
- 大小:1.44 MB
- 文档页数:17
正比例解析式
正比例函数的解析式:y=kx+b(k、b为常数,且k≠0)。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。
其中核心是对应法则f,它是函数关系的本质特征。
《正比例函数与一次函数》知识点归纳《正比例函数》知识点表达式:y=kx (心0的常数)图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,说明:正比例函数y=kx的图像也叫做“直线y=kX';性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;增减性及图像走向:k>0时,y随x增大而增大k<0时,y随x增大而减小,直线从左往右由高降低;,直线从左往右由低升高;1、y与x成正比例:y=kx (k工0);2、y 与x+ a 成正比例:y=k(x + a)(k 工0);3、y + a与x成正比例:y + a=kx (k工0);4、y + a 与x+ b 成正比例:y + a= k(x + b)(k 工0);《一次函数》知识点表达式:y=kx+b (心0, k, b为常数)注意:(1)k M0,自变量x的最高次项的系数为1 ;(2)当b=0时,y=kx,y叫x的正比例函数。
四、成正比例关系的几种表达形式:的直线;2、、图像:一次函数y=kx+b (k丰0, b丰0)的图像是:一条经过(」,0)和k (0, b)的直线。
说明:(1)一次函数y=kx+b (k工0, b工0)的图像也叫做“直线y=kx+b” ;(2)直线y=kx+b与x轴的交点坐标是:(-丄,0);k直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0, b>0时,直线经过一、二、三象限;(2)、k>0, b< 0时,直线经过一、三、四象限;(3)、k < 0,b>0时,直线经过一、二、四象限;(4)、k < 0, b < 0时,直线经过二、三、四象限;b/02、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k工0, b工0)中“ k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)I k I的作用:l k I决定直线的倾斜程度I k I越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;I k I 越小,直线越平缓,直线越远离 y 轴,与x 轴的夹角越小;(3) b 的作用:b 决定直线与y 轴的交点位置b>0时,直线与y 轴正半轴相交(或与y 轴的交点在x 轴的上方);b <0时,直线与y 轴负半轴相交(或与y 轴的交点在x 轴的下方);(4) k 和b 的共同作用:k 和b 共同决定直线所经过的象限四、 直线的平移规律:直线y=kx+b 可以由直线y=kx 平移得到当b>0时,将直线y=kx :向上平移b 个单位得到直线y=kx+b ;当b < 0时,将直线y=kx :向下平移I b I 个单位得到直线y=kx+b ;五、 两条直线平行和垂直: 直线 m y=ax+b;直线n: y=cx+d(1)当a=c , b M d 时,直线m//直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x 平行。
函数教学目标:理解函数的概念,会求函数值本次学案余留的作业,请家长督促学生完成,并于下次课带来给老师检查。
家长签名: 1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4.【例1-1】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例1-2】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值.谈重点 函数中变量的对应关系 当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 谈重点 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.3.自变量的取值范围(1)使函数有意义的自变量的全体取值叫做自变量的取值范围. (2)自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.【例3】 若等腰三角形的周长为50 cm ,底边长为x cm ,一腰长为y cm ,y 与x 的函数关系式为y =12(50-x ),则变量x 的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.(1)列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.(2)图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.(3)解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.【例4】你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是().5.怎样判定函数关系(1)从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x和y,对于x每一个确定的值,y都有且只有一个值与之对应,当x取不同的值时,y的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.(2)从表格中判定函数 根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.(3)从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.【例5-2】 下列表示y 是x 的函数图象的是( ).练习:一、选择题1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y =12-x 中的y 与xA.1个B.2个C.3个D.4个2.对于圆的面积公式S =πR 2,下列说法中,正确的为( ) A.π是自变量 B.R 2是自变量 C.R 是自变量 D.πR 2是自变量3.下列函数中,自变量x 的取值范围是x ≥2的是( )A.y =x -2B.y =21-x C.y =24xD.y =2+x ·2-x4.已知函数y =212+-x x ,当x =a 时的函数值为1,则a 的值为( ) A.3 B.-1 C.-3 D.15.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( )二、填空题6.轮子每分钟旋转60转,则轮子的转数n与时间t(分)之间的关系是__________.其中______是自变量,______是因变量.7.计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为______,其中______是自变量,______是因变量.8.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为______.9.已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为______.10.已知等腰三角形的周长为20 cm,则腰长y(cm)与底边x(cm)的函数关系式为______,其中自变量x的取值范围是______.三、解答题11.如图所示堆放钢管.(1)填表层数 1 2 3 (x)钢管总数(2)当堆到x层时,钢管总数如何表示?13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.14.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s ,到达坡底时小球的速度达到40 m/s.(1)求小球的速度v (m/s)与时间t (s)之间的函数关系式; (2)求t 的取值范围;(3)求3.5 s 时小球的速度;(4)求n (s)时小球的速度为16 m/s.2一次函数与正比例函数教学目标:理解一次函数与正比例函数的概念及关系,会求函数的解析式本次学案余留的作业,请家长督促学生完成,并于下次课带来给老师检查。
一次函数知识要点详解1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.说明: (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k≠0时,y=b 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.2 确定一次函数的关系式根据实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x 的代数式表示y .3 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.4 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k b,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.5 一次函数y=kx+b (k ,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大; ②k﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x向上平移一个单位得到的.6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.7 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.如点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.8 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.9 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.10 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.如已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x .说明: 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).11。
初中数学一次函数知识点总结:一次函数与正比例函数的概念一般的,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数。
特别的,当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
二、一次函数的图像:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过第一、二、三象限;当k>0,b<0, 这时此函数的图象经过第一、三、四象限;当k<0,b>0, 这时此函数的图象经过第一、二、四象限;当k<0,b<0, 这时此函数的图象经过第二、三、四象限;当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
正比例函数与一次函数的图象与性质1,正比例函数2,一次函数y=kx+b的性质(对比正比例函数的性质和图像的性质)3,函数是通过的观念研究已学过或未学过的知识。
4,变量的定义是:常量的定义是:5,函数的定义:则函数的本质是:6,在函数的定义中,自变量x在“在某一范围内”取值,这就是自变量的取值范围,它有两层含义,分别是:(1)(2)7,函数解析式是式子,写函数解析式必写8,函数的表示方法有种,它们分别是:;在运用时不是单独运用某一种,而综合运用它们。
9,由函数解析式画函数图像,一般步骤是10,一次函数的定义是正比例函数的定义是11,一次函数y=kx+b的平移:1)在y轴如何平移2)在x轴如何平移12,正比例函数是一次函数的特例,特殊在什么地方13,一次函数y=kx+b的趋势是由什么决定的如何决定的14,函数y1=k1x+b1与y2=k2x+b2: 1)平行的条件2)相交的条件3)重合的条件15,作图与作题正比例函数的图像是由决定的而一次函数的图像是由决定的16,一次函数是函数中最简单、最基本的一种函数。
函数与方程不同,方程是从静态的角度看待问题,是求方程所代表的未知数,如x+y=1,就方程而言一个二元一次方程没有意义,要想有意义就要是方程组,才能有一对实数解,这个解用平面直角坐标系来解释就是一个点;而函数是运用运动的观念来研究问题的,是从动态的角度看待问题的,也就是说自变量在某一变化过程中有一定的取值范围,从函数图像上看其就是点的集合,运用方程思想或方法只能求出一点,因此要想确定函数解析式或画出函数图像就要知道函数解析式中自变量的系数与常数即可,这就是待定系数法的由来。
17,待定系数法的定义是:待定系数法是解出函数解析式的方法,是运用方程思想解出函数解析式中未知的系数与常数,其步骤有:(1)根据图像或条件设定函数解析式;(2)运用方程思想方法解出未知的系数与常数。
那么一次函数系数的确定需要的条件是:正比例函数系数的确定需要的条件是:18,一次函数与二元一次方程组二元一次方程组有解是二元一次方程组无解是阅读——函数与方程的联系与区别:区别:(1)方程有若干个未知数,而函数则有若干个变量;(2)方程用等式表示若干个未知数的关系,而函数既可以用等式表示变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。