一种基于均方比值的人致结构振动加速度响应信号筛选方法
- 格式:pdf
- 大小:935.53 KB
- 文档页数:6
1. 试述强震动观测的主要任务。
针对各类场地和工程结构布设强震动观测台网,获取真实可靠的强地面运动记录和工程结构地震反应资料,为研究强地面运动的特性和工程结构抗震设计方法与技术提供重要的基础资料。
①获取强地面运动的定量记录②获取工程结构的地震反应数据③强震动观测资料是地震工程学与近场地震学研究和发展的基础资料④应用领域的进一步扩展----地震应急决策2. 强震动观测有哪些特点,它与测震观测有何区别?①观测活动服务科研目标不一样;可能引起工程结构破坏和生命财产损失的强烈地震动与监测地震活动性、测定地震的震源参数、研究地壳和内部结构②观测记录和感兴趣的物理量不一样;测量加速度(幅值、频谱、持续时间)与测量位移、地震波的到达时间(幅值、初动方向、震源位置、)③记录工作方式不一样;触发运行、无人值守与连续记录、高灵敏度、有/无人值守④台站设置位置不完全一样。
自由场地、各类物和结构物与背景噪声极小、基本均匀分布3. 试述强震动观测的发展趋势。
台网规模迅速扩大;大震预警系统和快速反应系统迅速发展;基于强震动观测的震害快速评估系统;布设各类观测台阵;4. 强震仪的基本组成和基本技术要求。
强震动仪主要包括拾振器(加速度计)和记录器两部分,拾振器直接测量地震运动的装置,记录器控制强震动仪的工作状态,并记录拾振器测量的测点运动;①较宽的频带,至少应为0 - 50 赫兹②能记录的最大加速度值应不低于1 gn=0.01g=0.001gal=0.001m/s^2③仪器应能连续记录多次地震动④触发运行⑤稳定可靠、维护方便、故障率低5. 试说明数字式强震仪数据采集单元组成和基本参数数字强震动仪的数据采集单元主要由模数转换器(ADC)和数字信号处理芯片(DSP)组成。
技术指标:采样率、噪声、动态范围、分辨率、频响特性采样率:每秒钟采样数越高越好但是所占存储空间大噪声:无传感器输入情况下记录器本身的采样输出值大小,用噪声均方根值nR表示动态范围:满量程输入Ae和噪声(均方根值)nR的常用对数乘以20,单位dB ,DR=20*lg(Ae/nR),不低于90dB强震仪数据采集单元之动态范围D RD R=20lg(Ae/n R)Ae分辨率:满量程输入时,记录器采样数据的二进制编码输出扣除其噪声影响后的有效位数,不应小于16位频响特性:幅频特性曲线,幅度与频率,在0-50Hz,平直线相频特性曲线,相移与频率,在0-50Hz,斜直线6.试说明触发单元工作原理答题要点:触发功能完全由软件控制,一般有多种触发方式可选。
传感器类型:根据传感器各构成部分工作方式的不同,可将传感器分成不同的类型;依据接收方式不同,有相对式和绝对式(惯性式)之分;依据机电转换输出量的不同又有发电机型和参数型两种类型。
测量电路可输出不同的关系特性,以适应不同的测试要求。
如位移(间隙)电压特性、速度电压特性、加速度电压特性等等。
所谓相对接收方式,是指以传感器外壳为参考坐标,借助于顶杆或间隙的变化来直接接收机械振动量的一种工作方式。
获得的结果是以外壳为参考坐标的相对振动值。
惯性接收方式通过质量-弹簧单自由度振动系统接收被测振动量,工作时,其外壳固定在振动物体上,整个传感器(包括质量块在内)跟着振动物体一起振动,但其中的机电转换环节---线圈由于是用极为柔软的弹簧片固定在外壳上的,它的自振频率比振动体的振动频率低的多,因而对振动体而言便处于相对静止的状态,换句话说,线圈是固定不动的,是一个绝对参考坐标系统,所以测得的结果是绝对振动值。
惯性接收方式有时也称为地震式。
传感器的性能指标灵敏度:指沿着传感器测量轴方向对单位振动量输入x可获得的电压信号输出值u,即s=u/x。
与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u可加辨认的最小机械振动输入变化量△x的大小。
为了测量出微小的振动变化,传感器应有较高的灵敏度。
使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。
其两端分别为频率下限和上限。
为了测量静态机械量,传感器应具有零频率响应特性。
传感器的使用频率范围,除和传感器本身的频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。
动态范围:动态范围即可测量的量程,是指灵敏度随幅值的变化量不超出给定误差限的输入机械量的幅值范围。
在此范围内,输出电压和机械输入量成正比,所以也称为线性范围。
动态范围一般不用绝对量数值表示,而用分贝做单位,这是因为被测振值变化幅度过大的缘故,以分贝级表示使用更方便一些。
相移:指输入简谐振动时,输出同频电压信号相对输入量的相位滞后量。
第三章 机械设备精密点检技术介绍设备状态管理的核心内容是设备状态的监测与分析。
点检人员主要的工作就是通过日常的点检、检测来监测设备的状态,及时、准确地发现故障,寻找出故障源,从而实现视情维修。
这就对现场的设备管理人员(点检人员)提出了较高的要求。
经过多年的改造,我们拥有了国内、外一流的设备,设备的结构越来越复杂,精度越来越高,仅仅靠传统的“眼看、手摸、耳听”等五官来检测设备的状态,无法及时有效地发现设备的故障,已不能满足现在设备状态管理的需要。
本章主要介绍用振动检测的方法来检测设备(部件)的状态,并预测设备状态的发展趋势。
内容主要包括:用测振仪、分析仪等振动检测仪的日常检测,来实施简易的诊断,发现设备的故障;对于复杂的设备再通过频谱分析等手段实现精密点检,分析故障的原因,找出故障源。
3.1 简易振动诊断基础知识3.1.1 振动基础知识3.1.1.1振动的种类及其特点我们可以从不同的角度来考察振动问题,常把机械振动分成以下几种类型:1.按振动规律分类按振动的规律,一般将机械振动分为如图3-1所示几种类型。
2.按产生振动的原因分类机械振动分为三种类型:(1)自由振动 给系统一定的能量后,系统所产生的振动。
若系统无阻尼,则系统维持等幅振动;若系统有阻尼,则系统为衰减振动。
(2)受迫振动 元件或系统的振动是由周期变化的外力作用所引起的,如不平衡、不对中所引起的振动。
(3)自激振动 在没有外力作用下,只是由于系统自身的原因所产生的激励而引起的振动,如油膜振荡、喘振等。
因机械故障而产生的振动,多属于受迫振动和自激振动。
3.按振动频率分类按着振动频率的高低,通常把振动分为3种类型。
3.1.1.2 振动三要素及其在振动诊断中的应用构成一个确定性振动有3个基本要素,即振幅d,频率f和相位φ。
振幅、频率、相位,这是振动诊断中经常用到的三个最基本的概念。
现在,我们以确定性振动中的简谐振动为例,来说明振动三要素的概念、它们之间的关系以及在振动诊断中的应用。
相关激励作用下随机结构振动响应的统计分析廖庆斌,李舜酩,辛江慧,郑娟丽(南京航空航天大学能源与动力学院,江苏南京210016)摘要:应用随机过程理论,以能量为变量,分析了随机结构振动响应的统计特性。
结构受相关激励作用时,通过输入激励的解相关方法,将作用在结构上的相关激励转变为各个不相关激励的作用;分析结构的振动响应的统计特性时,计及响应特征频率的相关性,在响应特征频率满足高斯正交总体的假设下,推导出了随机结构振动响应分析的统计分析表达式。
应用设计的实验件和试验验证了所提出的统计分析的正确性,通过和已存在的统计分析结果的比较,表明了统计分析具有更高的分析精度,能够定性和定量的给出随机结构振动响应的统计变化情况。
关键词:随机结构;相关激励;统计分析;本征正交分解;统计能量分析中图分类号:T B53;O324 文献标识码:A 文章编号:1004-4523(2008)05-0429-07引 言结构的动力响应特性与激励频率有很大的关系,在激励频率较低时,结构只有很少的前几阶模态被激起,这样应用有限元或者边界元方法即可以精确地得到系统动态响应,当激励频率较高(中频或者高频)时,结构的模态被大量的激起,此时要准确地计算其振动响应变得非常困难[1]。
解决中、高频振动的有效方法是Lyon等人提出的统计能量分析(Statistical Energy Analysis:SEA)方法[2],他将随机动力系统划分为数量不多的动力子结构,然后求解各个子系统的振动能量,进而得到动力系统的振动响应。
在分析系统的中、高频振动响应时,SEA方法包含有振动能量的平均分布、系统响应的频带平均以及系统响应的随机总体平均等假设[1,3],因此, SEA方法仅仅是结构动力响应的估计。
Kompella 和Bernhar d等人通过实验发现[4],由同一条生产线生产出来的98辆型号相同的汽车,对其进行响应分析(振动和噪声水平分析)时,车辆的动态响应敏感的依赖于制造细节的变化。
随机振动均方根加速度计算方法研究及应用为提高测量精度,在机械设备及结构系统中,对载荷及位移等随机振动信号进行采样并完成有效的分析,均方根加速度(Root mean square acceleration,RMS-A)是商用振动分析软件中常用的参数。
RMS-A指标反映加速度在时间上的变化情况,为检测机械设备及结构系统中随机振动信号的性能提供了重要依据。
因此,准确计算RMS-A 指标,是研究机械设备及结构系统的关键步骤。
近年来,随着计算机技术的不断发展,研究者们致力于探索可以更高效地计算均方根加速度的方法。
例如,在基于短时傅立叶变换的RMS-A计算方法中,时域信号通过短时傅立叶变换变换成频域信号,再根据加速度谱密度函数的定义,计算均方根加速度,这种方法简单直观,但存在计算复杂性大、算法可靠性低等问题。
基于平滑贝塞尔滤波器的RMS-A计算方法,在保证计算精度的同时,解决了上述问题。
据报道,基于此方法,包括美国芝加哥大学(University of Chicago)、美国拉瓜迪亚国立大学(Universidad Nacional de La Guajira)在内的研究者们实现了对振动信号RMS-A 计算的高精度检测。
综上所述,尽管机械设备及结构系统中随机振动信号的采样,以及RMS-A指标的计算一直以来都是重要的研究课题,但由于计算复杂性大,算法可靠度较低等问题,难以实现有效的采样分析。
本文介绍了基于平滑贝塞尔滤波器的RMS-A计算方法,并分析了美国芝加哥大学、美国拉瓜迪亚国立大学研究者们实现的振动信号RMS-A的高精度检测。
该方法可以有效地解决计算复杂性大、算法可靠性低等问题,提升测量精度,为研究机械设备及结构系统提供有效的采样分析。
以上就是本文对基于平滑贝塞尔滤波器的RMS-A计算方法研究及应用的报道,希望能够对研究者们研究振动特性及系统性能方面提供参考。
随机振动加速度估值公式
随机振动加速度的估值可以通过多种方法进行计算和估算。
其中一种常见的方法是使用均方根加速度(RMS加速度)来估计。
RMS 加速度是指在一定时间范围内,加速度信号的平方的时间平均值的平方根。
它可以通过以下公式进行计算:
RMS加速度= sqrt(1/T ∫(a(t)^2)dt)。
其中,T表示观测时间的长度,a(t)表示在时间t时刻的加速度信号。
这个公式可以用来估计在一段时间内的振动加速度的均方根值。
另外,还可以使用峰值加速度来进行估算。
峰值加速度是指在振动信号中,加速度达到的最大值。
通常情况下,工程师会根据实际情况选择合适的安全系数来估算振动的峰值加速度。
这种方法的计算公式比较简单,直接取振动信号中的最大值即可。
除此之外,还有一些统计方法和频域分析方法可以用来估算随机振动的加速度,比如使用功率谱密度分析等方法。
这些方法可以帮助工程师更全面地了解振动信号的特性,并进行合理的估算。
总的来说,估算随机振动加速度的公式可以根据实际情况和所采用的方法而有所不同。
需要根据具体的振动信号特性和应用场景选择合适的方法进行估算。
**workbench随机振动功率谱密度转换及均方根加速度计算**随机振动在工程领域中有着广泛的应用,而对于工作台(workbench)的随机振动功率谱密度转换及均方根加速度计算,是进行振动分析和评估的重要步骤。
本文将按照从简到繁的方式,深入探讨workbench 随机振动功率谱密度转换及均方根加速度计算的过程和原理,帮助您全面理解和掌握这一技术。
一、工作台(workbench)随机振动功率谱密度转换1. 什么是随机振动功率谱密度?随机振动功率谱密度是描述随机振动信号的频率内容和能量分布特性的一种方法。
在工程中,通常使用功率谱密度来描述结构在振动过程中的能量分布情况,它反映了结构在不同频率下的振动能量大小。
2. 工作台(workbench)随机振动功率谱密度转换的步骤:- 数据采集:首先需要对工作台进行振动信号数据的采集,一般采用加速度传感器等装置来获取振动信号。
- 信号预处理:对采集到的振动信号进行预处理,包括去噪、滤波等操作,以确保信号的准确性和可靠性。
- 功率谱密度计算:利用相应的算法和工具对预处理后的振动信号进行功率谱密度的计算,得到频率内容和能量分布情况。
- 结果分析:对计算得到的功率谱密度进行分析和解释,以评估工作台在不同频率下的振动情况。
二、工作台(workbench)均方根加速度计算1. 什么是均方根加速度?均方根加速度是描述振动信号幅值大小的重要参数之一,它可以反映结构在振动过程中的瞬时加速度幅值。
在工程评估和设计中,常常使用均方根加速度来分析和评估结构的振动特性。
2. 工作台(workbench)均方根加速度计算的方法:- 振动信号采集:同样需要对工作台进行振动信号数据的采集,通常使用加速度传感器等装置来获取振动信号。
- 信号处理:对采集到的振动信号进行处理,包括去除直流分量、噪声滤波等操作,以得到准确的振动信号。
- 均方根加速度计算:利用相应的算法和工具对处理后的振动信号进行均方根加速度的计算,得到结构在振动过程中的瞬时加速度幅值大小。
振动测试技术振动测试技术孙利民编郑州⼤学2004.6振动测试技术⽬录第1 章振动测试技术概论 (1)1.1振动试验的⽬的和意义 (1)1.2试验⽅法和内容 (3)1.3⼯程振动中的被测参数 (6)1.4⼯程振动测试及信号分析的任务 (13)1.5⼯程振动测试⽅法及分类…………………………………………15 第2 章机械式传感器⼯作原理 (17)2.1传感器的作⽤ (17)2.2相对式机械接收原理 (18)2.3惯性式机械接收原理 (18)2.4⾮简谐振动测量时的技术问题……………………………………26 第3 章机电式传感器⼯作原理 (29)3.1振动传感器的分类 (29)3.2电动式传感器 (30)3.3压电式传感器 (32)3.5 参量型传感器………………………………………………………41 第4 章振动测量系统………………………………………………………I474.1微积分放⼤器 (47)4.2滤波器………………………………………………………………544.3压电加速度传感器测量系统 (60)4.4电涡流式传感器的测量系统 (65)4.5动态电阻应变仪 (67)4.6参量型传感器测量系统...................................................73 第5 章激振设备 (77)5.1激振器……………………………………………………………775.2振动台……………………………………………………………805.3液压式振动台 (82)5.4其它激振⽅法............................................................84 第6 章基本振动参数的测量及仪器设备 (87) I6.1简谐振动频率的测量 (87)6.2机械系统固有频率的测量 (92)6.3简谐振动幅值的测量 (96)6.4同频简谐振动相位差的测6.5衰减系数的测量…………………………………………………103 第7 章模拟平稳信号分析 (109)7.1波形分析的简单⽅法 (109)7.2模拟式频率分析 (114)7.3 模拟式实时频谱分析简介................................................120 第8 章振动测试仪器的校准 (123)8.1分部校准与系统校准 (123)8.2静态校准法 (125)8.3绝对校准法 (126)8.4相对校准法…………………………………………………………127 第9章数字信号分析 (131)9.1基本知识……………………………………………………………1319.2离散傅⾥叶变换 (134)9.3快速傅⾥叶变换II(F F T) (137)9.4泄漏与窗函数 (141)9.5噪声与平均技术 (145)9.6数字信号分析仪的⼯作原理及简介....................................148 第10 章实验模态分析简介 (154)10.1基本概念 (154)10.2多⾃由度系统的传递函数矩阵和频响函数矩阵………………10.3传递函数的物理意义 (162)10.4多⾃由度系统的模态参数识别 (164)10.5模态分析中的⼏种激振⽅法 (170)10.6模态分析的实验过程 (172)II第1 章概述1.1 振动试验的⽬的和意义唯物史观认为,世界上的⼀切都在运动着,运动是物质存在的形式。