模糊数学方法在数学建模中的应用
- 格式:ppt
- 大小:902.00 KB
- 文档页数:64
数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。
如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。
于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。
所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。
§3 股票反弹率的模糊聚类法将模糊集理论应用于聚类分析,便产生了模糊聚类法。
一、模糊聚类法介绍若矩阵A 的各元素ij a 满足10≤≤ij a ,则称A 为模糊矩阵。
设p n ij a A ⨯=)(和m p ij b B ⨯=)(为两个模糊矩阵,令m j n i b a c kj ik pk ij ,,2,1,,,2,1),(1 ==∧∨== 则称矩阵m n ij c C ⨯=)(为模糊矩阵A 与B 的乘积,记为B A C ∙=,其中∨和∧的含义为},max{b a b a =∨, },min{b a b a =∧ 显然,两个模糊矩阵的乘积仍为模糊矩阵。
设方阵A 为一个模糊矩阵,若A 满足A A A =∙,则称A 为模糊等价矩阵。
模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲象乙,乙象丙,则甲象丙”这样的关系。
设n n ij a A ⨯=)(为一个模糊等价矩阵,10≤≤λ为一个给定的数,令⎩⎨⎧=<≥=n j i a a a ij ij ij ,,2,1,,0,1)( λλλ则称矩阵n n ij a A ⨯=)()(λλ为A 的λ—截阵。
模糊聚类法和一般的聚类方法相似,先计算变量间的相似系数矩阵(或样品间的距离矩阵),将其元素压缩到0与1之间形成模糊矩阵,进一步改造成模糊等价矩阵,最后取不同的标准λ,得到不同的λ—截阵,从而可以得到不同的类。
具体步骤如下:1、计算相似系数矩阵R 或样品的距离矩阵D其中n n ij d D ⨯=)(和p p ij r R ⨯=)(的算法与第四章§4.7消费分布规律的分类中相同。
2、将R (或D )中的元素压缩到0与1之间形成模糊矩阵我们统一记为n n ij a A ⨯=)(;例如对相似系数矩阵p p ij r R ⨯=)(,可令p j i r a ij ij ,,2,1,),1(21 =+= 对于距离矩阵n n ij d D ⨯=)(,可令n j i d d a ij n j i ij ij ,,2,1,,max 11,1 =+-=≤≤ 3、建立模糊等价矩阵一般说来,上述模糊矩阵n n ij a A ⨯=)(不具有等价性,这可以通过模糊矩阵的乘积将其转化为模糊等价阵,具体方法是:计算,,,2242 A A A A A A ∙=∙=直到满足k k A A =2,这时模糊矩阵k A 便是一个模糊等价矩阵。
模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。
它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。
下面,我们将通过一些具体的例题来展示模糊数学的应用。
例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。
然而,在现实世界中,很多情况并不是绝对的0或1。
例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。
例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。
然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。
这时,模糊聚类分析就派上用场了。
它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。
例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。
然而,在某些情况下,我们无法用精确的规则来描述决策过程。
这时,模糊决策树就派上用场了。
它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。
例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。
然而,在某些情况下,系统的输入和输出并不是绝对的0或1。
这时,模糊控制系统就派上用场了。
它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。
例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。
然而,在某些情况下,图像中的对象边界并不清晰。
这时,模糊图像处理就派上用场了。
它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。
以上只是模糊数学众多应用的一小部分。
这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。
通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。
§4 控制与调节废水排放的模糊控制策略研究一条受到污染的河流,总是先寻找其污染源在何处,然后就可采取处理措施以保护环境。
这里研究的是工业污染源(或称点源)问题,一条受到复杂的工业污染源污染的河流,如果解剖其为最基本的形态就称为污染细胞。
污染细胞不外乎如下图所示的关系造成,图中:a )系由已经汇入许多污染源的排污沟入河;b )系污染源直接入河。
在图中,无论a )或b ),总可以把它用三个断面来控制。
令排污口(或排污河)出口断面为A ;以河流接受污染物前的断面(本底断面)为B ;混合以后的干河下游断面为C 。
如果假定在中小河流中污染物一旦排入干河,则在流向下游很短的距离内即可达到断面完全混合。
因此,在制作模糊控制污染物排放策略时,不再考虑距离远近和某些污染物随时间的降解(随时间而变化的降解值,相对于模糊语言来讲,在短距离之内可以忽略),同时也不再考虑污染物的横向不均匀扩散和纵向分散以及底泥、藻类等待因素。
这样一来A 、B 、C 三者的平衡关系可表示为:A AB B A BC W L W L qQ qL Q L L +=++=(1)式中C B A L L L ,,分别表示A 、B 、C 断面监测的水质参数的浓度; Q 表示干河在汇入排污口(或排污沟)前的流量; q 表示排污口(或排污沟)的流量; A B W W ,分别表示B 、A 的权重。
一、模糊集合概念的建立如果我们把浓度为~A L 的污水在排污口(或排污沟)出口断面A 处的污水排放浓度的量级用零、小、中、大、特大等模糊语言的辞来表达,每一个辞就可以看作是基础变量为浓度值的一个模糊限制标记。
它可以由隶属函数来表征,隶属函数把基础变量的每一个值与区间[0,1]中的一个数结合起来,这个数就表示了每个值与模糊限制间的隶属度。
如果我们把某水质参数在A 断面的浓度作为语言变量在其基础变量为0,0.01,0.1,0.5……mg/L 之间的浓度值。
那么,“小”、“中”、“大”……等这些辞的语言值就可以解释是基础变量数值上的一个模糊限制的标记。
§2 小麦品种的模糊模式识别把一批来自同一品种的小麦称为一个小麦亲本。
小麦有各种不同的品种,某一品种的小麦有它自己的很多特性,如抽穗期、株高、有效穗数、主穗粒数和百粒重量等数量性质。
然而对于小麦的一个亲本,我们不能凭其中某一粒或某一株小麦去鉴定它的品种。
实际上,同一品种的小麦中,各株小麦的抽穗期显然是不完全相同的。
在同一种小麦中,百粒重量的每一次样本也是不完全相同的,但总是在各自的均值附近摆动。
这样我们就可以把某一品种的小麦看成是一个模糊集。
不同品种的小麦就对应着不同的模糊集。
如果能肯定待识别小麦亲本的模糊集与某一已知品种小麦的模糊集最贴近,那就可以断言它属于该种小麦了。
由于模糊集合是用隶属函数来表示的,而隶属函数又不同于普通的函数,怎样来度量模糊集的模糊性以及怎样比较两个模糊集是否相贴近还是差别很大,这就要引入一些有关模糊集度量的概念。
一、单个模糊集度量 1、模糊度在论域U 上的任意模糊子集~A 的模糊度)(~A D 应满足:(ⅰ)对任意的U x ∈,当且仅当x 对~A 的隶属度)(~x A μ只取0和1时,)(~A D =0 ;(ⅱ)当)(~x A μ=0.5时,)(~A D 应取最大值,即)(~A D =1;(ⅲ)对任意的U x ∈,设U 的两个模糊子集~A 和~B ,若5.0)()(~~≥≥x x B A μμ或5.0)()(~~≤≤x x B A μμ,则有)()(~~A D B D ≥。
2、模糊熵在模糊数学中,用模糊熵描述模糊度,是模糊集合所含模糊性大小的一种度量,这里仅介绍较其它方法为好的仙农函数引出的模糊熵定义。
设~A 是论域U 上的任意模糊子集,当U x ∈时,记))((2ln 1)(~1~i Ai x S n A H μ∑∞==叫做模糊集~A 的熵,此处)1ln()1(ln )(x x x x x S ----=。
容易验证,上述模糊熵满足模糊度的三个条件。
二、多个模糊集度量 1、海明距离设论域U 上的两个模糊子集~A 和~B ,它们之间的海明距离定义为∑=-=ni i B i A x x B A d 1~~)()(),(~~μμ这个定义适用于论域为有限集时,n 是论域中元素的个数,它又称为绝对海明距离。
模糊数学与数学建模在实际中的应用数学学院信计五班刘小容(20080511927)摘要:数学建模中的复杂决策系统与层次分析法在实际生活中起着重要的作用,他将半定量的问题转化为定量计算,将复杂的决策系统层次化的一种方法。
但是生活中,常常存在着亦此亦彼的现象,即现实中普遍存在的模糊现象。
比如大卖场经营的优劣的影响因素包括企业文化,经营理念,决策层素质,管理层素质,服务人员素质,服务流程和模式等因素,商品丰富程度等。
本文运用模糊数学综合评价原理和数学建模中的层次分析法,着重对上述因素进行综合评估。
对这些因素进行系统地分析和整理,建立一个简单适用的指标体系。
关键词:数学建模模糊数学综合评估大卖场,即大型综合超市(General Merchandise Store)。
比如目前在中国的家乐福和沃尔玛,经营面积已超过7000平方米。
卖场内商品种类要齐全,满足大多数人的购物需求;一般采取自助式付款程序,中央集中式付款;卖场的设施中要包括超大型免费停车场等。
大卖场这种模式是目前在中国发展速度最快的零售业态。
如何衡量一个大卖场总体经营的好坏呢?本文借助于模糊数学的原理和数学建模中的层次分析法对大卖场的经营优劣给予评估,并给出改进建议。
一.大卖场案例分析中的F矩阵。
模糊数学综合评判,就是运用模糊变换的方法,求出一个评判矩阵,通过评判函数对多种因素所决定的事物或现象做出总的评价。
对有限论域U={u1,u2,……,u m },V={v1,v2……,vm}。
则F矩阵R=(rij)m×n表示从U到V的一个F关系。
确定隶属矩阵。
从UK到评语集V的模糊评价矩阵为:其中,rij 表示子因素层指标Uki对第j级评语Vj的隶属度。
再进行模糊矩阵运算。
先分别对各子因素层指标Uki 的评价矩阵Rk作模糊矩阵运算,得到主因素层指标Uk对评语集的隶属向量Dk,然后进行模糊矩阵运算,即可得到目标层指标对于评语集的隶属向量。
二.数学建模中的层级分析法。
模糊数学方法1965年美国加利福尼亚大学控制论专家扎德(Zadeh L .A .)教授在《Information and Control 》杂志上发表了一篇开创性论文“Fuzzy Sets ”,这标志着模糊数学的诞生。
模糊数学是研究和处理模糊性现象的数学方法。
众所周知,经典数学是以精确性为特征的。
然而,与精确性相悖的模糊性并不完全是消极的、没有价值的。
甚至可以这样说,有时模糊性比精确性还要好。
例如,要你某时到某地去迎接一个“大胡子高个子长头发戴宽边黑色眼镜的中年男人”。
尽管这里只提供了一个精确信息——男人,而其他信息——大胡子、高个子、长头发、宽边黑色眼镜、中年等都是模糊概念,但是你只要将这些模糊概念经过头脑的综合分析判断,就可以接到这个人。
模糊数学在实际中的应用几乎涉及到国民经济的各个领域及部门,农业、林业、气象、环境、地质勘探、医学、经济管理等方面都有模糊数学的广泛而又成功的应用。
§1 模糊集的基本概念要想掌握模糊数学方法,必须先了解模糊集的基本概念,特别是隶属函数的建立方法。
1.1 模糊子集与隶属函数定义1 设U 是论域,称映射():[0,1]A x U →确定了一个U 上的模糊子集A ,映射()A x 称为A 的隶属函数,它表示x 对A 的隶属程度。
使()0.5A x =的点称为A 的过渡点,此点最具模糊性。
当映射()A x 只取0或1时,模糊子集A 就是经典子集,而()A x 就是它的特征函数。
可见经典子集就是模糊子集的特殊情形。
例 1 设论域123456{(140),(150),(160),(170),(180),(190)}U x x x x x x =(单位:cm )表示人的身高,那么U 上的一个模糊集“高个子”(A )的隶属函数()A x 可定义为140()190140x A x -=-,也可用Zadeh 表示法:12345600.20.40.60.81A x x x x x x =+++++, 上式仅表示U 中各元素属于模糊集A 的隶属度,不是普通分式与求和运算。
数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。
大家想想,生活中,是不是有很多模糊的概念。
比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。
学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。
模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。
(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。
标准假如就是评上和评不上。
用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。
假如评上的隶属度高一些,那这名学生肯定是被评上咯。
(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。
第八章 模糊数学方法建模1965年,美国自动控制学家L.A.Zadch 首先提出了用“模糊集合”描述模糊事物的数学模型。
它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。
模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。
而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。
§1 模糊综合评判及其应用一、模糊综合评判在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。
如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。
但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。
所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。
综合评判最简单的方法有两种方式:一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和∑==mi isS 1按S 的大小给评判对象排出名次。
例如体育比赛中五项全能的评判,就是采用这种方法。
另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定∑==mi ia11,于是用∑==mi ii sa S 1按S 的大小给评判对象排出名次。
以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。
由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。
模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。
应用一级模型进行综合评判,一般可归纳为以下几个步骤:(1)建立评判对象的因素集},,,{21n u u u U =。