七年级数学上册 第三章代数式教案 人教新课标版
- 格式:doc
- 大小:326.00 KB
- 文档页数:5
第三章代数式1.让学生经历用字母表示以前学过的运算律和计算公式,并体会用字母表示数的意义,形成初步的符号感.2.理解代数式的意义,能解释一些简单代数式的实际背景,并能体会代数式是反映数量之间关系的数学模型.3.会求代数式的值,能够根据特定的问题查阅资料,找到所需要的公式,并会代入字母的具体值进行计算.1.用代数式表示实际问题中的数量关系,要求学生逐步掌握一些分析数量关系的一般方法.2.学会“观察—归纳”的思维方法.3.将文字语言描述的数量或数量关系,用符号语言表示,使学生感悟其中“分析—综合”方法的应用.1.培养学生准确运算的能力,并适当地渗透特殊与一般的辩证关系的思想.2.培养学生养成认真做题的良好习惯,体会数学与现实的联系.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.本章内容包括用字母表示数、代数式、代数式的值.数的运算伴随着数的扩充与发展不断丰富,用字母表示数后,再用加、减、乘、除、乘方和开方等运算符号连接数和字母形成代数式,从而可以用方程刻画现实问题中的等量关系,用不等式表示数量间的不等关系,用函数研究数量间的变化以及对应关系.所以代数式是学习方程、不等式、函数的基础,它对整个第三学段代数知识的学习具有奠基作用.教材采用“大家谈谈”“一起研究”“做一做”等模块,以生动鲜活的例子引入课题,加强讨论与交流,实验与探究,以及动手操作活动的开展,进一步培养学生运用符号解决问题的能力和进行判断和推理的能力,以及培养学生的探索精神.【重点】1.列代数式,求代数式的值.2.培养学生对知识的抽象和概括能力.【难点】由实际问题列代数式及规律探究题的解法.1.教学中重点渗透具体数字到字母的抽象概括思维方式,并注意归纳、类比、转化等思想方法的应用.2.让学生经历观察、探究、思考交流,分析问题中的数量关系,来发展数学思维.3.用代数式表示实际问题的数量关系,要求学生逐步掌握一些分析数量关系的一般方法,对有些实际问题,可以借助表格或图形分析数量关系,使得思路更加清晰.4.在代数式求值的教学过程中,让学生体会到从运算的角度看,代数式是一个计算过程.可以借助图框教学来显示计算过程.对含一个字母的代数式,有意识地取字母的不同值,代入并进行计算,来感受代数式的值是随着字母取值的变化而变化的,渗透函数思想.在解决实际问题的过程中,采用“由特殊到一般再到特殊”的教学过程.5.代数式中字母的取值,要根据具体问题确定其范围,必须要保证代数式和其在实际问题中有意义.3.1用字母表示数1.在观察、思考的过程中形成用字母表示数的一般概念.2.体会用字母表示数的特点和意义.3.通过用字母表示一些具体的数学量,初步培养抽象思维的能力和符号逻辑.在实践的过程中,体会到用一个一般的量来表示具体数值的必要性.通过自主式学习和研究式学习,在教师的帮助下形成代数的思维方式.1.通过实践、观察、思考、归纳等环节,总结规律,培养自主学习的能力.2.体会简单的数学思想是如何运用到具体情况中的.3.在与其他同学的交流和讨论中,培养既合作又竞争的意识.【重点】1.通过实践总结规律,并使用字母表示规律.2.能够自觉地使用字母表示简单的数学关系.【难点】1.认识用字母表示数具有不唯一性.2.能根据实际情况列出合理的代数式.【教师准备】多媒体课件.【学生准备】预习教材P96~97.导入一:出示教材章前图情境问题:【课件】代数式在现实生活中的应用非常广泛.如存款问题:爷爷在银行按1年定期存了a元钱,存款时的1年定期存款年利率是3.50%.到期后,爷爷取出本息共为p元.怎样写出用a表示p的式子?[设计意图]教材中的章前图和内容具有生活情境性,可以帮助学生初步感知用字母表示数的必要.导入二:周末,小明帮妈妈打扫卫生,做完后心里美滋滋的,想着自己喜欢的玩具,忽然他计上心来……妈妈下班后看到桌上有一纸条,内容是拖地3元,叠被1元,抹窗5元,丢垃圾袋1元,共计10元.妈妈看了之后,一言不发,提笔在纸上加上了吃饭x元,穿衣y元,带去看病z元,关心a 元,…,共计b元.写完后就去厨房做饭了,小明看后心里很不是滋味,心生惭愧,赶忙收起纸条.小明懂得了x与y等字母的含义,同学们,你们懂吗?[设计意图]用伟大的母爱,引出本节课的内容,让学生学会感恩.活动1运算律中的字母师:科学家爱因斯坦上小学时,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,.大家能用示例再验证下这个规律吗?生随意举例.师:如果仅靠具体的示例,还不能把这个规律完整地表达出来.你能把这个规律用简明的方法表示出来吗?活动方式:师生对话、交流.[设计意图]利用教材情境,让学生明白字母能简明表示一些规律,与此同时培养学生善于观察和勤于积累的能力.[处理方式]展示学生的成果:爱因斯坦发现的这个规律就是加法交换律,用字母表示为a+b=b+a(a,b表示任意数).(过渡语)师:还有没有其他的已学过的运算律?预设生1:加法结合律:a+b+c=a+(b+c)=(a+b)+c.生2:乘法交换律:ab=ba.生3:乘法结合律:abc=a(bc)=(ab)c.(a,b,c分别为任意数)……(过渡语)师:同学们回答得太好了,那么除了用字母表示运算律之外,用字母还可以表示公式.【课件展示】1.长方形的面积计算公式S=ab,S表示面积,a,b分别表示长方形的长与宽.2.圆的面积计算公式S=πr2,S表示面积,r表示圆的半径.3.长方体的体积计算公式V=abc,V表示体积,a,b,c分别表示长方体的长、宽、高.4.圆柱的体积计算公式V=πr2h,V表示体积,r表示底面半径,h表示圆柱的高.[设计意图]过渡到用字母表示以前学过的运算律、公式、法则,不仅复习了旧知识,而且巩固了新知识,把已学知识重新规划,让学生有一个重新认识的过程.运算律的展示使学生进一步体会用字母表示数可以使数量关系简明和一般化,初步体验和确认了用字母可以表示任意数这一点.活动2用字母表示数量关系(1)请你算出他们每人100米短跑的速度,并将计算结果填入表中.(2)写出计算速度时所用的公式.(3)这个公式能用来计算汽车、轮船、飞机在某段匀速行驶过程中的速度吗?若用s表示路程,t表示所用时间,v表示速度,则这个公式就是v=.思路一[处理方式]独立思考,写出结果,小组内交流.体会用字母表示数的优越性.展示交流结果:(1)100米表示路程,16秒表示时间,小帆的速度=100÷16=(m/s),同理,大林的速度=100÷14.5=(m/s),小明的速度=100÷15.2=(m/s).(算错的同学要订正错误)(2)v=.(其中v表示速度,s表示路程,t表示时间)(3)由于v表示速度,s表示路程,t表示时间,所以v=可以用来求汽车、轮船、飞机在某段匀速行驶过程中的速度.[设计意图]此过程可以使学生经历运用数学符号描述数量关系的过程,发展符号感和抽象思维.通过与同伴交流,学生将体验获得解决问题策略的方法,学会合理清晰地阐述自己的观点.学生必将获得良好的数学活动经验.思路二(1)速度、路程和时间三个量的关系是什么?请动手写一写:.并利用这个关系,分别求出小帆、大林和小明的速度.(2)如果用v表示速度,s表示路程,t表示时间,那么它们的关系可以用字母写成什么?表示为:.(3)能否利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度?[处理方式]独立思考,写在练习本上,同桌交流,展示成果.(1)路程=速度×时间,速度=路程÷时间,时间=路程÷速度.(2)s=vt,v=,t=.(其中v表示速度,s表示路程,t表示时间)(3)可以利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度.师总结:用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.活动3按照要求和条件表示数出示教材第97页的内容:观察自然数0,1,2,3,4,5,6,7,8,9,10,11,12,….(1)请用字母表示偶数和奇数.(2)两个偶数之和是什么数?提出猜想,并用字母表示数的方法说明这个猜想是正确的.[处理方式]同桌互相提问,复习已有知识,交流体会方法.提出引导问题:偶数、奇数的概念是什么?它们有什么特征?(1)能被2整除的数是偶数,不能被2整除的数是奇数.偶数用字母表示为2m(m为自然数),奇数用字母表示为2m+1(m为自然数).(2)提出猜想:两个偶数的和是偶数.验证1:2+4=6,102+134=236……验证2:(相邻两个偶数)一个偶数为2m(m为自然数),另一个为2m+2,其和为2m+2m+2=2(2m+1).验证3:一个偶数为2m(m为自然数),另一个为2n(n为自然数),两个偶数的和为2(m+n).活动4做一做——能力提升用字母表示数,说明:(1)任意两个奇数之和是偶数.(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数.问题引导:(1)一个奇数怎么表示?(2)两个相邻的奇数怎么表示?(3)任意两个奇数怎么表示?(4)与m相邻的两个自然数怎么表示?问题提示:(1)2m+1.(2)2m+1和2m - 1.(3)2m+1和2n+1.(4)m+1和m - 1.(m,n为自然数)问题说明:(1)任意两个奇数之和是偶数:2m+1+2n+1=2(m+n+1).(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数:m+1+m - 1=2m.[知识拓展]用字母表示数,同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示.用字母表示实际问题中的某一数量时,字母的取值需使这个问题有意义,并且符合实际.用字母表示数可简明表达问题中的数量关系、公式、法则、规律等.用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.1.填空.(1) - 6 ℃下降2 ℃后是℃;温度由t℃下降2 ℃后是℃;(2)今年李华m岁,去年李华岁,五年后李华岁;(3)三个连续偶数中间一个为2n,则其余两个为,;(4)某商店上月收入a元,本月收入比上月的2倍多10元,本月收入元;(5)城市市区人口a万人,市区绿化面积m万m2,则平均每个人拥有绿地m2;(6)某城市5年前人均年收入为n元,预计今年人均年收入是5年前的2倍多500元,那么今年人均年收入将达元.答案:(1) - 8(t - 2)(2)(m - 1)(m+5)(3)2n - 22n+2(4)(2a+10)(5)(6)(2n+500)2.选择.(1)用字母表示乘法对加法的分配律是()A.a(b+c)B.ab+acC.a(b+c)=ab+acD.ab=ba(2)昨天的最高气温是27 ℃,今天的最高气温比昨天的下降t℃,今天的最高气温是()A.27+tB.27 - tC.(27+t)℃D.(27 - t)℃(3)(2015·吉林中考)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元解析:(1)乘法分配律是一个数乘两个数的和,等于这个数分别乘这两个加数,然后把乘得的积相加,据此写成字母表达式为a(b+c)=ab+ac;(2)用昨天的最高气温减去下降的气温即为今天的最高气温.今天的最高气温是(27 - t)℃;(3)购买1个单价为a元的面包所需费用为a元,3瓶单价为b元的饮料所需费用为3b元,则共需费用为(a+3b)元.答案:(1)C(2)D(3)D3.填空.(1)长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成的,则能射进阳光部分的面积是;(2)(2015·安顺中考)如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形的个数为(用含n的式子表示).解析:(1)能射进阳光部分的面积=长方形的面积- 半径为b的半圆的面积.即能射进阳光部分的面积=2ab - πb2;(2)认真观察图形,确定图形变化规律:第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,以后每个图案都比前一个图案多3个基础图形,所以第n(n是正整数)个图案中的基础图形的个数为3n+1.答案:(1)2ab - πb2(2)3n+13.1用字母表示数活动1运算律中的字母活动2用字母表示数量关系活动3按照要求和条件表示数活动4做一做——能力提升一、教材作业【必做题】教材第98页习题A组第1,2题.【选做题】教材第98页习题B组第1,2题.二、课后作业【基础巩固】1.如果甲数是x,甲数是乙数的2倍,那么乙数是()A.xB.2xC.x+2D.x+2.n为整数,则2n - 1一定是()A.偶数B.奇数C.2的倍数D.正整数3.一个长方形的周长为28,其中长为x,则此长方形的面积为()A.14xB.x(x - 14)C.x(14+x)D.x(14 - x)4.若一个正方形的边长为a,则这个正方形的周长是.5.若每箱有36个苹果,则n箱共有个苹果.6.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的式子表示)7.某商品的进价为x元,售价为120元,则该商品的利润率可表示为.8.一棵树刚栽时高2 m,以后每年长高0.2 m,n年后的树高为多少米?9.一桶油,连桶重x kg,桶本身重1 kg,用去油的后,桶内还有多少油?【能力提升】10.x是两位数,y是一位数,如果把x置于y的左边,那么所成的三位数应表示为()A.xyB.x+yC.100x+yD.10x+y11.(2015·海南中考)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1 - 10%)(1+15%)x万元B.(1 - 10%+15%)x万元C.(x - 10%)(x+15%)万元D.(1+10% - 15%)x万元12.有一块长为x m,宽为y m的长方形草坪,在草坪中间有一条宽为z m的人行道,形状如图所示,请你计算这块草坪的实际绿化面积.【拓展探究】13.怎样的两个数,它们的和等于它们的积呢?观察下面几个式子:2+2=2×2;3+=3×;4+=4×;5+=5×……(1)你还能发现一些这样的两个数吗?(2)你能从中发现什么规律吗?把这个规律用字母n表示出来.【答案与解析】1.A(解析:甲数是乙数的2倍,那么乙数就是甲数的.)2.B(解析:因为n为整数,所以代数式2n - 1一定是奇数.故选B.)3.D(解析:长方形的宽为×28 - x=14 - x,面积为x(14 - x).)4.4a(解析:正方形的边长为a,正方形的周长为4×正方形的边长,所以正方形的周长为4a.)5.36n(解析:每箱苹果数与箱数的积即为所求.)6.(3200 - 5a)(解析:学生捐款数=捐款总数- 教师捐款总数.所以学生捐款数为(3200 - 5a)元.)7.(解析:利润为(120 - x)元,所以该商品的利润率可表示为.)8.解:原来树高为2 m,n年增长0.2n m,所以n年后的树高为2+0.2n(m).9.解:桶中有油(x - 1)kg,用去油的后,还剩油的1 - ,所以桶内还有油(x - 1)kg.10.D(解析:根据题意可知把x置于y的左边,相当于把x扩大为原来的10倍,y不变.即所得的数是10x+y.故选D.)11.A(解析:1月份的产值是x万元,则2月份的产值是(1 - 10%)x万元,3月份的产值是(1+15%)(1 - 10%)x万元.)12.解:草坪的实际绿化面积应是长方形面积与平行四边形面积之差,长方形的面积为xy m2,平行四边形的面积为yz m2.所以实际绿化面积为(xy - yz)m2.13.解:(1)答案不唯一,如6+=6×等.(2)(n+1)+=(n+1)×.本节课运用贴近学生生活实际的材料,再次引导学生经历由具体的数到“抽象的数”,由具体的算式到含有字母的式子的学习过程,让学生经历从具体的情境中抽象出数量关系和变化规律的过程,从而体会用字母表示数的意义,形成初步的符号感,初步体会“特殊—一般—特殊”“数形结合”等数学思想方法.对课堂节奏的把握不够紧凑,最后学生完成练习的时间不够充分.在用字母表示数的过程中对学生的探究发现没有进行方法指导.课堂创设要丰富多彩,供学生观察、猜想、讨论和验证,要充分调动学生的积极性,让每个学生都有发言的机会,教学面向全体学生.在猜想和说明问题时,提醒学生采取提出问题、特例验证、一般推理的方式进行思考.练习(教材第97页)(1)15a(2)4a+2a(3)(a+b)习题(教材第98页)A组1.(1)( - 6+t)(2)8a(3)10a+b(4)25 - a(5)(29+a)(26+a)2.解:ab - cd.3.解:ab+ac或a(b+c).B组1.解:设原来四位数的后三位数为a,则原来四位数为7000+a,新四位数为10a+7.2.解:设连续两个奇数为2n+1和2n - 1(n为整数),则(2n+1)+(2n - 1)=4n,所以任意两个连续奇数之和都是4的倍数.清朝末年,文学家俞曲园写了一首咏杭州风景点“九溪十八涧”的诗:重重叠叠山,曲曲环环路,丁丁东东泉,高高下下树.当代数学家淡祥柏把每句诗都表示成算式:以上共有4个算式,每个汉字表示一个数字,在每一个算式中,重叠的汉字代表相同的数字,不同的汉字代表不同的数字,你能写出这4个算式的数字形式吗?解:3.2代数式1.进一步理解用字母表示数的意义.2.掌握书写代数式的注意事项并会正确书写代数式.1.会把代数式反映的数量关系用文字语言表述出来,会把文字语言表述的数量关系用代数式表示出来.2.能分析简单问题中的数量关系,并用代数式表示出来.通过将实际问题中的数量关系用代数式表示,提高数学应用意识.【重点】列代数式;用代数式表示实际问题中的数量关系;代数式表示的实际意义.【难点】代数式的意义;用代数式表示实际问题中的数量关系;规律探索.第课时1.在具体情境中,进一步理解用字母表示数的意义.2.能解释一些简单代数式的几何意义.3.在具体情境中,能列出代数式,并解释其实际意义.1.经历应用数学符号的过程,进一步提高学生的符号感.2.初步学会从数学的角度提出问题和理解问题,充分体会解决问题的策略的多样性.培养学生热爱数学,会用数学思想解决生活中的问题的能力.【重点】列代数式.【难点】用数学语言表达代数式的意义.【教师准备】多媒体课件.【学生准备】搜集以前学过的数学公式.导入一:填空.1.m的3倍与5的和可以表示为.2.小华用a元买了b本练习本,每本练习本元.3.边长为x cm的正方形的周长是cm;面积是cm2.教师活动:(1)组织学生交流;(2)引导学生观察所列代数式,给出代数式的概念;(3)交流所列代数式的意义.学生活动:(1)独立思考完成填空;(2)交流结果;(3)说说代数式在此问题中所代表的实际意义.[设计意图]用填空的方式来列简单的代数式,学生能够独立完成.为下面代数式概念的引出作铺垫.师板书:三角形的面积公式S=ah,路程问题中的s=vt,5>b等等.教师活动:(1)板书;(2)讲解.学生活动:(1)回答问题;(2)讨论交流.[设计意图]引导学生找出代数式与等式、不等式的不同.活动1代数式的概念1.代数式的概念.思路一教师活动:(1)组织学生阅读教材第99页;(2)引导学生举出代数式的例子.学生活动:(1)阅读课文;(2)举例交流,畅所欲言.[设计意图]让学生先直观感受什么叫代数式,只要学生知道什么是代数式即可,要求学生能举出一些实际例子.追问:单独的一个字母或一个数是代数式吗?(是.)[设计意图]这个问题的价值在于强调单独的一个数或一个字母也是代数式,强化易错点,使学生知道字母可以表示具体的数,也可以表示具体的数量关系,同一字母或表达式在不同的场合有不同的意义,强化学生的符号感;其次,通过交流,拓宽学生的思维,发展学生的联想、类比等思维能力.思路二请同学们观察并思考:a+b,m - n,25m,,6a2,a3……这些式子有哪些共同点?预设生:都含有数字或字母.师:除了数字和字母外,还有什么?预设生:还有运算符号(+、- 、×、÷、乘方).师:运算符号在数字和字母之间起到了什么样的作用?预设生:把数或字母连接起来了.师:回答得很好!同学们,这就是代数式!现在你能用自己的语言叙述一下什么是代数式吗?学生交流2分钟后,找不同学生语言叙述,互相补充,教师加以引导.然后用多媒体课件展示代数式的定义.概括:用运算符号连接数和字母组成的式子,都叫做代数式.单独的一个数或字母也是代数式.2.例题讲解.指出下列各代数式的意义:(1)2a+5;(2)2(a+5);(3)a2+b2;(4)(a+b)2.〔解析〕根据代数式的意义,必须把代数式作为一个整体去看待.运算符号和字母、数字的组合,是代数式的重要特点.解:(1)2a+5表示是a的2倍与5的和.(2)2(a+5)表示a与5的和的2倍.(3)a2+b2表示a的平方与b的平方的和.(4)(a+b)2表示a与b的和的平方.活动2用代数式表示数量关系用代数式表示“a,8两数之和与b,c两数之差的积”.可按下面的步骤列代数式:[处理方式]四人为一小组,把“做一做”试着做下来.做完之后,小组长把自己组做的答案呈现出来.[设计意图]让学生仿照图示的方法列代数式,体会数量之间的和、差、倍、分的关系与加、减、乘、除的运算的对应.用代数式表示:(1)a与b的差与c的平方的和.(2)百位数字是a,十位数字是b,个位数字是c的三位数.(3)三个连续的整数(用同一个字母表示),以及它们的和.〔解析〕(1)a与b的差也就是a - b,所求即为(a - b)与c的平方的和.列代数式的关键是一定要注意运算顺序;(2)用不同的字母表示一个整数各数位上的数字,记为abc=100a+10b+c;(3)中间的这个数是m,则连续的三个整数就是m - 1,m,m+1.解:(1)(a - b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m - 1,m,m+1.它们的和为(m - 1)+m+(m+1).强调:在代数式中,字母与数或字母与字母相乘时,通常把乘号写作“·”或省略不写,如2×a 写作2·a或2a,a×b写作a·b或ab.除法运算一般以分数的形式表示.如s÷t写作(t≠0).[设计意图]本部分内容是学生学习了代数式之后紧跟的练习,目的是强化学生对代数式概念的理解与掌握,会根据具体要求列代数式,训练学生思维的严密性.[知识拓展](1)对于一个代数式,它的意义没有统一的规定,以简明而不致引起误解为出发点,同一个代数式可用不同形式的文字语言表述它的意义.(2)如果式子中含有“=”“<”“>”“≤”“≥”等符号,它们不是运算符号,那么这样的式子不是代数式.(3)数与字母、字母与字母相乘,乘号可以省略,也可写成“·”;数字与数字相乘,乘号不能省略;数字要写在字母前面.(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.(5)带分数一定要写成假分数.1.用运算符号把数和字母连接起来的式子叫做代数式.2.单独的一个数或字母也是代数式.1.下列式子是代数式的是.①,②a2b,③x=1,④a2+ab - 1,⑤3>2,⑥o,⑦y=x - 1.解析:等式与不等式都不是代数式,排除③⑤⑦.故填①②④⑥.2.写出代数式a2 - b2表示的意义.解:a的平方与b的平方的差.3.用代数式表示.(1)x的2倍与y的差;(2)m与5的差的3倍;(3)a的11倍再加上2;(4)x,y两个数和的平方;(5)甲数为a,比甲数的平方大3的数.解:(1)2x - y.(2)3(m - 5).(3)11a+2.(4)(x+y)2.(5)a2+3.第1课时活动1代数式的概念用运算符号连接数和字母组成的式子,都叫做代数式.注意:单独的一个数或字母也是代数式.活动2用代数式表示数量关系正确表达代数式的实际意义.一、教材作业【必做题】教材第100页练习第1,2题.【选做题】教材第101页习题A组第1,2,3,4题.二、课后作业【基础巩固】1.下列属于代数式的是()A.4+6=10B.2a - 6b>0C.0D.v=2.买一个足球需要a元,买一个篮球需要b元,则买4个足球、7个篮球共需要()A.(4a+7b)元B.4a元C.7b元D.11元3.2(a+b)的几何意义是.4.设乙数为x,甲数比乙数的2倍大1,则甲数为.【能力提升】5.某厂一月份产值为a万元,从二月份起每月增产15%,三月份的产值可以表示为()A.(1+15%)2×a万元B.(1+15%)3×a万元C.(1+a)2×15%万元D.(2+15%)2×a万元6.一个两位数,十位上是a,个位上是b,用代数式表示这个两位数为()A.abB.baC.10a+bD.10b+a7.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m - n)2B.3(m - n)2C.3m - n2D.(m - 3n)28.甲、乙二人按5∶2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年盈利14000元,那么甲、乙二人分别应分得()A.2000元和5000元B.4000元和10000元C.5000元和2000元D.10000元和4000元【拓展探究】9.通讯市场竞争日益激烈,某通讯公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准是每分钟多少元?【答案与解析】1.C(解析:一个字母或一个数字也是代数式.)。
第四十二课时一、课题§3.1代数式二、教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习三、教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、引言数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具学好数学对于把我国建设成为有中国特色的社会主义强国具有十分重要的作用中学的数学课,是从学习代数开始的除了学习代数以外,同学们还将陆续地学习平面几何、立体几何、解析几何等内容学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度没有坚持不懈努力,没有顽强的克服困难的精神,是不可能学好代数的在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习(一)、从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律 a+b=b+a;(2)乘法交换律 a·b=b·a;(3)加法结合律 (a+b)+c=a+(b+c);(4)乘法结合律 (ab)c=a(bc);(5)乘法分配律 a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c 都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要025小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s 表示路程,t 表示时间,ν表示速度,你能用s 与t 表示ν吗?4、(投影)一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少? (用I 厘米表示周长,则I=4a 厘米;用S 平方厘米表示面积,则S=a 2平方厘米) 此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,ts以及a 2等等都叫代数式那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容三、讲授新课 1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明 例1 填空:(1)每包书有12册,n 包书有__________册; (2)温度由t ℃下降到2℃后是_________℃; (3)棱长是a 厘米的正方体的体积是_____立方厘米; (4)产量由m 千克增长10%,就达到_______千克 (此例题用投影给出,学生口答完成)解:(1)12n ; (2)(t-2); (3)a 3; (4)(1+10%)m例2 、说出下列代数式的意义: (1) 2a+3 (2)2(a+3); (3)ab c (4)a-dc (5)a 2+b 2 (6)(a+b) 2解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积; (3)ab c 的意义是c 除以ab 的商; (4)a-dc的意义是a 减去dc的差;(5)a 2+b 2的意义是a,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等例3 、用代数式表示: (1)m 与n 的和除以10的商; (2)m 与5n 的差的平方; (3)x 的2倍与y 的和; (4)ν的立方与t 的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面解:(1)10nm ; (2)(m-5n)2(3)2x+y ; (4)3t ν3(四)、课堂练习 1、填空:(投影)(1)n 箱苹果重p 千克,每箱重_____千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米; (3)底为a,高为h 的三角形面积是______;(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____ 2、说出下列代数式的意义:(投影) (1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b23、用代数式表示:(投影)(1)x 与y 的和; (2)x 的平方与y 的立方的差; (3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和(五)、师生共同小结 首先,提出如下问题: 1、本节课学习了哪些内容?2用字母表示数的意义是什么?3、什么叫代数式?教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号七、练习设计1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长2、张强比王华大3岁,当张强a 岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a 千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R 厘米,它的面积是多少?6、用代数式表示:(1)长为a,宽为b 米的长方形的周长; (2)宽为b 米,长是宽的2倍的长方形的周长; (3)长是a 米,宽是长的31的长方形的周长; (4)宽为b 米,长比宽多2米的长方形的周长八、板书设计§3.1字母能表示什么(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记1、本课所遇的问题,多数应由学生首先口答来完成,但在“说出代数式的意义”这一问题上,应向学生强调:一定要严格按照教师示范的要求去做,如“a-bc ”的意义是“a 减去bc 的差”,而不能说成是“a 与bc 的差”2、由于这是中学数学的第一课,故设计了一个引言,目的是对学生进行学习目的、学习态度和学习方法的教育在实际教学时,可依据学生的实际情况灵活掌握,原则是多鼓励,严要求。
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“代数式”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力,感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.教师应把握数与式的整体性,一方面,通过对负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理;能在比较复杂的情境中,提升学生发现问题和提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第三章“代数式”,本章包括两个小节:3.1列代数式表示数量关系;3.2代数式的值.本单元内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,让学生借助现实情境了解代数式,进一步理解用字母表示数的意义;能分析具体问题中的简单数量关系,并用代数式表示;能根据特定的问题查阅资料,找到所需的公式;会把具体的数代入代数式中进行计算.在教学中,一方面,要注重利用学生熟悉的数的有关知识来学习式的有关知识,理解式的运算与数的运算是一致的,即式的运算是建立在数的运算基础之上的,式的运算更具有一般性,数的运算是式的运算的特殊情形.通过类比教学,体会“数式通性”,在对数与式运算的对比分析中,使学生理解认识事物的过程是由特殊到一般,又由一般到特殊,在不断重复中得到提高的,培养学生初步的辩证唯物主义观点;另一方面,要让学生体会到数与式的相关概念和运算来源于实际,是实际的需要,看到数与式的运算在解决实际问题中所起到的作用,感受由实际问题抽象出数学问题的过程,体会式比数更具一般性的道理.教学中让学生经历分析实际问题中的数量关系,并用代数式表示出来的过程,既为后续的学习打下基础,又能培养学生列代数式表示数量关系的能力,逐步让学生养成善于利用数学解决实际问题的习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第三章代数式,学生在前面已学习了用字母表示数、简单的列式表示实际问题中的数量关系和简易方程等知识,初步积累了一定的数学活动的经验,这些是学习本单元的直接基础.要注意的是,在教学中通过举例复习用字母表示数,不是简单的重复,而是在复习的基础上有所提高,让学生充分体会字母的含义,逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行运算,为学习整式的加减运算打好基础.同时,要运用类比的数学思想来开展本章的课堂教学,从学生熟悉的数的运算来学习式的运算,可以降低学生学习的难度,不仅能让学生能够深刻地体会到“数式通性”的道理,还能促使学生的学习形成正迁移,从而提升学生的抽象能力和推理能力,培养学生的数学思维意识.根据学生的最近发展区创设特定情境,使学生一直处于熟悉的数学氛围之中,会使学生更加主动地去探索实际问题中的数量关系,培养学生良好的数学探究意识.虽然代数式可以简明地表达现实世界中的数量和数量关系,同时又具有一般性,可以给解决问题和计算带来方便,但列代数式解决实际问题仍然会给学生造成一定的困难,是学生思维突破的一大难关,因此教学中一定要注意类比思想的逐步渗透、抽象能力的逐步培养.四、单元学习目标1.通过现实的问题情境进一步理解用字母表示数的意义,在探索现实世界数量关系的过程中,发展学生的抽象能力,培养学生的符号意识.2.通过解决实际问题的过程,理解用字母表示数是数量关系的一种抽象化,它更具有一般性,是代数的一个重要特点,提高学生把握知识的内在联系的能力.3.通过经历由数到式的过程,体会式的运算是建立在数的运算基础之上的,在感悟“数式通性”的同时,培养学生的类比意识,提高学生的知识迁移能力.4.通过分析实际问题中的数量关系,并用含有字母的式子表示出来的过程,发展学生的抽象思维能力,培养学生的应用意识.5.通过经历自主探索、观察发现的数学活动,发展学生学习的主动性和积极性,培养学生的创新精神、自学意识和应用意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
第三章字母表示数3.代数式求值一、学生起点分析本节是在学生学习第二节《代数式》即如何列代数式的基础上,继续学习求代数式的值。
学生在前面学过用字母和代数式表示运算律和计算公式,能解释一些简单代数式的实际背景或几何意义,在具体情境中,会求出代数式的值并解释它的实际意义,且形成了初步的符号感。
七年级学生具有思维活跃,好奇心强的特点,已初步形成合作交流、敢于探索和实践的良好学风,学生间相互评价、相互提问的互动气氛较浓。
对于本节课的学习,他们在知识技能上和方法上都已具备良好的契机。
二、教学任务分析用代数式表示数量关系是由特殊到一般的过程,而代数式求值是从一般到特殊的过程。
进一步学习代数式求值,通过代数式求值推断出代数式所反映的规律。
这也为第六节《探索规律》奠定了基础。
因此本节内容在本章中起着承上启下的作用。
即:2、代数式—→3、代数式求值—→6、探索规律一般—→特殊—→一般学会代数式求值,不但可以帮助学生进一步理解代数式的意义和作用,而且也为运用公式解决实际问题,进行有理数运算和解方程等后继知识作好准备。
代数式求值是学习方程、函数等其他后续知识必备的基础,可有效的培养学生的分析问题、解决问题的能力。
根据以上分析,确定本节课的教学目标如下:1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
(知识与技能)2、经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
(过程与方法)3、通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
(情感与态度)教学重点:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法。
教学难点:会利用代数式求值推断代数式所反映的规律。
三、教学过程分析本节课由五个教学环节组成,它们是:①情境引入,复习旧知②例题点拨, 实践探究③随堂练习,突破难点④数学游戏,巩固新知⑤师生交流,归纳小结。
3.2代数式的值(第2课时)教学目标1.会利用代数式的值解决简单的实际问题,通过讲解例题培养学生解决实际问题的能力,提高运算能力.2.通过例题使学生明白代数式的取值要有实际意义.3.通过求代数式的值渗透特殊与一般的辩证关系思想.教学重点1.求代数式的值.2.会利用代数式的值解决实际问题.教学难点会利用代数式的值解决实际问题.教学过程知识回顾【问题】在小学,我们学习过许多公式,在解决有关问题时,经常用这些公式进行计算.请你用字母表示下列公式.图形面积公式长方形S=ab正方形S=a2三角形S=ah÷2梯形S=(a+b)h÷2圆S=πr2【师生活动】学生回答,教师补充纠正.并提出问题:你还能想到其它用代数式表示的公式吗?【设计意图】使学生了解用代数式表示公式的情形.新知探究一、探究学习【引例】如图,某学校操场最内侧的跑道由两段直道和两段半圆形的弯道组成,其中直道的长为a,半圆形弯道的直径为b.(1)用代数式表示这条跑道的周长.(2)当a=67.3 m,b=52.6 m时,求这条跑道的周长(π取3.14,结果取整数).【师生活动】教师提示:对于问题(1),让我们求的是跑道的周长,那么跑道的周长都包含哪些部分呢?学生回答:跑道的周长是两段直道和两段弯道的长度和.教师提问:弯道的长度怎么求?学生回答:由圆的周长公式可以求出弯道的长度.教师对学生的回答给与肯定,并提醒圆的周长公式计算出的是两段弯道的长度,不用再乘2.教师提问:对于问题(2),你是用什么方法计算的?学生回答:我是用代入法来求跑道周长的,将a与b的值代入第(1)问里求出的表达式中,计算出结果即可.【答案】(1)两段直道的长为2a;两段弯道组成一个圆,它的直径为b,周长为πb,因此,这条跑道的周长为2a+πb.(2)当a=67.3 m,b=52.6 m时,2a+πb=2×67.3+3.14×52.6≈300(m).因此,这条跑道的周长约为300 m.【思考】代数式2a+πb中,b的取值可以是0吗?【新知】代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中b不能为零,在代数式2a+πb中,b代表的是半圆形弯道的直径,故不能为0.【设计意图】通过这个引例,①让学生掌握根据实际问题列代数式的方法;②让学生通过代数式的值来解决实际问题,培养学生解决实际问题的能力,提高运算能力.③使学生明白,在实际问题中,代数式中字母的取值要具有实际意义.二、典例精讲【例】一个三角尺的形状和尺寸如图所示,用代数式表示这个三角尺的面积S.当a=10 cm,b=17.3 cm,r=2 cm时,求这个三角尺的面积(π取3.14).【师生活动】教师提问:三角尺的面积是指哪一部分?可以怎样求?学生回答:三角尺的面积=三角形的面积-圆的面积.可以根据三角形和圆的面积公式求出三角尺的面积.学生作答,教师指导.【答案】解:三角形的面积为12ab,圆的面积为πr2.这个三角尺的面积(单位:cm2)S=12ab-πr2.当a=10 cm,b=17.3 cm,r=2 cm时,S=12×10×17.3-3.14×22=73.94(cm2).因此,这个三角尺的面积是73.94 cm2.【设计意图】让学生巩固用代数式的值解决实际问题的方法,通过求代数式的值渗透特殊与一般的辩证关系思想.三、课堂练习在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃).(1)用代数式表示该地当时的温度.(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的温度约是多少?【师生活动】学生独立解答,教师评价纠正.【解析】题目中没有明确给出未知数时,需要先设未知数,再列代数式.【答案】(1)用c表示蟋蟀1分钟叫的次数,则该地当时的温度为:c7+3.(2)把c =80,100和120分别代入7c+3,得807+3=1017≈14,1007+3=1217≈17,1207+3=1417≈20. 因此,当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的温度大约分别是14℃,17℃,20℃.四、拓展提升密码学是研究编制和破译密码的规律的一门学科,它与数学有密切关系.例如,对于秘闻“L dp d vwxghqw”,如果给一把破译它的“钥匙”x -3,联想英语字母表中字母的顺序:a b c d e f g h i j k l m n o p q r s t u v w x y z如果规定a 又接在z 的后面,使26个字母排成圈,并能想到x -3可以代表“把一个字母换成字母表中从它向前移动3位的字母”,按这个规律就有L dp d vwxghqw→I am a student .这样就能把密文“L dp d vwxghqw ”破译成明文“I am a student ”,从而解读出密文的意思了.【问题】请你研究以下问题:(1)将26个英文字母a ,b ,c ,…,z 依次对应自然数1,2,3,…,26.对于密文“26 2 19 7”,给出密文与明文之间的关系如下: 当密文中的数x 为奇数时,明文对应的序号为x +1;当密文中的数x 为偶数时,明文对应的序号为2x. 请将密文破译成用英文字母表示的明文.【师生活动】学生独立解答,教师提问.讲解过程中教师出示数字与英文字母对照表,因为26是偶数,对应的序号为262=13,序号13对应的字母为m ,同理可得2对应的字母为a.19是奇数,对应的序号为19+1=20,序号20对应的字母为t ,同理可得7对应的字母为h.所以密文“26 2 19 7”对应的明文是“math ”.【设计意图】让学生巩固用代数式的值解决实际问题的方法,巩固求代数式的值的方法. 【问题】(2)请你和同学利用数学式子来设计一种明文与密文的关系,并互相合作,通过游戏试一试如何进行保密通信.【提示】如图所示,有一种密码把英文的密文转换为明文的规则是沿中间横线对折对折,该字母则转换为与其所在格重合的那个格中的字母(不分大小写).例如:b→o、x→k.按此规则将密文fghql转换成明文就是study. 答案不唯一.【师生活动】学生独立设计,教师点名展示.【设计意图】通过活动使学生能够灵活运用代数式的值解决问题,培养发散思维.课堂小结板书设计一、用代数式的值解决实际问题二、代数式的值的取值范围课后任务完成教材P81练习1~3题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
第3单元教学设计(学科:数学年级:七年)
单元课题整式的加减依据
单元教学目标1.知识与技能:
在现实情境中进一步理解用字母表示数的意义,让学生在探索现实世界数量关系的过程
中,初步建立符号意识.了解代数式的概念,能分析具体问题中的数量关系,并用代数式表示.
了解代数式的值的概念,会求代数式的值.了解单项式、多项式和整式的概念.掌握单项式的系
数与次数及多项式的次数、项与项数的概念,并会把一个多项式按某个字母的升幂或降幂排列.
理解同类项的概念,掌握合并同类项的法则,能正确合并同类项.掌握去括号、添括号的法则,
能正确地去括号和添括号.能进行简单的整式加减运算.
2.过程与方法:
通过实例的引入,学生认识到数学的发展来源于生产和生活,培养学生热爱数学并自觉学
习数学的习惯,通过小组讨论及探究的学习方式,培养学生独立思考、认真的学习态度,提高
运算能力,激发学生的创新意识.
3.情感态度与价值观:
通过对代数式有关概念的理解,使学生了解用字母表示数的简洁性和普遍性,初步感受数
学的简洁美;通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,
提高分析问题和解决问题的能力.通过分组讨论学习,体会在解决具体问题的过程中与他人合
教学大纲、教师参考用书,及数学核心素养
作的重要性,培养团体协作精神,获得合作交流的学习方式.
教学大纲、教师参考用书,及数学核心素养单元重难点重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算.
难点:准确地进行合并同类项,准确地处理去括号时的符号.。
代数式(第一课时)一、教学目标1.知识与技能:理解代数式,能解释一些简单代数式的实际背景或几何意义。
2.过程与方法:经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识。
3.情感态度:在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心,发展学生创新精神。
二、教学重难点教学重点:列代数式。
教学难点:理解具体代数式的意义,能用代数式表示简单的数量关系。
三、教学过程1、新课导入在上节内容中出现过的4+3(x-1),a2,2a+b,3ab,2(m+n),6(a-1)2等式子,有什么共同的特征?2、推进新课(1)代数式的概念:像这样4+3(x-1),a2,2a+b,3ab,2(m+n),6(a-1)2等由运算符号把数和字母连接而成的式子,叫做代数式。
单独的一个数或一个字母也是代数式。
注意:(1)运算符号包括加、减、乘、除、乘方。
(2) 代数式不含“=”、“>”、“<”、“≤”、“≥”、“≠”。
例1 下列各式中哪些是代数式?哪些不是代数式?①2x+5 ②0 ③C=2πr④2(m+n) ⑤ a+b >0 ⑥a ≠2⑦π ⑧4x+(x -1) ⑨⑩x+1≤6新知巧记:数和字母排排站,运算符号做连接,除去等式不等式,其他全是代数式。
(2)代数式的书写要求:①在代数式中,数字与字母或字母与字母相乘,通常将乘号写作“·”,或省略不写,数字要写在字母的前面。
3×a 写作: 3·a 或 3a 。
a ×b 写作: a ·b 或 ab 。
②数字因数是1或-1时,常省略“1”。
如1a 写成a ,-1ab 写成-ab 。
③带分数与字母相乘时,通常化带分数为假分数。
如a ⨯211应写成a 23。
④在含有字母的除法运算中,结果一般写成分数的形式。
如b a ÷写成ba 。
⑤在实际问题中,如果式子是和或差的形式,要把整个式子括起来,再写单位名称,如(a+b)千克。
一、课题§3.1代数式二、教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3三、教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、引言数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具中学的数学课,是从学习代数开始的学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习(一)、从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律 a+b=b+a;(2)乘法交换律 a·b=b·a;(3)加法结合律 (a+b)+c=a+(b+c);(4)乘法结合律 (ab)c=a(bc);(5)乘法分配律 a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要025小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公s 式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,t 以及a2等等都叫代数式那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明例1 填空:(1)每包书有12册,n包书有__________册;(2)温度由t℃下降到2℃后是_________℃;(3)棱长是a厘米的正方体的体积是_____立方厘米;(4)产量由m千克增长10%,就达到_______千克(此例题用投影给出,学生口答完成)解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m例2 、说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3)ab c (4)a-dc (5)a 2+b 2 (6)(a+b) 2 解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积; (3)ab c 的意义是c 除以ab 的商; (4)a-d c 的意义是a 减去dc 的差;(5)a 2+b 2的意义是a ,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等例3 、用代数式表示:(1)m 与n 的和除以10的商;(2)m 与5n 的差的平方;(3)x 的2倍与y 的和;(4)ν的立方与t 的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面解:(1)10n m ; (2)(m-5n)2 (3)2x+y ; (4)3t ν3(四)、课堂练习1、填空:(投影)(1)n 箱苹果重p 千克,每箱重_____千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米;(3)底为a ,高为h 的三角形面积是______;(4)全校学生人数是x ,其中女生占48%,则女生人数是____,男生人数是____2、说出下列代数式的意义:(投影)(1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b 2 3、用代数式表示:(投影)(1)x 与y 的和; (2)x 的平方与y 的立方的差;(3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和(五)、师生共同小结首先,提出如下问题:1、本节课学习了哪些内容?2?3、什么叫代数式? 教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号七、练习设计1、一个三角形的三条边的长分别的a ,b ,c ,求这个三角形的周长2、张强比王华大3岁,当张强a 岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a 千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R 厘米,它的面积是多少?6、用代数式表示:(1)长为a ,宽为b 米的长方形的周长;(2)宽为b 米,长是宽的2倍的长方形的周长;(3)长是a 米,宽是长的31的长方形的周长;(4)宽为b 米,长比宽多2米的长方形的周长八、板书设计九、教学后记1、本课所遇的问题,多数应由学生首先口答来完成,但在“说出代数式的意义”这一问题上,应向学生强调:一定要严格按照教师示范的要求去做,如“a-b c ”的意义是“a 减去b c 的差”,而不能说成是“a 与bc 的差” 2、由于这是中学数学的第一课,故设计了一个引言,目的是对学生进行学习目的、学。
第1课时求代数式的值课时目标1.通过经历体现数量关系的游戏情境和实际问题,理解列代数式和求代数式的值的的内在意义,感受其中的符号意识.2.通过经历求代数式的值的过程,体会代数式内在的运算规律,规范学生的运算程序,进一步提高学生的运算能力.3.经历规律性的代数式的值的求解过程,提高学生分析问题、解决问题的能力,进一步增强学生的数感,培养学生的合情推理能力.学习重点会求代数式的值,并通过求代数式的值,体会代数式是由计算程序反映的一种数量关系.学习难点能够准确地把数值代入代数式代替字母进行计算,初步感受两个数量之间的对应关系,推动符号意识的深化认识.课时活动设计情境引入“扑克牌游戏”:课前先给每一个小组发十张扑克牌,按如下规则进行:1.请第一位同学任意抽取一张扑克牌传给第二位同学;2.第二位同学把这个数乘以2传给第三位同学;3.第三位同学把听到的数加上1后传给第四位同学;4.第四位同学负责记录,并判断结果的正误.规定:红色花形代表正数;黑色花形代表负数;大小王代表0.学生活动:让学生们先了解游戏规则,按要求开展游戏,小组四人合作交流完成这个游戏,并记录相关数据,最后找学生展示小组最后结果.设计意图:通过设置这个扑克牌游戏,调动学生的学习兴趣,从游戏入手,激发学生们的积极参与度,主动思考,人人参与,在展现以学生为主体的优质课堂的同时,让学生感受到代数式就是一个计算程序(是由数字、字母、符号等共同参与的运算关系式),初步感受按照给定的运算计算出的结果就是代数式的值.探究新知问题:为了开展体育活动,学校要购置一批排球,每班5个,学校另外留20个.(1)若记全校的班级数是n ,则学校总共需要购置多少个排球?(2)如果班级数是15,则学校需要购置的排球总数是多少?(3)如果班级数是20,则学校需要购置的排球总数又是多少?学生先独立思考、解答,再组内交流讨论,教师进行巡视指导.解:(1)(5n +20)个.(2)用15代替字母n ,则5n +20=5×15+20=95.(3)用20代替字母n ,则5n +20=5×20+20=120.教师总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.特别指出:当字母取不同的数值时,代数式的值一般也不同.设计意图:设置这道题目,让学生再次感受列代数式的过程,体会用代数式表示实际问题中的数量关系的一般性,解决第(2)(3)问时,通过对字母n 不同的赋值,引出代数式的值的概念,体会代数式的值是有所不同的.典例精讲例1 根据下列x ,y 的值,分别求代数式2x +3y 的值:(1)x =15,y =12; (2)x =1,y =12.解:(1)当x =15,y =12时,2x +3y =2×15+3×12=66.(2)当x =1,y =12时,2x +3y =2×1+3×12=72.学生独立完成代数式的值的求解过程,然后小组交流,教师引导学生逐步规范求代数式的值的解题步骤.归纳:求代数式的值的步骤:(1)写出条件:当……时;(2)抄写代数式;(3)代入数值;(4)计算得出结果.例2 帮一位同学进行纠错,辨析错误,指出错因,并给出正确答案.当a=-8,b=-4时,求代数式a2-(b-1)的值.解:当a=-8,b=-4时,a2-(b-1)=-82-(-4-1)=-64-(-5)=-64+5=-59.解:错在“代入”这一步,原因是负数的乘方要加括号,即(-8)2,正确解答如下:当a=-8,b=-4时,a2-(b-1)=(-8)2-(-4-1)=64-(-5)=64+5=69.教师适时归纳总结:(1)代入时,要“对号入座”,避免代错字母,其他符号不变;(2)代入负数或分数时,必须添上括号.例3填写下表,并观察下列两个代数式的值的变化情况:(1)随着n的值逐渐变大,两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?解:经计算,填表如下.(1)随着n的值逐渐变大,两个代数式的值也随之增大;(2)预计代数式n2的值先超过100,因为n2的增幅较大.设计意图:设置这一系列题目,意在规范学生求代数式的值这种题型的书写格式,在巩固代数式的值的概念的基础上,需要学生严谨地进行数式的运算,理解代数式内部的运算关系,培养学生规范、认真、严谨、科学的学习态度,同时在求代数式的值的过程中,能根据数值的变化趋势进行预测、推断代数式所反映的规律,培养学生的估算能力和合情推理能力.巩固训练1.当a=2,b=1,c=3时,代数式c-(c-a)(c-b)的值是(A)A.1B.2C.3D.42.计算求值:(1)当x =-3时,多项式x 2-2x +1= 16 ,-x 2+2x -1= -16 ;(2)当a =-2,b =-1时,1-|b -a |= 0 .3.(1)当x =-3时,求x 2-3x +5的值;(2)当a =0.5,b =-2时,求a 2-b 3ab 的值.解:(1)当x =-3时,x 2-3x +5=(-3)2-3×(-3)+5=9+9+5=23.(2)当a =0.5,b =-2时,a 2-b 3ab =0.52-(-2)30.5×(−2)=0.25+8-1=-8.25.4.今年植树节时,某校有305名同学参加了植树活动,其中有25的同学每人植树a 棵,其余同学每人植树2棵.(1)用代数式表示他们共植树的棵数;(2)如果a =3,那么他们共植树多少棵?(3)如果a =4,那么他们共植树又是多少棵呢?解:(1)他们共植树25×305×a +(1−25)×305×2=(122a +366)棵.(2)当a =3时,他们共植树122a +366=122×3+366=732(棵).(3)当a =4时,他们共植树122a +366=122×4+366=854(棵).设计意图:通过巩固训练,巩固学生课堂所学知识,让学生明确求代数式的值的规范步骤,养成认真、严谨、规范、科学的解题作风,在解题中感受代数式中字母不同的赋值对代数式的值的影响,体会代数式的一般性.课堂小结1.这节课学到了哪些知识?2.求代数式的值时应注意什么?3.不同的赋值,会对代数式的值产生影响吗?设计意图:通过课堂小结,让学生梳理本节课的所学知识,在明确本节课的知识的基础上,养成总结归纳、巩固提升的好习惯.课堂8分钟.1.教材第80页练习第1,2题,第82页习题3.2第1,2,3,4题.2.七彩作业.第1课时求代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.2.当字母取不同的数值时,代数式的值一般也不同.教学反思第2课时利用公式列关系式并求值课时目标1.通过经历列代数式解决问题的过程,进一步理解列代数式和求代数式的值的实际意义,感受其中的抽象思维和符号意识.2.通过结合对已有知识的认知和实际问题求解的经历,体会实际问题中同类事物中的数量关系可以以公式的形式进行描述,感受用数字、字母、符号等表示的代数式的简洁性、一般性,进一步培养学生的应用意识.3.通过分析和利用实际问题中的数量关系解决问题的过程,发展学生的阅读理解、总结归纳的能力,进一步提高学生分析问题、解决问题的能力.学习重点会利用实际问题中的数量关系求出代数式的值.学习难点能够准确地把握实际问题中同类事物中固有的数量关系,并利用其解决实际问题.课时活动设计情境引入问题:李明同学到文具商店为学校美术组的20名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和2块橡皮,(1)用代数式表示李明同学一共需付款 元;(2)若m =3,n =1.5时,求这次李明购买铅笔和橡皮共需付款多少元?让学生先独立解答,再小组交流,最后由学生给出上述答案,教师巡视课堂,适时给以学生指导.学生思考和教师指导的方向:(1)这个问题中所涉及的量有哪些?它们之间的关系是什么?(2)如何求解这个问题?(利用求代数式的值来解决)解:(1)20(3m +2n ).(2)当m =3,n =1.5时,20(3m +2n )=20×(3×3+2×1.5)=240(元).设计意图:通过解决生活情境中的问题,调动学生的学习兴趣,激发他们的积极参与度,在解决问题的同时,让学生感受到列代数式以及求代数式的值的简洁性和一般性,培养学生的符号意识和应用意识.探究新知问题:甲、乙两地之间的公路全长100千米,某人从甲地到乙地每小时走m 千米,用代数式表示:(1)此人从甲地到乙地需要走 100m 小时;(2)如果每小时多走5千米,此人从甲地到乙地需要走 100m+5 小时;则此人从甲地到乙地少用 (100m -100m+5) 小时.(3)若m =20,则此人加速后,从甲地到乙地少用几小时?解:(3)当m =20时,100m -100m+5=10020-10020+5=5-4=1(小时).答:此人加速后,从甲地到乙地少用1小时.学生先独立思考、解答,然后小组合作讨论,最后由学生代表板演展示,教师巡视指导.教师根据学生回答情况,适时进行追问:(1)这是一道什么问题,其中涉及到哪几个量?它们之间有什么数量关系?(2)知道了路程和速度,怎样通过公式来求得时间?(3)如果此人每小时多走5千米,如何用代数式来表示此人从甲地到乙地少用的小时数?师生共同分析归纳:在行程问题中,用s表示路程,v表示速度,t表示时间,就可以得到路程公式s=vt,它表示了路程、速度、时间这三个量之间的关系.知道v、t 的值,就可以利用公式求出s的值.本题中已知甲地到乙地的路程为100千米,此人,就可以求出此人从甲地到乙地需要走多少小的速度为m千米/小时,则时间=路程速度时了.设计意图:在解决有关实际问题时,不仅经常用到这些问题本身所固有的公式进行计算,还考查了公式的变形应用,需要同学们灵活地利用公式进行解答.典例精讲例1如图,某学校操场最内侧的跑道由两段直道和两段半圆形的弯道组成,其中直道的长为a,半圆形弯道的直径为b.(1)用代数式表示这条跑道的周长;(2)当a=67.3 m,b=52.6 m时,求这条跑道的周长(π取3.14,结果取整数).分析:跑道的周长是两段直道和两段弯道的长度和,由圆的周长公式可以求出弯道的长度.解:(1)两段直道的长为2a;两段弯道组成一个圆,它的直径为b,周长为πb,因此,这条跑道的周长为2a+πb.(2)当a=67.3 m,b=52.6 m时,2a+πb=2×67.3+3.14×52.6≈300(m).因此,这条跑道的周长约为300 m.例2 一个三角尺的形状和尺寸如图所示,用代数式表示这个三角尺的面积S.若a =10 cm,b =17.3 cm,r =2 cm,求这个三角尺的面积(π取3.14).分析:三角尺的面积=三角形的面积-圆的面积,根据三角形、圆的面积公式可以求出三角尺的面积.解:三角形的面积为12ab ,圆的面积为πr 2,这个三角尺的面积S =(12ab -πr 2)cm 2. 当a =10 cm,b =17.3 cm,r =2 cm 时,S =12×10×17.3-3.14×22=73.94(cm 2).因此,这个三角尺的面积是73.94 cm 2.设计意图:设置这两道题目,让学生再次感受列代数式解决问题的过程,体会用代数式表示实际问题中的数量关系的一般性.巩固训练1.某中学八年级有x 名同学参加植树,平均每人植树3棵;七年级有y 名同学参加参加植树,平均每人植树2棵.(1)该校七、八年级同学共植树多少棵?(2)如果x =98,y =102,那么该校七、八年级同学共植树多少棵?解:(1)八年级同学共植树3x 棵,七年级同学共植树2y 棵,所以该校七、八年级同学共植树(3x +2y )棵.(2)当x =98,y =102时,3x +2y =3×98+2×102=498(棵).所以该校七、八年级同学共植树498棵.2.某村去年的小麦总产量为a 吨,今年比去年增加了10%,今年的小麦总产量是多少吨?如果去年的小麦总产量是480吨,今年的小麦总产量是多少吨?解:今年小麦总产量是a (1+10%)=1.1a (吨).当a =480时,1.1a =1.1×480=528(吨).所以今年的小麦总产量是528吨.3.请根据图示的对话解答下列问题.(1)求a,b,c的值;(2)计算7-a+3b-c值.解:(1)因为a的相反数是-3,b的绝对值是6,所以a=3,b=±6.又因为a>b,所以b=-6.因为b与c的和是-9,所以c=-9-(-6)=-9+6=-3.(2)当a=3,b=-6,c=-3时,7-a+3b-c=7-3+3×(-6)-(-3)=-11.4.某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种铂金饰品所需费用y(元)和重量x(克)(x>3)之间的关系式;(2)李阿姨要买一条重量为5克的此种铂金饰品,到哪个商店购买更合算?解:(1)y甲=477x,y乙=530×3+530(x-3)·80%=424x+318.(2)当x=5时,y甲=477×5=2 385(元),y乙=424×5+318=2 438(元).2 385<2 438,所以买5克时,到甲商店购买更合算.设计意图:通过练习,进一步提高学生通过列代数式来表示实际问题中的数量关系的能力,培养学生分析问题、解决实际问题的能力,建立符号意识.课堂小结1.这节课你学到了哪些知识?2.本节课你用到了哪些数学公式?请举例说明.设计意图:通过课堂小结,让学生梳理本节课的所学知识,在理解、掌握本节课的知识的基础上,深化对知识的认知,逐步提高学生的思维能力.课堂8分钟.1.教材第81页练习第1,2,3题,第82页习题3.2第5,6,7题.2.七彩作业.第2课时利用公式列关系式并求值常见的实际问题中的数量关系(1)行程问题:路程s、速度v、时间t之间的关系:s=vt;(2)销售问题:总价p、单价m、数量n之间的关系:p=mn;ah,(3)图形的面积公式:三角形的面积S、边长a、边上的高h之间的关系:S=12圆的面积S、半径r之间的关系:S=πr2;……其他诸如工程问题、销售中的利润问题都存在着一定的数量关系,等等.教学反思。
第三章字母表示数2.代数式一、学生起点分析本节课是教材第三章《字母表示数》的第二节,在此之前,学生对有理数及有理数的运算有了一定的基础,在第一节中对于字母表示数已具有一定的认知水平,并且学生从小学开始就已经和字母有了接触,从小学到初中的数的运算实质就是代数式的运算,在此基础上导入代数式和代数式值的内容,对学生来说无疑是一个良好的时机.学生主动参与意识增强,课堂氛围进一步浓烈,分析能力和综合思维能力都有了一定程度的提高,很多同学都已能够将数学知识与生活实际联系起来,这样将有利于学生掌握代数式和代数式值的意义,解决有关代数式的运用问题.二、教学任务分析本课时的教学内容直奔教学主题――代数式的意义,降低了教学的难度,有效地克服了学生的心里障碍,并结合上一节的内容很自然地引入了代数式值的意义,再通过具体的情境来列代数式并求其值,然后通过反问代数式还能表示哪些实际意义,将教学活动引向高潮,激发学生联想、类比,进一步拓展学生的思维,同时也进一步调动了学生学习的积极性,最后教材提供了一个刻画有趣现象的经验公式――蟋蟀叫的次数与温度的关系,既使学生感悟了数学建模的思想,又使学生在轻松愉快的环境中加深了对代数式和求代数式值的理解.教学中要充分利用实际的背景,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,同时也可以借助多媒体辅助教学来提供更多的实际背景,从而拓展学生的思维,在进行从语言到代数式、从代数式到语言转化的过程中,要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.(知识与技能)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.(过程与方法)3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。
(情感与态度)教学重点:列代数式。
教学难点:正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。
三、教学过程分析本节课由五个教学环节组成,它们是① 旧知归纳,直奔主题 ② 创设背景,理解概念 ③ 反设探究,意义升华 ④ 趣题滋润,建模感悟 ⑤练习交流, 巩固提高 .其具体内容与分析如下:第一环节 旧知归纳,直奔主题内容: 承接先前的若干实例,回顾具体代数式所表达的含义。
归纳它们的基本特征。
目的:通过复习上一节知识内容,直接点出本节主题,在于降低教学难度,激发兴趣,使 学生在注意力集中前提下顺利过渡到本节知识内容.目的在于引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.效果:学生在通过上一节知识的回顾,知道像4+3(x -1),x +x +(x -1),a +b ,ab ,2(m +n ),ts ,a 3 …… 这样一些式子都具有一定的实际意义,而探求当x =200时4+3(x -1)的代数式的值,不仅理解了代数式和代数式的值的意义,而且了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.第二环节 创设背景,理解概念内容:讲解教材中的例1 列代数式,并求值目的: 经过多媒体展示实际背景,学生演板、师生交流,让学生从实际问题中抽象出数学问题,学会列代数式和求代数式的值,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性, 学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式和求代数式的值的方法.门票 成人:10元/张 学生:5元/第三环节反设探究,意义升华内容:承接上面的例子,继续提出问题:前面10x+5y表示的是x个成人、y个学生进公园的门票费,那么它还可以表示什么呢?请大家想一想后,写出一种或两种表示的内容要求学生在独立思考的基础之上,做小组交流,随后全班交流。
根据讨论结果,共同归纳:字母可以表示任何数,或者任何一个量,“10x+5y”可以赋于很多的实际的意义,投影展示学生思考的多种结果。
目的:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x+5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.效果:教学中学生充分地观察、思考,针对“10x+5y”所表示的意义各自发表自己观点,并在小组进行交流,对学生独立思考和交流都作了要求,小组交流中要求去伪存真,各抒己见,这样,给学生相互之间提供了一个学习的机会,让学困生能看到自己的不足,从而充分调动每个学生学习的主动性和积极性,培养了学生合作交流的精神和意识.第四环节趣题滋润,建模感悟内容:讨论教材上的例2。
分析需要使用代数式表达信息的原因。
通过解决具体问题,让学生感受代数式求值的含义。
蟋蟀目的:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x =80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.第五环节 练习交流, 巩固提高内容:解决教材中的随堂练习等。
同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容,展示:代数式的意义代数式 代数式的值代数式表示的实际意义布置作业。
目的:本环节的目的就是为了检测学生的达标情况和巩固练习,同时为学有余力的学生设置了试一试、想一想等有创新思维的问题,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;通过小结让学生进一步把握本章的重点,明确学习的方向.师生交流、归纳小结的目是让学生准确全面的表述自己的观点,培养及时归纳知识的习惯.效果:学生分层次独立完成课中随堂练习,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.四、教学反思与点评《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容,本节课的教学是一节研究课,得到了20多名听课人员的高度赞扬,学生也倍感成功,学的轻松,过的愉快。
本节课一开始就直奔主题,揭示出代数式和代数式值的意义,并要求学生回顾4+3(x -1),x +x +(x -1),a +b ,ab ,2(m +n ),ts ,a 3 ……等这些式子的实际背景和求4+3(x -1)中当x=200时的火柴棒的根数,学生有了这些基础后,对列代数式和求值就不会感到陌生了,进而引出例1这样正规的列代数式和求值的题型,并且给出了实际背景;紧接着,对代数式“10x +5y ”还可以表示什么?作了全面而广泛的探究,学生从生产资料、生活用品、科学技术、几何物体;静止的、运动的;平面的、立体的;等等,很多方面引出代数式“10x +5y ”在实际背景或几何背景下所表示的意义.这就体现数学的从特殊到一般的研究方法和变式教学的教学方法,也让学生通过联想、类比、归纳等数学方法拓展了思维.通过例2,引出与学生生活中最熟悉的动物――蟋蟀有关的数学问题:蟋蟀1分所叫的次数与该地当时的温度的关系,让学生在轻松愉快的教学活动中,学会了如何设字母列代数式的方法,在这个教学过程中,给出了如37+x ;37+a ;37+m 等多个不同字母所表示的代数式,拓展学生的思维,活跃了课堂气氛.在课堂练习中,给出了不同层次的问题,分层次对学生提出要求,不同层次的学生问题解答的都很好.回顾本节课的教学,有以下几点作的比较成功:第一,根据课程标准把握教材.新的课程标准要求,淡化概念,注重知识的形成过程,如在学生已有的知识基础上引入代数式的概念,显得自然流畅,学生学的轻松,在学习例1和后面的“想一想”时,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错中学习新知识,在不断归纳中学习新知识,在不断创新中学习新知识,使学生的大脑始终处于兴奋之中,收到了预想不到的教学效果.第二,恰当插入背景,渲染了气氛.如例1中插入“公园大门”图片,例2中插入“蟋蟀”图片,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.第三,整个教学过程中,体现了学生为主体的教学理念,教师只是教学活动的参与者、引导者,不论在例1和后面“想一想”,还是在例2 中,学生活动始终是占主体地位.第四,在课堂练习中分层次安排内容、分层要求,使他们人人具有成就感,充分体现了人文关怀,体现了面向全体学生.。