MATLAB在机械振动信号中的应用
- 格式:doc
- 大小:798.00 KB
- 文档页数:12
2018年第1期时代农机TIMES AGRICULTURAL MACHINERY第45卷第1期Vol.45No.12018年1月Jan.2018作者简介:刘鸿智(1988-),男,辽宁沈阳人,硕士研究生,助教,主要研究方向:机械设计及理论、机械制造。
基于MATLAB 的机械振动分析研究刘鸿智(,458030)摘要:矩阵工厂的应用是在关于机械振动的问题应用,这说明矩阵实验室的应用可以用来解决一些在机械振动方面的比较复杂的计算和作图等问题,并且很方便且高效。
矩阵实验室对解决机械振动方面的问题有着很多的作用。
所以说,在一些机械振动方面的问题解决可以大力推广矩阵实验室的使用。
矩阵实验室对机械振动的一些系统理论的分析或研究有着一些特定的步骤。
一些系统运用矩阵实验室软件中的数值积分法来对该系统作出分析。
矩阵实验室软件可以用来计算也可以用来编程,在一些问题的提出和表达通常会采用数学描述方法来对一些机械振动的问题进行计算,而不是用传统的语言程序进行处理。
这样会使矩阵实验室成为一些应用程序得到良好的开发。
关键词:机械振动;MATLAB 软件;分析矩阵实验室是对于机械振动问题处理及数值计算的分析软件。
这个软件可以将一些数值及函数调用出来,对相关问题进行运算,这种特征对一些机械振动中经常会遇到的问题及所需要的公式计算提供较为便捷的途径及可以比较方便的去对机械振动涉及到的问题进行计算。
因此对于机械专业并且在学习机械振动又换问题过程中应当采用矩阵实验室软件,使得部分专业人员能够使用矩阵实验室软件进而对专业理论知识进行有效研究,也可以利用矩阵实验室软件来解决机械振动实际上所存在的问题。
机械振动是一个比较普遍的现象,是通过物体的来回运动而使物体发生位移等物理运动。
矩阵实验室软件的出现给一些工程问题的研究与解决带来了很大程度上的方便。
在其它应用软件的使用过程中,一些数值计算的问题可能没有那么容易操作,可能一些数据也没有那么可视化,而矩阵实验室相比之下有很大的改善,给一些机械问题带来很多的便利。
matlab在机械控制中的应用MATLAB是指矩阵实验室,它是一款高级的数学程序设计语言,是机械控制中广泛应用的工具之一。
此外,MATLAB还是一款强大的计算机辅助工程工具,可以帮助机械控制工程师快速设计、分析和仿真机械系统的性能。
一、MATLAB在机械控制中的基本功能1.操作矩阵和向量:这是MATLAB最基本的功能,它可以实现对矩阵和向量的快速操作,包括加、减、乘、除、求逆、求转置等。
2.绘制图形和数据可视化:MATLAB可以绘制各种各样的图像,例如曲线图、柱状图、散点图等。
此外,MATLAB还提供了强大的数据可视化功能,可以将复杂的数据转化为易于理解和分析的图像。
3.数值分析和优化:MATLAB提供了广泛的数值分析和优化工具,可以帮助机械控制工程师优化机械系统的性能并减少能耗。
4.仿真和建模:MATLAB可以用于建模和仿真机械系统的动力学、控制系统和传感器。
通过MATLAB的仿真和建模工具,机械控制工程师可以快速理解机械系统的行为和性能。
1.自动控制系统自动控制系统是机械控制中最重要的技术之一。
MATLAB可以帮助机械控制工程师设计、分析和优化自动控制系统的性能。
它可以自动生成代码并进行模拟,以验证和测试自动控制系统的性能。
2.机械系统设计和优化3.传感器设计和测试MATLAB可以用于设计和测试各种传感器,例如温度传感器、压力传感器等。
它可以生成传感器的模型并进行仿真,以验证传感器的性能和准确性。
4.运动控制和机器人控制1.快速开发和测试MATLAB提供了一些强大的工具和函数库,可以帮助机械控制工程师快速开发、测试和优化机械控制系统。
这可以大大减少开发和测试时间,提高机械控制系统的可靠性和性能。
2.易于使用MATLAB是一种易于学习和使用的数学程序设计语言,即使是对编程不熟悉的工程师也可以使用它进行机械控制系统的建模和仿真。
此外,MATLAB提供了丰富的手册和教程,可以帮助工程师更快地掌握MATLAB的技术和工具。
MATLAB在机械设计与动力学仿真中的应用实例1. 引言机械设计与动力学仿真是现代工程领域非常重要的一个环节。
通过仿真软件可以在设计前对机械系统进行全面的分析和验证,大大减少了实际试制的时间和成本。
而MATLAB作为一种功能强大的科学计算软件,被广泛应用于机械设计与动力学仿真中。
本文将通过几个实际应用例子来展示MATLAB在这一领域的应用。
2. 机械结构分析机械结构的分析是机械设计的基础。
MATLAB提供了各种方法和工具,可以帮助工程师对机械结构进行静力学和动力学分析。
例如,可以利用MATLAB的有限元分析工具对机械结构进行强度校核。
通过输入结构的几何参数和材料性质,MATLAB可以计算出结构的应力和变形情况,从而判断是否满足设计要求。
此外,还可以利用MATLAB的多体动力学分析工具对机械结构的振动和冲击响应进行模拟和优化,以确保结构的安全性和可靠性。
3. 机械传动系统分析机械传动系统是机械设备中的重要组成部分,对于许多机械设备的运转效果和精度起着至关重要的作用。
MATLAB可以对不同类型的机械传动系统进行仿真分析,从而帮助工程师优化设计参数和减小误差。
例如,可以利用MATLAB的信号处理工具箱对传动系统中的振动和噪音进行分析和消除,提高系统的稳定性和准确性。
此外,还可以利用MATLAB的优化工具箱对传动系统的传动比、齿轮模数等参数进行优化,以满足设计要求。
4. 机械控制系统仿真机械控制系统在现代机械设备中起着至关重要的作用。
MATLAB提供了强大的控制系统设计和仿真工具,可以帮助工程师进行各种机械控制系统的仿真分析和优化设计。
例如,可以利用MATLAB的控制系统工具箱对机械控制系统的稳定性和性能进行评估和改进。
此外,还可以利用MATLAB的仿真工具对机械控制系统进行实时仿真,通过改变输入信号,观察输出响应,从而优化控制算法和参数。
5. 系统性能优化在机械设计与动力学仿真中,系统性能优化是一个重要的目标。
matlab在机械原理中的应用实例在机械原理中,MATLAB是一种常用的计算工具,可以应用于诸多领域,包括机械设计、力学分析、动力学仿真等。
下面将介绍几个MATLAB在机械原理中的应用实例。
1.机构设计与分析MATLAB可以用于机构的设计和分析,例如平面机构、空间机构、曲柄机构等。
它提供了多种机构建模方法,如刚体模型、柔性模型等。
利用MATLAB的强大计算能力和绘图功能,可以进行机构分析和优化。
例如,可以计算机构的运动学性能、动力学性能和静力学性能,并进行动态仿真。
2.动力学仿真MATLAB可以进行各种机械系统的动力学仿真,包括振动系统、运动系统和控制系统。
通过对机械系统建立微分方程或差分方程,利用MATLAB进行数值解求解,并绘制相应的图形,可以得到机械系统的响应。
例如,可以模拟机械系统的自由振动、强迫振动和阻尼振动等。
3.控制系统设计与分析MATLAB在机械原理中的应用还包括控制系统的设计与分析。
通过MATLAB中的控制系统工具箱,可以进行控制系统的模型建立、系统分析和控制器设计。
例如,可以利用MATLAB对机械系统进行稳定性分析、频域分析和时域分析,并设计相应的控制器,实现机械系统的控制。
4.声学分析MATLAB也可以用于机械系统的声学分析。
通过建立机械系统的声学模型,利用MATLAB进行声场分布和声压级分析。
可以计算机械系统的声辐射特性,例如机械振动引起的噪声。
同时,还可以进行声学优化设计,减少机械系统的噪声。
5.优化设计MATLAB在机械原理中广泛应用于优化设计。
通过建立数学模型和定义目标函数,利用MATLAB进行优化计算。
例如,可以利用MATLAB进行机械系统的拓扑优化、形状优化和尺寸优化,实现机械系统的性能优化。
同时,还可以利用MATLAB的优化算法进行参数优化和控制器设计。
综上所述,MATLAB在机械原理中具有广泛的应用,可以应用于机构设计与分析、动力学仿真、控制系统设计与分析、声学分析和优化设计等方面。
MATLAB在机械振动信号中的应用申振(山东理工大学交通与车辆工程学院)摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明.关键词:时域分析频域分析 MATLAB信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。
对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。
随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。
时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。
为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。
频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2].MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。
随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3].本文主要运用了MATLAB R2014a对机械振动信号进行分析.分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。
燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
年月日二、摘要1)MATLAB的简单介绍MATLAB是美国Mathworks公司开发的新一代科学计算软件:MATLAB是英文MATtrix LABoratory(矩阵实验室)的缩写;MATLAB是一个专门为科学计算而设计的可视化计算器。
利用这个计算器中的简单命令,能快速完成其他高级语言只有通过复杂此案出才能实现的数值计算和图形显示。
MATLAB是一种既可交互使用又能解释执行的计算机编程语言。
所谓交互使用,是指用户输入一条语句后立即就能得到该语句的计算结果,而无需像C语言那样首先编写源程序,然后对之进行编译,连接,才能最终形成可执行文件。
MATLAB语言可以用直观的数学表达式来描述问题,从而避开繁琐的底层编程,因此可大大提高工作效率。
MATLAB是解决工程技术问题的技术平台。
利用它能够轻松完成复杂的数值计算,数据分析,符号计算和数据可视化等任务。
MATLAB软件由主包和各类工具箱构成。
其中,主包基本是一个用C/C++等语言编写成的函数库。
该函数库提供矩阵(或数组)的各种算法以及建立在此基础上的各种应用函数和一些相关的用户有好操作界面。
而工具箱从深度和广度上大大扩展了MATLAB主包的功能和应用领域。
随着自身的不断完善和发展,MATLAB功能越来越强大,应用也越来越广泛。
2)信号测试技术与分析随着机械工业不断向自动化、高精度、智能化等方向的发展,在机械设备运行及生产过程中进行参量测试、分析与诊断等处理过程已成为必要环节,许多信号处理方法如时域统计分析、相关分析、相干分析、频谱分析等已经被广泛被应用与机械工程测试领域。
测试信号通常指的是被测对象的运动或状态信息。
测试信号可以用数学表达式描述,也可以用图形、图表等进行描述。
在工程测试中,有的信号可以用数学公式精确描述,而大量的测试信号却只能用数学公式来近似描述。
MATLAB在机械设计方面的应用MATLAB是一种强大的数学计算软件,广泛应用于科学和工程领域。
在机械设计方面,MATLAB可以提供多种功能和工具,用于解决机械设计中的各种问题。
本文将介绍MATLAB在机械设计中的应用,并简单介绍一些相应的功能和工具。
一、运动学和动力学分析MATLAB提供了丰富的工具箱,用于机械系统的运动学和动力学分析。
用户可以使用这些工具箱来模拟和分析机械系统的运动和力学特性。
例如,用户可以使用SimMechanics工具箱来建立机械系统的多体动力学模型,并进行系统的运动学和动力学分析。
用户可以利用这些工具进行机械系统的运动模拟、力学特性分析和设计优化。
二、结构分析MATLAB还提供了一些工具和函数,用于机械结构的分析和设计。
例如,用户可以使用Structural Analysis工具箱来进行机械结构的静力学和动力学分析。
用户可以建立机械结构的有限元模型,并通过对结构施加加载,计算结构的应力、应变和变形等。
用户还可以使用这些工具进行结构的优化设计和材料选择。
三、控制系统设计MATLAB在控制系统设计方面也有很多应用。
机械系统通常需要控制系统来保持其性能和稳定性。
用户可以使用Control System工具箱来进行机械系统的控制系统设计。
用户可以进行系统的建模和仿真,设计和调整控制器的参数,进行系统的响应和稳定性分析等。
用户还可以使用这些工具进行机械系统的自动控制和优化设计。
四、信号处理和图像处理信号处理和图像处理在机械设计中也是非常重要的。
MATLAB提供了丰富的信号处理和图像处理工具箱,用于机械系统中信号和图像的获取、处理和分析。
用户可以利用这些工具进行机械系统中传感器信号的滤波、噪声去除、频谱分析等。
用户还可以使用这些工具进行机械系统中图像的处理、特征提取、目标检测等。
五、优化设计MATLAB还提供了一些优化算法和函数,用于机械系统的优化设计。
用户可以使用这些算法和函数对机械系统的设计参数进行优化,以达到设计目标和约束条件。
MATLAB在机械振动信号中的应用申振(山东理工大学交通与车辆工程学院)摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。
关键词:时域分析频域分析 MATLAB信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。
对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。
随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。
时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。
为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。
频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。
MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。
随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。
本文主要运用了MATLAB R2014a对机械振动信号进行分析。
分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。
频域分析的性能指标包括对功率谱分析、倒频谱分析。
在进行上述分析之前先要对振动信号进行拟合。
机械振动分为确定性振动和随机振动,确定性振动又分为周期振动和非周期振动,周期振动又进一步分为简谐振动和复杂的周期振动。
所以可以根据上述的分类来拟合振动信号[2]。
在设计信号的处理程序时,运用MATLAB 中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。
1 时域分析1.1 均值 对于一个各态历经随机随机信号()x t ,其均值x μ为1lim ()Tx T x t dt T μ→∞=⎰ (1)式中 ()x t ——样本函数; T ——观测时间;x μ——常值分量。
1.2 方差 2x σ是描述随机信号的波动分量,定义为2201lim [()]Txx T x t dt T σμ→∞=-⎰(1)x σ称为标准差。
1.32()T x t dt (3)rms x 2x μ (4) 1.4 时域统计分析 概率密度分析是以幅值大小为横坐标,以每个幅值间隔内出现的概率为纵坐标进行统计分析的方法。
它反映了信号落在不同幅值强度区域内的概率情况。
计算方法如下:0001/[()]1()lim lim lim ()T T nx i x x x i T T P x x t x x p x t x x T x →∞→∞∆→∆→∆→=<≤+∆===∆∆∆∆∑ (5)概率密度函数()p x 给出了信号取不同幅值大小的概率,是随机信号的主要特征参数之一。
不同的随机信号有不同的概率密度函数图形,可以借此来识别信号的性质,如正弦信号加随机噪声、窄带随机信号及宽带随机信号等。
概率分布函数是信号幅值小于或等于某值R 的概率,定义为:()()F x p x dx ∞-∞=⎰ (6)概率分布函数又称为累积概率函数,表示了信号幅值落在某一区间的概率[4]。
2 频域分析2.1 傅里叶变换任何周期函数,均可展开成正交函数线性组合的无穷级数,如三角函数集的傅里叶级数。
叶级数的表达形式如下:001()sin()2n n n a x t A n t ωϕ∞==++∑ (7)1,2,3,n =L ()(8)22j ft j fte dt e df ππ- (9)2.2 功率谱分析2.2.1 经典功率谱估计方法若()x t 为平稳随机信号,当自相关函数为绝对可积时,自相关函数()xx R ω和功率谱密度()x S ω为一个傅里叶变换对,即()()1()()2j xxx j xx x S R e d R S e d ωτωτωτττωωπ∞--∞∞--∞⎧=⎪⎨⎪=⎩⎰⎰ (10) 同理,在频域描述两个随机信号()x t 和()y t 相互关联程度的数字特征,可以定义为互谱功率密度简称互谱密度。
而且,互相关函数与互谱密度是一个傅里叶变换对。
()()1()()2j xyxy j xy xy S R e d R S e d ωτωτωτττωωπ∞--∞∞--∞⎧=⎪⎨⎪=⎩⎰⎰ (11) 2.2.2 改进的直接估计法直接法和间接法的方差性能很差,而且当数据长度太大时,谱曲线起伏加剧;若数据长度太小,则谱的分辨率又不好,所以需要改进[3]。
提高的周期图法估计的另一种方式就是采用对采样数据分段使用非矩形窗,即Welch 法。
由于非矩形窗在边沿趋近于零,从而减少了分段对重叠的依赖。
选择合适的窗函数,采用每段一半的重叠率能大大降低谱估计的方差。
这种方法中,记录数据仍分成K 01,1n M i K ≤≤-≤≤ (12)每段K 个修正2)1,2,,j nn ei K ω-=L (13)121()M n U w n M-==∑ (14)则定义谱估计为()11()()Kw i xMi B JKωω==∑ (15)2.2.3 AR 模型功率谱估计法传统的功率谱估计方法是利用加窗的数据或加窗的相关函数估计值的傅里叶变换来计算的,具有一定的优势,如计算效率高,估计值正比于正弦波信号的功率等。
但是同时也存在许多缺点,主要缺点就是方差性能较差、谱分辨率低。
而参数模型法可大大提高功率谱估计的分辨率,是现代谱估计的主要研究内容,在语音分析、数据压缩以及通信等领域有着广泛的应用[3]。
按照模型化进行功率谱估计,其主要思想如下: (1) 选择模型;(2) 从给出的数据样本估计假设的模型;(3) 将估计的模型参数打入模型的理论功率谱公式中得出一个较好的谱估计值。
假设产生随机序列()x n 的系统模型为一个线性差分方程,即()()()qqi j i j ox n b w n i a x n j ===---∑∑ (16)Z 变换,可得()qi ii bW z z -=∑ (17) ()()B z A z = (18) 0j j j a z -= (19)()qi i i B z b z -==∑ (20)假定输入白噪声功率谱密度为2()w w P z σ=,那么输出功率谱密度为121()()()()()x wB z B z P z A z A z σ--= (21)又根据j z e ω=,所以得22()()()j x wj B e P A e ωωωσ= (22) 这样,当确定了系数j a 、i b 和2w σ后,就可以求解得到随机信号的功率谱密度()x p ω了。
通过上式可知,如果1i >,0i b =时,则系统的差分方程变为1()qj x n ==-∑(23)上式即为自回归模型,简称为AR (()()()X z H z W z ==(24)所以,AR 221()()1wwx j qj kj j P A e a e ωωσω-==+∑(25)显然,计算出2w σ和j a 后,就可以求解得到随机信号的功率谱密度()x p ω。
本文采用AR 模型的一种Burg 法进行功率谱估计。
3 仿真研究仿真带噪声信号如下: 1.0 2.012()6sin(2)8sin(2)()t t x t e f t e f t randn t ππ--=++该仿真带噪声信号由两个正弦信号 1.016sin(2)t e f t π-、 2.028sin(2)t e f t π-和一个服从正态分布的高斯白噪声信号()randn t 叠加而成。
12100,300f Hz f Hz ==。
其时域波形如图1所示(程序详见附录1)。
图1 时域波形图时域分析结果:序列的平均值为0.5050序列的最小值为-10.7448序列的最大值为12.0222序列的标准差为 2.9153序列的方差为8.4992序列的均方值为 2.9580图2 经典功率谱估算图在功率谱中可以很明显的看到振动信号中有100Hz和300Hz两个主要的频率。
表明信号中含有这两个频率的周期成分。
如图2图3 FFT频谱图上图3为FFT频谱图,从该频谱中可以看到有三个主要高峰值,即在0Hz,100Hz,300Hz处。
用Burg法进行PSD估计功率谱图如图4,从中可以很明显的看到振动信号中有100Hz 和300Hz两个主要的频率。
表明信号中含有这两个频率的周期成分(程序详见附录3):图4 Burg法进行PSD估计功率谱图在Welch法进行PSD功率谱估计,当采用不同窗函数时的结果。
从中可以很明显的看到振动信号中有100Hz和300Hz两个主要的频率。
表明信号中含有这两个频率的周期成分。
且海宁窗和布莱克曼窗较为明显(程序详见附录2)。
图5 Welch法进行PSD功率谱估计功率谱图图5 倒谱图理论上,傅立叶变换用于频谱分析,可以找出受噪声干扰的信号的频率成分,而这用时域分析是不能分辨的。
对傅立叶变换做复共轭运算,即可得到信号的功率谱密度函数,以显示各频率分量的能量分布。
仿真带噪信号的傅立叶变换与功率谱分解结果如图3和图4、5、6所示。
从图3和图4、5、6可以清楚看到,约在频率为100Hz、300Hz(即振动信号频率的倍频)处频谱幅值和能量出现局部极大值,对应机械振动的主振动源所在。
4结论信号是信息的载体,因此采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。
本文在研究现代信号分析处理理论、方法如时域分析 (包括时域参数识别、相关分析以及统计分析等)、频域分析(包括傅立叶变换、功率谱分解等)的基础上,结合仿真数据对机械振动信号分析处理,具有一定的参考价值。
参考文献[1] 冯凯.工程测试技术[M].西安:西北工业大学出版社,2003.[2] 许同乐.机械工程测试技术.北京:机械工业出版社,2010.[3] 薛年喜.MATLAB在数字信号处理中的应用(第二版).北京:清华大学出版社,2008[4]焦卫东.旋转机械振动信号分析.浙江.嘉兴学院学报.2007.附录附录一:时域分析、频域分析程序A1=6;A2=8;f1=100;f2=300;fs=1000;t=0:1/fs:2;N=length(t);X1=A1*exp(-1.0*t).*sin(2*pi*f1*t);X2=A2*exp(-2.0*t).*sin(2*pi*f2*t);R=rand(1,N);Y=X1+X2+R;figure(1);plot(t,Y);title('振动信号的波形');xlabel('时间/秒');ylabel('幅度');grid; hold on;%时域分析mi=min(Y); disp(mi);%最小值mx=max(Y); disp(mx);%最大值st=std(Y); disp(st);%标准差m=mean(Y); disp(m); %均值vr=var(Y); disp(vr);%方差rm=rms(Y); disp(rm);%均方值l=length(Y);r=fft(Y)/l;r=fftshift(r);f=linspace(-fs/2,fs/2,l);figure(2);plot(f,abs(r)); grid; hold on; figure(3);psd(Y,2048,1000,kaiser(512,5),0,0.95); figure(4);yc=rceps(Y);plot(yc);附录二:Welch方法进行PSD估计程序A1=6;A2=8;f1=100;f2=300;fs=1000;nfft=1024;t=0:1/fs:2;N=length(t);X1=A1*exp(-1.0*t).*sin(2*pi*f1*t);X2=A2*exp(-1.5*t).*sin(2*pi*f2*t);R=rand(1,N);Y=X1+X2+R;window1=boxcar(100);window2=hamming(100);window3=blackman(100);noverlap=20;[Pxx1,f1]=pwelch(Y,window1,noverlap,nfft,fs); [Pxx2,f2]=pwelch(Y,window2,noverlap,nfft,fs); [Pxx3,f3]=pwelch(Y,window3,noverlap,nfft,fs); PXX1=10*log10(Pxx1);PXX2=10*log10(Pxx2);PXX3=10*log10(Pxx3);subplot(3,1,1)plot(f1,PXX1);title('矩形窗');subplot(3,1,2)plot(f2,PXX2);subplot(3,1,3)plot(f3,PXX3);xlabel('频率(Hz)');ylabel('幅度(dB)');title('布莱克曼窗');附录三:Burg方法进行PSD估计程序A1=6;A2=8;f1=100;f2=300;fs=1000;nfft=1024;t=0:1/fs:2;N=length(t);X1=A1*exp(-1.0*t).*sin(2*pi*f1*t);X2=A2*exp(-1.5*t).*sin(2*pi*f2*t);R=rand(1,N);Y=X1+X2+R;[P,f]=pburg(Y,18,nfft,fs);Pxx=10*log10(P);figureplot(f,Pxx);grid on;xlabel('频率(Hz)');ylabel('幅度(dB)');枯藤老树昏鸦,小桥流水人家,古道西风瘦马。