人教版七年级数学上册第三章检测D
- 格式:doc
- 大小:76.50 KB
- 文档页数:3
七年级上册数学第三章综合检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的选项中,只有一个选项符合题意)1.下列各式符合代数式书写规则的是( )A.a×5B.a7C.312x D.−78x2.代数式-7x的意义可以是( )A.-7与x的和B.-7与x的差C.-7与x的积D.-7与x的商3.某班共有m个学生,其中男生人数占55%,那么女生人数是( )A.55%mB.(1-55%)mC.m55%D.m1−55%4.如果a与b互为相反数,那么代数式(a+b)2024的值是( )A. 0B. 1C. -1D.±15.如图是同一时刻北京时间和莫斯科时间.已知北京时间比莫斯科时间要早,若现在北京时间是x,则同一时刻莫斯科的时间可以表示为( )A.x+6B.x-6C.x+5D.x-5(第5题图) (第6题图)6.下面四个代数式中,不能表示图中阴影部分面积的是( )A.x2+5xB.x(x+3)+6C.3(x+2)+x2D. (x+3)(x+2)-2x 7.如图是一张日历表,省去了数字,将位置①的数表示为a,则位置②上的数可表示为( )A.a+3B.a+5C.a+7D.a+98.某商店出售一种商品,其原价为m元,现有两种调价方案:第一种是先提价10%,在此基础上又降价10%;第二种是先降价10%,在此基础上又提价10%.问这两种方案调价的结果是否一样?调价后是否都恢复了原价?( )A.结果一样,都恢复了原价B.结果不一样,第一种方案恢复了原价C.结果一样,都没有恢复原价D.结果不一样,第二种方案恢复了原价9.如图,已知圆环的内直径为α厘米,外直径为b厘米,将9个这样的圆环按图中的方式一个接一个地连成一条锁链,那么这条锁链拉直后的长度为( )A.(8a+b)厘米B.(8b+a)厘米C.(9a-b)厘米D.(9b-a)厘米10.如图,把一个周长为定值的长方形分割为五个四边形,其中A是正方形,B,C,D,E 都是长方形,这五个四边形的周长分别用l A,l B,l C,l D,l E表示,则下列各式的值为定值的是( )A.l AB.l B+l DC.l A+l B+l DD.l A+l C+l E二、填空题(本大题共8小题,每小题3分,共24分)11.水池内有水40m3,小流经过排水管的时间y(h)与水池每小时流出的水量x(m3)之间的关系是比例关系.(填“正”或“反”)12.2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)13.对代数式“5x”,我们可以这样来解释:某人以5千米/时的速度走了x小时,他一共走的路程是5x千米.请你对“5x”给出一个生活实际方面的解释:。
人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。
2024-2025学年七年级上册数学第三章单元检测一、单选题(每题4分,共40分)1.下列式子中,不是代数式的是( )2.用代数式表示“m 与n 的差的倒数”,其结果是( )3.学校组织篮球比赛,规定胜一场得2分,负一场的-1分,已知七年级14班胜a 场,负b 场,则14班总得分是( )4.已知甲乙两个工程队要完成一项工程,甲队单独完成需要m 天,乙队单独完成需要n 天,若甲乙两队合作8天,则完成的工程量是( )5.下列各个量之间成反比例关系的是( )A.在匀速直线运动中,路程与时间的关系B.长方形的周长一定,它的长和宽C.小明的身高和体重D.直角三角形的面积一定,它的两条直角边6.当x=3,y=-2时,代数式的值等于( )7.已知b 的相反数等于7,则式子的值为( )b a A -.22.n m B +y x C 23.-13.=+y x D n m A -.n m B -1.n m C -1.nm D 11.-b a A +2.b a B +.b a C -2.ba D 2.+n m A +.n m B 11.+nm C 88.+n m D 88.+y x -28.A 4.B 6.C 10.-D ,2=a b a +29.A 5.-B 9.-C 59.--或D8.若,则2m-3n 的值等于( )9.已知的值为( )10.下列说法正确的是( )A.式子3ab 的意义是a 的3倍B.9m >3是代数式C.当a=3时,代数式3a-3的值等于6D.-5x+1=6是代数式二.填空题(每题4分,共24分)9.已知一件上衣的售价为a 元,现打六折销售,则该上衣现在一件的售价为________.10.用式子表示“m 的倒数与n 的平方的和”,其结果是________.11.一个两位数,十位上的数是m,个位上的数字是n ,则这个两位数用式子表示为_______.12.已知a=2,则代数式的值等于_______.13.列代数式表示“比m 的平方的3倍多5的数”,其结果是_______.14.若_______.三.解答题(共4小题,共36分)15.(12分)指出下列代数式的意义.0,10,6>且mn n m ==18.-A 18.B 12.C 1818.-或D 3)(,0)7(5y x y x +=++-则8.-A 8.B 12.-C 2.D a a 52-=-+=+569,923y x y x 则式子b a 1511+)(222y x -)(323+-m n )(16.(9分)指出下列字母所表示的意义.(1)正方体的体积为.(2)小刚3天共阅读课外书3c 页.(3)买4个足球和3个蓝球,共花费4m+3n 元.17.(8分)根据下列语句中的关系,列出代数式.(1)a 的一半与b 的三分之二的差.(2)m 的4倍与n 的和的平方.18.(7分)已知a 的倒数是,b 和c 满足.(1)求a,b,c 的值.(2)求代数式2a+b-c 的值.3a 41-053=++-c b答案一.选择题1.D2.C3.C4.C5.D6.A7. D8.D9. A 10.C二.填空题9.0.6a10.11.10m+n12.-613.14.22三.解答题15. 表示a 的倒数与b 的15倍的和. 表示x 的平方与y 的平方的差. 表示n 与2的差和m 与3的和的商.16.(1)a 表示正方体的棱长.(2)c 表示小刚每天读书的页数.(3)m 表示足球的单价,n 表示篮球的单价.21n m +532+m b a 1511+)(222y x -)(323+-m n )(17.(1)(2)18.(1)a=-4,b=3,c=-5(2)2a+b-c=-8+3-(-5)=0322b a-2)4(n m +。
第三章一元一次方程单元检测一、单选题1.下列方程中,是一元一次方程的是( )A .x +y =1B .x 2﹣x =1C .x π+1=3xD .54y x+1=3 2.若关于x 的一元一次方程(2022)2022k x -=无解,则k 的值是( )A .2022B .2023C .2021D .03.已知ac bc =,下列变形不一定成立的是( )A .33ac bc -=-B .22ac bc =C .33ac bc =D .a b =4.已知x =-1是方程-2x +m =1的解,则m 的绝对值是( )A .1B .-1C .3D .-35.方程24x =-的解是( )A .6x =-B .2x =-C .2x =D .6x = 6.将方程1132x x --=去分母,结果正确的是( ) A .()2316x x --= B .()2316x x --=C .()2316x x -+= D .()2316x x --= 7.小琪在解关于x 的方程4234x x k ++-=“去分母”步骤时,等号右边的“2”忘记乘以12,她求得的解为1x =-,则k 的值为( )A .133B .2C .1-D .3-8.若关于x 的方程3-x=2a 与方程x+3x=28的解相同,则a 的值为( )9.我国明代珠算家程大位名著《直指算法统宗》里有一道著名的算题;一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.译成白话文为:有100个和尚和100个馒头,正好分完,大和尚一人3个,小和尚三个人分1个,大和尚和小和尚各有几个.设小和尚有x 个,则可列方程为( )A .31003100x x +=-B .13100100x x +=- C .()131003100x x +=- D .()31001003x x +-= 10.小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之间的函数图象,请根据图象判断下列哪一个选项是正确的( ).A .小豪爸爸出发后10min 追上小豪B .小豪爸爸的速度为200m/minC .小豪骑自行车的速度为150m/minD .爸爸到达公司时,小豪距离书店500m 3二、填空题 11.若||1(2)160m m x --+=是关于x 的一元一次方程,则m =___.12.已知方程20x y +-=,改写成用含x 的式子表示y 的形式,则y =_______.13.定义一种新运算:2()2()a b a b a b a b a b +≤⎧=⎨->☆,例如:()122210=-+⨯-=☆,()()153132-=-⨯-=☆.若()216b-=☆,则b的值是______.14.小明在做家庭作业时发现练习册上的一道解方程的题目中有一个数字被墨水污染了:151232x x+--=-,其中“□”是被污染的内容,翻开书后面的答案,这道题的解是2x=,那么“□”处的数字为_____.15.小明今年4月份两次同时购进了A、B两种不同单价的水果,第一次购买A种水果的数量比B水果的数量多50%,第二次购买A水果的数量比第一次购买A水果的数量少60%,结果第二次购买水果的总数比第一次购买水果的总数量多20%,第二次购买A、B水果的总费用比第一次购买A、B水果的总费用少10%(A、B两种水果的单价不变),则B水果的单价与A水果的单价的比值是_____.三、解答题16.根据下列问题,设未知数并列出方程:(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?17.解方程(1)4x﹣1.5x=﹣0.5x﹣9(2)758142x x -+-=18.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:()()252251231615⊕=⨯-+=⨯-+=-+=-. (1)求()23-⊕的值;(2)若3x ⊕的值是最小的正整数,求x 的值.19.某中学举办的中学生安全知识竞赛中共有20道题,每一道题答对得5分,答错或不答都扣3分.小强考了68分,求小强答对了多少道题?20.某校开展校园艺术节系列活动,派张老师到文体商店购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与张老师的对话内容,解答下列问题.商店老板:如果你再多买一个,就可以全部打八五折,花费比现在还省17元! 张老师:那就多买一个吧,谢谢!(1)求张老师原计划购买多少个文具袋?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次该商店老板全部给予八折优惠,合计272元.求张老师购买的钢笔和签字笔各有多少支21.如图,数轴上点O 为原点,点A 所表示的数为a ,点B 所表示的数为b ,且a 、b 满足()2420a b ++-=.(1)请直接写出点A所表示的数:______,点B所表示的数:______.(2)如图1,点P从A出发以2个单位/秒的速度沿数轴向右运动,点P运动的同时,点Q 从B出发以1个单位/秒的速度沿数轴向右运动,在运动过程中,数轴上动点M到点P、原点O的距离始终相等,设点Q到点M之间的距离为d,求d的值.(3)如图2,在(2)的条件下,当点P、Q之间的距离等于14d时,N从点C出发(点C所表示的数为14),以2个单位/秒的速度沿数轴向左运动,此时P、Q仍按原速度、原方向运动,当N与P、Q都未相遇之前,是否存在点M,使点N到点P、Q距离之和等于点M到原点O距离,若存在,求点M所表示的数,若不存在,请说明理由.答案1.C2.A3.D4.A5.B6.A7.A8.B9.D10.D11.-212.2x -13.9或9-14.415.1216.(1)设正方形的边长为cm x ,424x =;(2)设x 月后这台计算机的使用时间达到2450h ,17001502450x +=;(3)设这个学校的学生数为x ,()0.5210.5280x x --=17.(1)3x =-(2)3x =-18.(1)11;(2)x的值为319.16道20.(1)17个(2)张老师购买的钢笔有20支,签字笔有30支21.(1)点A表示的数是4 ,点B表示的数是2 (2)4(3)存在,92或112。
人教版七年级上册数学第三章测试题(附答案)人教版七年级上册数学第三章测试题(附答案)一、单选题(共12题;共36分)1.若关于x的方程2x+3=5x-1的解是x=2,则3x+2的值是()A。
4.B。
5.C。
1.D。
22.XXX在做解方程作业时,不小心将方程中的一个常数看不清楚,被污染的方程是:3x+2=2x+。
求。
XXX翻看书后答案,此方程的解是x=。
很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是() A。
1.B。
2.C。
3.D。
43.若关于x的方程6x+3a=22和方程3x+5=11的解相同,那么a的值为()A。
2.B。
4.C。
10.D。
34.元旦前夕,某商店购进某种特色商品100件,按进价每件加价30%作为定价,可是总卖不出去,后来每件按定价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A。
亏40元。
B。
赚400元。
C。
亏400元。
D。
不亏不赚5.下列结论中正确的是()A。
在等式3a-b=3b+5的两边都除以3,可得等式a-2=b+5 B。
如果2=-x,那么x=-2C。
在等式5=0.1x的两边都除以0.1,可得等式x=50D。
在等式7x=5x+3的两边都减去x-3,可得等式6x-3=4x+66.方程2x+a=1的解是x=-1/2,则a的值是()A。
-2.B。
2.C。
0.D。
-17.某车间有28名工人生产螺丝与螺母,每人每天生产螺丝12个或螺母18个,现有x名工人生产螺丝,恰好每天生产的螺丝和螺母按2:1配套,为求x,列方程为()A。
12x=18(28-x)。
B。
2×12x=18(28-x)C。
2×18x=12(28-x)。
D。
12x=2×18(28-x)8.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面,那么桌腿用木料1个或制作桌腿条,现有10立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用x立方米,根据题意,得()A。
人教版七年级数学上册第三单元测试卷(第三章 一元一次方程)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( D )A .5x -2y =9B .x 2-5x +4=0 C.5x +3=0 D.x 5-1=32.当1-(3m -5)2取得最大值时,关于x 的方程5m -4=3x +2的解是( A ) A.79 B.97 C .-79 D .-973.下列方程变形中,正确的是( D )A .方程3x -2=2x +1,移项,得3x -2x =-1+2B .方程3-x =2-5(x -1),去括号,得3-x =2-5x -1C .方程23t =32,未知数系数化为1,得t =1D .方程x -10.2-x0.5=1化成3x =6 4.用“”“”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“”的个数为( A )A .5个B .4个C .3个D .2个5.将方程0.9+0.5x -0.20.2=1.5-5x0.5变形正确的是( D )A .9+5x -22=15-50x 5B .0.9+5x -22=15-5x5C .9+5x -22=15-5x 5D .0.9+5x -22=3-10x6.下列运用等式的性质,变形不正确的是( D )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =b c ,则a =bD .若x =y ,则x a =y a7.已知关于x 的方程(2a +b)x -1=0无解,那么ab 的值是( D ) A .负数 B .正数 C .非负数 D .非正数8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.当x =1时,代数式12ax 3-3bx +4的值是7,则当x =-1时,这个代数式的值是( C )A .7B .3C .1D .-710.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( D )A .①②B .②④C .②③D .③④ 二、填空题(每小题3分,共24分)11.方程(a -2)x |a|-1+3=0是关于x 的一元一次方程,则a =__-2__. 12.已知x -2y +3=0,则代数式-2x +4y +2017的值为__2023__.13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/小时,则A 港和B 港相距__504__千米.14.已知x -42与25互为倒数,则x 等于__9__.15.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了__5__千克.16.已知a 5=b 7=c8,且3a -2b +c =9,则2a +4b -3c =__14__.17.对于实数a ,b ,c ,d ,规定一种数的运算:错误!))=ad -bc ,那么当错误!))=10时,x =__-1__.18.某车间原计划13小时生产一批零件,后来每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件.设原计划每小时生产y 个零件,则可列方程为__12(y +10)=13y +60__.三、解答题(共66分) 19.(10分)解下列方程:(1)x -12=4x 3+1; (2)0.1x -0.20.02-x +10.5=3.解:x =-95解:x =520.(8分)已知方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0,得x =-13,则k +x 2-3k -2=2x 的解为x =-3,代入得k -32-3k -2=-6,解得k =121.(8分)已知x =3是方程3[(x 3+1)+m (x -1)4]=2的解,m ,n 满足关系式|2n +m|=1,求m +n的值.解:把x =3代入方程3[(x3+1)+m (x -1)4]=2,得m =-83,将m =-83代入|2n +m|=1,得|2n -83|=1,解得n =116或56,所以m +n =-56或-11622.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:x +12-5x -□3=-12,“□”是被污染的数,他很着急,翻开书后面的答案,这道题的解是x =2,你能帮他补上“□”的数吗?解:设“□”的数为m ,因为所给方程的解是x =2,所以2+12-5×2-m 3=-12,解得m =4.所以“□”的数为423.(10分)甲、乙两人同时从相距25千米的A 地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B 地停留40分钟,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?解:设乙的速度为x 千米/小时,则甲的速度为3x 千米/小时,依题意得(3-4060)×3x +3x =25×2,解得x =5,所以3x =15,答:甲、乙两人的速度分别为15千米/小时和5千米/小时24.(10分)某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的34,求原来每个车间的人数.解:设原来第二车间有x 人,则第一车间有(45x -30)人,依题意得45x -30+10=34(x -10),解得x =250,所以45x -30=170,答:原来第一车间有170人,第二车间有250人25.(12分)“中国竹乡”安吉县有着丰富的毛竹资源,某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获得100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天可加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:方案一:将毛竹全部粗加工后销售,则可获利__1000×52.5=52500__元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利__0.5×30×5000+(52.5-0.5×30)×100=78750__元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.解:存在,方案三:设粗加工x天,则精加工(30-x)天,依题意得8x+0.5(30-x)=52.5,解得x =5,所以30-x=25,则1000×5×8+5000×25×0.5=102500(元),答:销售后所获利润为102500元人教版七年级数学上册第四单元测试卷(第四章几何图形初步)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( C)2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的度数为( C)A.69° B.111° C.141° D.159°,第2题图) ,第3题图),第4题图)3.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN 的长度,那么只需条件( A)A.AB=12 B.BC=4 C.AM=5 D.CN=24.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分 (小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( C)A.7 B.6 C.5 D.45.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是( C)A.144° B.164° C.154° D.150°,第5题图) ,第6题图) ,第7题图)6.(2016·凉山州)如图,是由若干个大小相同的正方体搭成的几何体,从不同方向看所得到的平面图形,该几何体所用的正方体的个数是( A)A.6个 B.4个 C.3个 D.2个7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( D)A.垂线段最短 B.经过一点有无数条直线C.经过两点,有且仅有一条直线 D.两点之间,线段最短8.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( D)A.7 cm B.3 cm C.7 cm或3 cm D.5 cm9.钟表在8:25时,时针与分针的夹角是( B)度.A.101.5 B.102.5 C.120 D.12510.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是( C)A.∠1=∠3 B.∠1=180°-∠3 C.∠1=90°+∠3 D.以上都不对二、填空题(每小题3分,共24分)11.用“度分秒”来表示:8.31度=__8__度__18__分__36__秒.12.一个角的余角比这个角的补角的一半小40°,则这个角为__80__度.13.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=60,BC=40,则MN 的长为__50或10__.14.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD=__110__°.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是__135__度.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=__4__.17.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__35°__.18.如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是__北偏东70°__.三、解答题(共66分)19.(8分)根据下列语句,画出图形.已知四点A,B,C,D.①画直线AB;②连接AC,BD,相交于点O;③画射线AD,BC,交于点P.解:略20.(8分)一个角的余角比这个角的12少30°,请你计算出这个角的大小.解:设这个角为x ,则它的余角为(90°-x ),依题意得12x -(90°-x )=30°,解得x =80°,答:这个角是80°21.(8分)如图,点M 是线段AC 的中点,点B 在线段AC 上,且AB =4 cm ,BC =2AB ,求线段MC 和线段BM 的长.解:因为AB =4 cm ,BC =2AB ,所以BC =8 cm ,所以AC =AB +BC =12 cm ,因为M 是线段AC 中点,所以MC =AM =12AC =6 cm ,所以BM =AM -AB =2 cm22.(8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD 的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm ,因为点E ,F 分别为AB ,CD 的中点,所以AE =12AB =1.5x cm ,CF =12CD =2x cm ,所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ),因为EF =10 cm ,所以2.5x =10,解得x =4,所以AB =12 cm ,CD =16 cm23.(10分)如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°,又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°,所以∠BOD =∠AOC =22°24.(12分)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AC +CB =a cm ,其他条件不变,你能猜想出MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC -CB =b cm ,点M ,N 分别为AC ,BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC =4 cm ,NC =12BC =3 cm ,所以MN =MC +NC =7 cm (2)MN =MC +NC =12AC +12BC =12AB =12a cm (3)图略,MN =12b cm.理由:MN =MC -NC =12AC -12BC =12(AC -BC )=12b cm25.(12分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC =60°时,∠MON 的度数是多少? (2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系;(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,写出你的结论,并说明理由.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45° (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α (3)∠MON =12α.理由:∠MON =∠MOC-∠NOC =12(α+β)-12β=12α。
人教版七年级上册数学第三章代数式单元检测卷一.选择题1.代数式2a2−3a+1的值是6,则4a2−6a+5的值是()A.5 B.10 C.15 D.252.下列式子中,代数式书写规范的是()D.x×2⋅y÷zA.x⋅6y B.5x2y C.6xy93.某超市苹果的单价为a元/千克,香蕉的单价为b元/千克,乐乐买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.5(a+b)元D.(2a+3b)元4.当x=1时,多项式ax3+bx−2的值是2,则当x=−1时,该多项式的值是()A.−6B.−2C.0 D.25.如图所示的运算程序中,若开始输入的x的值为15,则第一次输出的结果为18,第2次输出的结果为9,…,则第2024次输出的结果为()A.3 B.4 C.6 D.96.植树节,某校需完成一定的植树任务,其中九年级共种了任务数的一半,八年级种了剩下任务数的2,3七年级共种了a棵树苗.则该校植树的任务数为()A.6a棵B.5a棵C.4a棵D.3a7.如图,把一个大长方形分割成5小块,其中⑤号是正方形,其余都是长方形,且①号和④号是两个一样的长方形,⑤号的周长是①号的2倍.已知大的长方形的面积,可以求出下列哪一个图形的面积.()A.①B.②C.③D.⑤8.如图,从边长为(t+2)cm的正方形纸片中剪去一个边长为(t−2)cm的正方形(t>2),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.4cm2B.4tcm2C.8tcm2D.(t2−2)cm2二.填空题9.一件商品的进价是a元,提价30%后出售,则这件商品的售价是元.10.篮球比赛规则规定:赢一场得2分,输一场得1分.某次比赛甲球队赢了x场,输了y场,积20分.若用含x的代数式表示y,则有y=.11.“阅读可以使人充实”.爱好阅读的琪琪前年读了m本书,去年阅读数量是前年的2倍,则琪琪去年阅读了本书.12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款元(用含有a的代数式表示).13.给等式中的某些字母赋予一定的特殊值,可以解决一些问题.比如对于等式(x+3)2=ax2+bx+c,当x=0时,可得32=c,计算得c=9;请你再给x赋不同的值,可计算得4a+2b=.三.解答题14.你知道吗?12头大象1天的食品可供1000只老鼠吃600天.假定每头大象的食量都一样,每只老鼠的食量也相等,那么t头大象1天的食品可供100只老鼠吃多少天?15.设一长方体的底面是边长为a的正方形,高为b,体积为V.用关于a,b,V的代数式写出该长方体的体积公式,并求当a=2cm,b=3cm时该长方体的体积.16.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出了不同的优惠方案:在甲超市累计购买商品超出300元后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元后,超出部分按原价8.5折优惠.若顾客累计购买商品x(x>300)元.(1)请用含x的式子分别表示顾客在两家超市购买应付的费用;(2)若x=500时,选择哪家超市购买更优惠?说明理由.17.如图,有一块长为(3a+4b)米,宽为(2a+3b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将建成一座边长为(a+b)米的正方形水池.(1)用含有a, b的式子表示绿化部分面积.(结果要化简)(2)若a=5,b=3,求出此时的绿化总面积.18.已知关于x的多项式ax4+bx3+cx2+dx+e3,其中a,b,c,d为互不相等的整数.(1)若abcd=4,求a+b+c+d的值;(2)在(1)的条件下,当x=1时,这个多项式的值为27,求e的值;(3)在(1)、(2)条件下,若x=−1时,这个多项式ax4+bx3+cx2+dx+e3的值是14,求a+c的值.。
人教版七年级上册数学第三章代数式单元检测题一.单选题1.下列代数式表示“a 的3倍与7的差”的是()A.27a +B.37a +C.27a -D.37a -2.以下列各式中:①12,②210a -=,③ab a =,④()2212a b -,⑤a,⑥0.是代数式的有()A.1个B.2个C.3个D.4个3.“△”表示一种运算符号,其意义是:2a b a b =-V ,那么13 等于()A.1B.1-C.5D.5-4.当2x =-时,代数式32x +的值是()A.7-B.7C.1D.1-5.已知x ,y 都是自然数,如果133515x y +=,那么x y +的结果是()A.3B.5C.136.苹果原价是每斤x 元,按八折优惠出售,列代数式表示现价正确的是()元A.8xB.0.8xC.2xD.0.2x7.如果2a +与()21b -互为相反数,那么代数式()2017a b +的值是()A.1B.1-C.1±D.20088.若2x =,y 的相反数是3-,则x y -的值为()A.5-或1-B.5-或1C.5或1-D.5或19.若a,b 是互为倒数,m,n 是互为相反数,则()25ab m n -++的值是()A.2B.2-C.0D.310.如图,是一个用四块形状和大小都一样的长方形纸板拼成的一个大正方形,中间空的部分是一个小正方形,已知长方形纸板的长为a ,宽为()b a b >,则中间空白部分(小正方形)的周长是()A.a b +B.a b-C.()4a b -D.()4b a -11.琪琪今年n 岁,爸爸今年35岁,10年后爸爸比琪琪大()岁.A.35n-B.3510n -+C.10D.2512.婷婷从家去学校然后又按原路返回,去时每分钟行a 米,回来时每分钟行b 米,求婷婷来回的平均速度的正确算式是()A.()2a b +÷B.2()a b ÷+C.111a b ⎛⎫÷+ ⎪⎝⎭D.112a b ⎛⎫÷+ ⎪⎝⎭二.填空题13.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c ++=.14.已知22120+x y --=,则22x y +的值等于.15.如果关于x 的多项式4242mx x +-与多项式35n x x +的次数相同,则2234n n -+-的值为.16.设甲数是m ,乙数是n ,用代数式表示:甲、乙两数平方的和为,甲、乙两数和的立方为.17.冬天天气寒冷,羽绒服的销量很火爆,已知一件羽绒服的标价为a 元,现将标价打8.5折出售,则现在的售价为元.(用含a 的代数式表示)18.军训期间,学校搭建如图1所示的单顶帐篷需要17根钢管,这样的帐篷按图2、图3的方式串起来搭建,则串起来搭建6顶帐篷需要根钢管,有171根钢管可以串起来搭建顶帐篷,如果想串起来搭建n 顶帐篷,需要根钢管.三.解答题19.如图是学校图书馆的一个活动教室的平面图,请你计算这个活动教室的面积和周长(单位:米,不计损耗)20.已知有理数a ,b ,c ,d ,e ,其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c dab e +++的值.21.如图,长方形窗户上遮光窗帘(阴影部分)的下沿是由半径均为a 的两个四分之一圆组成,已知没被窗帘遮挡部分的面积为3平方米,请用a 的代数式表示窗户的高度h.22.某校七(2)班的3名老师决定带领本班a 名学生(学生人数不少于3人)在十一期间去北京旅游,咨询甲、乙两个旅行社,甲旅行社说:“若老师买全票,则学生可享受半价优惠”,乙旅行社说:“老师和学生全部按全票的六折优惠”.已知甲、乙旅行社的全票票价均为400元/人.(1)用含a 的式子分别表示甲、乙旅行社的收费金额;(2)如果这个班的学生有30人,他们选择哪家旅行社较为合算?23.整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如21x x +=,求22022x x ++的值,我们将2x x +作为一个整体代入,则原式120222023+==.仿照上面的解题方法,完成下面的问题:(1)若2210x x +-=,则222022x x +-=_____.(2)若222523a ab b ab +=-+=,,求22232a b ab --的值.24.列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2,则这个三位数可以用含m的代数式表示为:______;(2)某电影院第一排有15个座位,后面每排比前一排多2个座位,则第n排的座位数可以表示为:______;(3)如图,将长为4m的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,那么每个小长方形的周长用含m的式子表示为______.。
人教版七年级数学上册 第三章 综合素质测评卷及答案(时间:120分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.根据“x 的3倍与5的和比x 的13多2”可列方程( A )A .3x +5=x 3+2B .3x +5=x 3-2C .3(x +5)=x 3-2D .3(x +5)=x 3+2 2.已知x =1是关于x 的方程x +2a =-1的解,则a 的值是( A )A .-1B .0C .1D .23.下列等式的变形中,正确的有( B )①由5x =3,得x =53; ②由a =b ,得-a =-b ;③由-x -3=0,得-x =3; ④由m =n ,得n m =1.A .1个B .2个C .3个D .4个4.在解方程x -13+x =3x +12时,方程两边乘6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(3x +1)5.书架上,第一层书的数量是第二层数的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层的一半多3本.设第二层原有x 本书,则可列方程( D )A .2x =12x +3B .2x =12(x +8)+3C .2x -8=12x +3D .2x -8=12(x +8)+3 6.a ,b ,c ,m 都是有理数,且a +2b +3c =m ,a +b +2c =m ,那么b 与c 的关系是( A )A .互为相反数B .互为倒数C .相等D .无法确定7.若式子3x +12比2x -23小1,则x 的值为( C )A.135 B .-513 C .-135 D.5138.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( A )A .x =-5B .x =-3C .x =-1D .x =59.已知关于x 的方程x -4-ax 6=x +43-1的解是正整数,则符合条件的所有整数a 的积是( D )A .12B .36C .-4D .-1210.图①为一正面白色、反面灰色的长方形纸片,今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( C )A.2314B.3638 C .42 D .44二、填空题(本大题共8小题,每小题3分,共24分)11.若2a -3与-3a -8的值相等,则a 2 019的值为 -1 .12.若关于x 的方程6x +3=0与关于y 的方程3y +m =1的解互为倒数,则m 的值为 7 .13.如图所示是一个数值计算程序,在某次计算时输入一个数x 后,输出的结果为38,那么是输入的数x 的值是 27 . 输入x →×5→-21→÷3→输出14.一艘船从甲码头到乙码头顺流行驶,用了2 h ,从乙码头返回甲码头逆流行驶,用了2.5 h ,已知水流的速度是3 km/h ,则船在静水中的速度是 27 km/h15.已知|x +3|+(x +2y -1)2=0,则2x -y =__-8__.16.若干本书分给若干学生,每人5本缺2本,每人4本余3本,则共有__5__个同学.17.甲、乙二人在400 m 环形跑道上练习长跑,同时从同一起点出发,甲的速度是6 m/s ,乙的速度是 4 m/s ,乙跑__2__圈后,甲可超过乙1圈.18.一列方程如下排列:x 4+x -12的解是x =2;x 6+x -22=1的解是x =3;x 8+x -32=1的解是x =4;…根据观察得到的规律,写出解是x =7的方程是 x 14+x -62=1 .三、解答题(本大题共7小题,共66分)19.(8分)解方程:(1)2(3y -1)-3(2-4y )=9y +10;解:6y -2-6+12y =9y +10,18y -9y =10+8,y =2.(2)3y +14=2-2y -13.解:3(3y +1)=24-4(2y -1),9y +3=24-8y +4,9y +8y =24+4-3,17y =25,y =2517.20.(8分)已知当x =-3时,代数式2x 2+(2t -1)x -5t +1的值是0,求当x =3时,该代数式的值.解:由题意可知,当x =-3时,2x 2+(2t -1)x -5t +1=2×(-3)2-3(2t -1)-5t +1=0,解得t =2.即代数式为2x 2+3x -9.当x =3时,代数式2x 2+3x -9=2×32+3×3-9=18.21.(8分)a 为何值时,方程3(5x -6)=3-20x 的解也是方程a -103x =2a +10x 的解?解:解方程3(5x -6)=3-20x ,得x =35. 将x =35代入a -103x =2a +10x , 得a -103×35=2a +10×35, 解得a =-8.22.(10分)有一些依次标有3,6,9,12,…的卡片,小明拿了3张卡片,他们的数码相邻,且数码之和为117.(1)小明拿到了哪3张卡片?(2)你能拿到数码相邻的4张卡片,使其数码之和是179吗?若能,请指出这4张卡片中数码最大的卡片;若不能,请说明理由.解:(1)设中间的卡片为x,根据题意,得(x-3)+x+(x+3)=117,解得x=39.故小明拿的卡片为36,39,42;(2)不能,理由:设这四张卡片为x-3,x,x+3,x+6,根据题意,得(x-3)+x+(x+3)+(x+6)=179.解得x=1734,不合题意,故不能拿出相邻的4张卡片使其和为179.23.(10分)情景:试根据图中的信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解:有这种可能.设小红买了x根跳绳,则25×0.8·x=25(x-2)-5,解得x=11.所以小红买了11根跳绳.24.(10分)如图,点A,B在数轴上表示的数分别为-12和8,两只小蚂蚁M,N分别从A,B同时出发,相向而行,M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动几秒时,两只蚂蚁在点P相遇?点P在数轴上表示的数是多少?(2)若运动t秒时,两只蚂蚁的距离为10个单位长度,求出t的值.解:(1)设运动x秒时,两只蚂蚁在点P相遇,根据题意,得2x +3x=8-(-12),解得x=4.8-3×4=-4,所以运动4秒时,两只蚂蚁在点P相遇,点P在数轴上表示的数为-4.(2)运动t秒时,蚂蚁M向右移动了2t个单位长度,蚂蚁N向左移动了3t个单位长度.若在相遇之前距离为10个单位长度,则有2t +3t+10=20,解得t=2;若在相遇之后距离为10个单位长度,则有2t+3t-10=20,解得t=6.综上所述,t的值为2或6.25.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92名学生(其中甲校学生多于乙校学生,且甲校学生不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装价格表:如果两所学校单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少元钱?(2)甲、乙两校各有多少名学生准备参加演出?(3)如果甲校有10名学生被调去参加书法绘画比赛不能参加演出,请你为两校设计一种最省钱的购买服装方案.解:(1)5 000-92×40=1 320(元).答:甲、乙两校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.根据题意得50x+60(92-x)=5 000,解得x=52.所以92-x=92-52=40(名).答:甲校有52名学生准备参加演出,乙校有40名学生准备参加演出.(3)因为甲校有10名学生不能参加演出,所以甲校有42名学生参加演出.①若两校联合购买服装,则需要(42+40)×50=4 100(元).②若两校各自购买服装,则需要(42+40)×60=4 920(元).③若两校联合购买91套服装,则需要40×91=3 640(元).综上所述,最省钱的购买服装方案是两校联合购买91套服装.。
人教版数学七年级上册第3章同步测试题含答案3.1从算式到方程一.选择题1.下列方程中是一元一次方程的是()A.x+3=0B.x2﹣3x=2C.x+2y=7D.2.下列变形中正确的是()A.若x+3=5﹣3x,则x+3x=5+3B.若x=y,则C.若a=b,则a+c=b﹣cD.若m=n,则am=an3.下列变形中,正确的是()A.由﹣x+2=0 变形得x=﹣2B.由﹣2(x+2)=3 变形得﹣2x﹣4=3C.由x=3变形得x=D.由﹣+1=0变形得﹣(2x﹣1)+1=04.若x=﹣1是关于x的方程3x+6=t的解,则t的值为()A.3B.﹣3C.9D.﹣95.如果方程3x﹣2m=10的解是2,那么m的值是()A.2B.﹣2C.4D.﹣46.若关于x的方程(k﹣2019)x﹣2017=7﹣2019(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.67.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现两个同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.下列说法中,正确是()A.2.40万精确到百位B.﹣系数是﹣2,次数是3C.多项式﹣2x2y+xy﹣1是五次三项式D.若ax=ay,则x=y9.如图,三个天平的托盘中形状相同的物体质量相等.图(1)、(2)所示的两个天天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()A.3个球B.4个球C.5个球D.7个球10.在方程①3x+y=4,②2x﹣=5,③3y+2=2﹣y,④2x2﹣5x+6=2(x2+3x)中,是一元一次方程的个数为()A.1个B.2个C.3个D.4个二.填空题11.已知方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,则m的值为.12.如果关于x的一元一次方程ax+2=0的解是,那么a=.13.已知a、b互为倒数,x、y互为相反数,m是方程﹣3(y+1)=9的解的绝对值.则2ab+3x+3y﹣m=.14.若关于x的方程,无论k为何值,它的解总是x=1,则代数式2a+b=.15.下列说法:①若m=n,则am=an;②若m=n,则;③若mx+5=nx+5,则m=n;④若m+n=1,则关于x的方程mx+n=1的解为x=1;⑤若m+n+s =1,则x=1是关于x的方程mx+n+s=1的解;⑥若mn=6,则关于x的方程mx+m=6的解为x=n﹣1.其中错误的是.求m的值;(2)求这两个方程的解.18.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.19.【定义】若关于x的一元一次方程ax=b的解满足x=b+a,则称该方程为“友好方程”,例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.【运用】(1)①﹣2x=,②x=﹣1两个方程中为“友好方程”的是(填写序号);(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=mn+n(n≠0)是“友好方程”,且它的解为x=n,则m=,n=.参考答案与试题解析一.选择题1.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.故选:A.2.【解答】解:A、错误.若x+3=5﹣3x,则x+3x=5﹣3;B、错误.m=﹣1时,不成立;C、错误.一边加,一边减,不成立;D、正确.故选:D.3.【解答】解:A、由﹣x+2=0 变形得x=2,故不符合题意;B、由﹣2(x+2)=3 变形得﹣2x﹣4=3,故符合题意;C、由x=3变形得x=6,故不符合题意;D、由﹣+1=0变形得﹣(2x﹣1)+6=0,故不符合题意.故选:B.4.【解答】解:把x=﹣1代入方程得:﹣3+6=t,解得:t=3,故选:A.5.【解答】解:把x=2代入方程得:6﹣2m=10,解得:m=﹣2,故选:B.6.【解答】解:方程(k﹣2019)x﹣2017=7﹣2019(x+1)整理化简,可得kx=5,即x=,∵该方程的解是整数,k为整数,∴x=1或﹣1或5或﹣5,即=1或﹣1或5或﹣5,解得:k=5或﹣5或1或﹣1,∴整数k的取值个数是4个,故选:C.7.【解答】解:设“”的质量为x,“”的质量为y,“”的质量为:a,假设A正确,则x=2y,此时B选项中是x=1.5y,C、D选项中都是x=2y,故只有选项B一组左右质量不相等,符合题意.故选:B.8.【解答】解:A、2.40万=24000,2.40万精确到百位,原说法正确,故此选项符合题意;B、﹣系数是﹣,次数是3,原说法错误,故此选项不符合题意;C、多项式﹣2x2y+xy﹣1是三次三项式,原说法错误,故此选项不符合题意;D、如果a=0,那么两边都除以a是错误的,原说法错误,故此选项不符合题意;故选:A.9.【解答】解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:,解得:,第三图中左边是:3x+2y+z=7x,因而需在它的右盘中放置7个球.故选:D.10.【解答】解:①3x+y=4中含有2个未知数,属于二元一次方程,不符合题意,②2x﹣=5是分式方程,不符合题意;③3y+2=2﹣y符合一元一次方程的定义,符合题意;④由2x2﹣5x+6=2(x2+3x)得到:﹣11x+6=0符合一元一次方程的定义,符合题意;故选:B.二.填空题(共5小题)11.【解答】解:∵方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.12.【解答】解:将x=代入+2=0,∴a=﹣4故答案为:﹣413.【解答】解:根据题意得:ab=1,x+y=0,方程﹣3(y+1)=9,去括号得:﹣3y﹣3=9,移项合并得:﹣3y=12,解得:y=﹣4,即m=|﹣4|=4,则原式=2ab+3(x+y)﹣m=2+0﹣4=﹣2,故答案为:﹣214.【解答】解:将x=1代入方程,可得:(4﹣b)k=5﹣2a,由题意可知:4﹣b=0,5﹣2a=0,可得:b=4,a=2.5,把b=4,a=2.5代入2a+b=5+4=9,故答案为:915.【解答】解:①若m=n,等式两边同时乘以a得:am=an,即①正确,②若m=n,a2+2≠0,等式两边同时除以a2+2得:=,即②正确,③若mx+5=nx+5,等式两边同时减去5得:mx=nx,若x=0,则m和n不一定相等,即③错误,④若m=0,n=1,则方程mx+n=1的解为任意实数,即④错误,⑤若m=0,可以是任意解,那x=1也是满足条件的,即⑤正确,⑥若mn=6,则m≠0,n≠0,n=,则方程mx+m=6的解为:x ==﹣1=n﹣1,即⑥正确,故答案为:③④⑤.三.解答题(共4小题)16.【解答】解:根据题意将x=﹣4代入方程ax﹣1=7可得:﹣4a ﹣1=7,解得:a=﹣2.17.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.18.【解答】解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.19.【解答】解:(1)①﹣2x=,解得:x=﹣,而﹣=﹣2+,是“友好方程”;②x=﹣1,解得:x=﹣2,﹣2≠﹣1+,不是“友好方程”;故答案是:①;(2)方程3x=b的解为x=.所以=3+b.解得b=﹣;x=n,3.2用合并同类项解一元一次方程一、选择题1、下列解方程移不符合题意的是()A.由3x﹣2=2x﹣1,得3x+2x=1+2B.由x﹣1=2x+2,得x﹣2x=2﹣1C.由2x﹣1=3x﹣2,得2x﹣3x=1﹣2D.由2x+1=3﹣x,得2x+x=3+12、解方程﹣3x+4=x﹣8,下列移项正确的是()A.﹣3x﹣x=﹣8﹣4 B.﹣3x﹣x=﹣8+4C.﹣3x+x=﹣8﹣4 D.﹣3x+x=﹣8+43、合并同类项-13a+14a+112a得()A.23a B.13a C.16a D.04、在解方程2314-=+xx时,下列移项正确的是()A.2134-=+xxB.1234--=-xxC.1234-=-xxD.1234--=+xx5、下列方程的变形正确的个数有()(1)由3+x=5,得x=5+3;(2)由7x=﹣4,得x=﹣;(3)由y=0得y=2;(4)由3=x﹣2得x=﹣2﹣3.A.1个B.2个C.3个D.4个6、某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是().A.20日B.21日C.22日D.23日7、已知1x=是方程20x x a-+=的解,则2a=()A.1 B.1-C.2 D.2-二、填空题8、合并下列式子,把结果写在横线上.(1)x-2x+4x=_________;(2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.9、4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是_________.10、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是___元.11、当x=________时,3x+4与﹣4x+6互为相反数.12.规定:a@b=2a ﹣b 若:x@5=8,则 x=________. 13.已知m 1=3y+1,m 2=5y+3,当y=________时,m 1=m 2 .14.小华同学在解方程5x ﹣1=( )x+3时,发现“括号”处的数字模糊不清,但察看答案可知解为x=2,则“括号”处的数字为________.15.多项式8x 2﹣3x+5与多项式3x 3+2mx 2﹣5x+7相加后,不含二次项,则常数m 的值是________.16、 如果方程3x +4=0与方程3x +4k =18的解相同,则k = .三、解答题17、解下列方程:(1)4﹣m=﹣m ;(2)56﹣8x=11+x ;(3)x+1=5+x ;(4)﹣5x+6+7x=1+2x ﹣3+8x .18、甲、乙两站相距360 km,一列慢车从甲站出发开往乙站,行驶1 h 后,一列快车从乙站开往甲站,经过2 h 两车相遇.已知慢车每小时行驶的路程与快车每小时行驶的路程之比为2∶3,快车与慢车的速度分别是多少?19、小王在解关于x 的方程2a ﹣2x=15时,误将﹣2x 看作+2x ,得方程的解x=3,求原方程的解.20、先观察,再解答.3029282726252423222120191817161514131211109876543211()2图3-2-2如图3-2-2(1)是生活中常见的月历,你对它了解吗?(1)图3-2-2(2)是另一个月的月历,a 表示该月中某一天,b 、c 、d 是该月中其它3天,b 、c 、d 与a 有什么关系?b=____;c=____;d=____.(用含a 的式子填空).(2)用一个长方形框圈出月历中的三个数字(如图3-2-2 (2)中的阴影),如果这三个数字之和等于51,这三个数字各是多少?(3)这样圈出的三个数字的和可能是64吗?为什么?3.3 解一元一次方程(二)去括号与去分母一、选择题1、方程5174732+-=--x x 去分母得( )。
第三章检测卷
时间:120分钟 满分:120分
一、选择题(每小题3分,共30分) 1.下列方程是一元一次方程的是( ) A.x -2=3 B.1+5=6 C.x 2+x =1 D.x -3y =0 2.方程2x +3=7的解是( ) A.x =5 B.x =4 C.x =3.5 D.x =2
3.下列等式变形正确的是( )
A.若a =b ,则a -3=3-b
B.若x =y ,则x a =y
a
C.若a =b ,则ac =bc
D.若b a =d
c
,则b =d
4.把方程3x +2x -13=3-x +1
2
去分母正确的是( )
A.18x +2(2x -1)=18-3(x +1)
B.3x +(2x -1)=3-(x +1)
C.18x +(2x -1)=18-(x +1)
D.3x +2(2x -1)=3-3(x +1) 5.若关于x 的方程x m -
1+2m +1=0是一元一次方程,则这个方程的解是( )
A.-5
B.-3
C.-1
D.5
6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场.设从甲煤场运煤x 吨到乙煤场,则可列方程为( )
A.518=2(106+x )
B.518-x =2×106
C.518-x =2(106+x )
D.518+x =2(106-x )
7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9.请问这个被污染的常数是( )
A.1
B.2
C.3
D.4
8.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )
A.562.5元
B.875元
C.550元
D.750元
9.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时.设经过t 小时两车相距50千米,则t 的值是( )
A.2
B.2或2.25
C.2.5
D.2或2.5
10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )
A.
2314 B.363
8
C.42
D.44 二、填空题(每小题3分,共24分) 11.方程3x -3=0的解是 W. 12.若-x n
+1
与2x 2n
-1
是同类项,则n = W.
13.已知多项式9a +20与4a -10的差等于5,则a 的值为 W. 14.若关于x 的方程x +2m =8与方程
2x -13=x +1
6的解相同,则m = W. 15.在有理数范围内定义一种新运算“”,其运算规则为:a
b =-2a +3b ,如:
=-2×1+3×5=13,则方
程x
=0的解为 W.
16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生. 17.某单位购进A 、B 、C 三种型号的笔记本60本,它们的单价分别是25元、20元和15元,共计花费1250元.若其中有A 种型号的笔记本n 本,则B 种型号的有 本(结果用含n 的代数式表示).
18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是 cm 3
.
三、解答题(共66分) 19.(12分)解下列方程:
(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -3
4=1;
(3)1
2x +2()
54x +1=8+x .
20.(6分)已知方程(m -2)x |m |-
1+16=0是关于x 的一元一次方程,求m 的值及方程的解.
21.(8分)已知3+a 2与-1
3(2a -1)-1互为相反数,求a 的值.
22.(8分)某校班级篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分.如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?
23.(10分)列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士,现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调去多少名武警部队战士?
24.(10分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:
如果两班单独给每位同学购买一套服装,那么一共应付5020元.
(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱? (2)甲、乙两班各有多少名同学?
25.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.
(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示出来,从大到小依次是 , , ;
(2)当被框住的4个数之和等于416时,x 的值是多少?
(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.
参考答案与解析
1.A 2.D 3.C 4.A 5.A 6.C 7.B 8.B 9.D
10.C 解析:设图②中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.
11.x =1 12.2 13.-5 14.7
2 15.x =6
16.30 17.(70-2n ) 18.1000 19.解:(1)x =-20.(4分)(2)x =7
2.(8分)
(3)x =3.(12分)
20.解:因为方程(m -2)x |m |-
1+16=0是关于x 的一元一次方程,所以|m |-1=1且m -2≠0,解得m =-2.(3分)则
原方程为-4x +16=0,解得x =4.综上所述,m =-2,x =4.(6分)
21.解:由题意得3+a 2
+[]
-1
3(2a -1)-1=0,(4分)解得a =5.(8分)
22.解:设这个班胜了x 场,则负(28-x )场.根据题意得3x +(28-x )=48,(4分)解得x =10.(7分) 答:这个班胜了10场.(8分)
23.解:设应往甲处调去x 名武警部队战士,则向乙处调去(200-x )名武警部队战士.根据题意,得130+x =2(70+200-x )+10,(4分)解得x =140,∴200-x =60.(8分)
答:应往甲处调去140名,往乙处调去60名武警部队战士.(10分) 24.解:(1)由题意得5020-92×40=1340(元).(3分)
答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)
(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,(7分)解得x =50,92-x =42(名).(9分)
答:甲班有50名同学,乙班有42名同学.(10分) 25.解:(1)x +8 x +7 x +1(3分)
(2)由题意得x +x +1+x +7+x +8=416,解得x =100.(7分)
(3)不能.(8分)理由如下:因为当4x +16=622,解得x =1511
2
,不为整数.(12分)。