7.角动量守恒定律
- 格式:doc
- 大小:109.64 KB
- 文档页数:4
角动量守恒定律是什么公式有哪些
有很多的同学是非常想知道,角动量守恒定律是什幺,公式有哪些,小编整理了相关信息,希望会对大家有所帮助!
1 角动量守恒定律内容对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
物理学的普遍定律之一。
反映质点和质点系围绕一点或一轴运动的普遍规律
如果合外力矩零(即M 外=0),则L1=L2,即L=常矢量。
这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。
这一结论叫做质点角动量守恒定律。
1 角量守恒公式是什幺角动量守恒定律是用来叙述刚体旋转运动的方法,要想了解它建议用和动量守恒定律类比的方法
很容易理解,我给您谢几个公式,注意他们是对应的:
1 动量:质量m,速度v,加速度a,动量mv,力F,F=ma
2 角动量:转动惯量J,角速度w,角加速度β,角动量Jw,力矩M,M=Jβ
可以看出转动惯量是“充当”质量的角色,力矩充当了力的角色
牛2:物体不受外力或合外力为0,则物体保持运动状态不变
角:旋转物体不受外力矩或和力矩为0,则物体保持旋转状态不变
以上可以看出其数学结构很统一,但是角动量中转动惯量的求法要复杂的多, 有些需要微积分基础,这里给出质点:J=mr
最后,角动量守恒定理:。
角动量守恒物体旋转状态的守恒定律角动量守恒,是指在没有外力矩作用下,物体的角动量保持不变。
这一守恒定律在描述物体旋转状态时具有重要的意义。
本文将探讨角动量守恒的基本原理、守恒定律的应用以及实际案例。
角动量守恒的基本原理角动量是描述物体旋转运动的物理量,它的大小与物体的质量、转动轴与速度有关。
在物体没有外力矩作用时,转动的物体总角动量保持不变,即角动量守恒。
根据角动量的定义,物体的角动量L可以表示为L = Iω,其中I为物体的转动惯量,ω为物体的角速度。
守恒定律的应用角动量守恒定律在众多物理现象和实际问题中都有广泛的应用。
以下列举几个常见的应用场景:1. 垂直转动的自行车轮自行车的轮子在转动时,可以利用角动量守恒定律解释其稳定性。
当骑车人向一侧倾斜时,轮子的转动惯量增加,从而角速度变小,使得整个系统保持平衡。
2.体操运动员的跳跃动作体操运动员在跳跃时,通过膝盖的屈伸使身体产生旋转,利用角动量守恒来调整身体的姿势,以保持在空中的平衡状态。
3.天体运动天体运动中的许多规律也可以用角动量守恒定律来解释。
例如,地球的自转角速度减小时,自转惯量会相应增加,以保持整个系统的角动量不变。
实际案例:陀螺陀螺是一种玩具,它在旋转时展示了角动量守恒的原理。
当陀螺旋转时,由于角动量守恒,陀螺会保持平衡,不会倒下。
我们可以通过施加力矩来改变陀螺的转动轴方向,进而改变陀螺的平衡状态。
结语角动量守恒是物体旋转状态下的一个重要定律,它揭示了物体在没有外力矩作用时,转动状态的稳定性和保持平衡的原理。
通过理解角动量守恒定律的基本原理和应用,我们可以更好地理解和解释一些复杂的物理现象。
理解角动量守恒对于学习和应用物理学知识都具有重要的意义。
《大学物理》练习题 No 7 角动量守恒定律
班级__________学号 _________ 姓名 _________ 成绩 ________
基本要求: (1) 掌握质点和刚体在定轴转动中的角动量、角动量定理、角动量守恒定律及应用
内容提要:
1. 质点的角动量
a. 质点对点的角动量:v m r p r L ⨯=⨯=
b. 对固定轴的角动量:ω J L =
2. 刚体对定轴的角动量:等于刚体对此轴的转动惯量与角速度的乘积 即:ω
z z
J L =
3.刚体的角动量定理: 外力矩对系统的角冲量(冲量矩)等于角动量的增量.
即:00
ωω
J J L d dt M L L t t -==⎰⎰
若J 可以改变,则:000
ωω
J J L d dt M L L t t -==⎰⎰
4.角动量守恒定律:当物体所受的合外力矩为零时,物体的角动量保持不变, 即00 ωωω
J J J ==或
常矢量
角动量守恒定律的两种情况:
a. 转动惯量保持不变的单个刚体
00,0ωωωω ===则时,当J J M
b. 转动惯量可变的物体。
.
保持不变就增大,从而减小时,当就减小;
增大时,当ωωω
J J J
一、选择题
1.刚体角动量守恒的充分必要条件是 [ ] (A) 刚体不受外力矩的作用.
(B) 刚体所受合外力矩为零.
(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变
2.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J , 开始时转台以匀角速度ω 0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 [ ] (A) J ω 0/(J +mR 2) .
(B) J ω 0/[(J +m )R 2]. (C) J ω 0/(mR 2) . (D) ω 0.
3.如图7.1所示,一静止的均匀细棒,长为L 、质量为M , 可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动, 转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为
[ ] (A) mv/(ML ) . (B) 3mv/(2ML ). (C) 5mv/(3ML ). (D) 7mv/(4ML ).
二、填空题
1. 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .
2.质量均为70kg 的两滑冰运动员,以6.5s m /等速反向滑行,滑行路线的垂直距离为10m 。
当彼此交错时,各抓住10m 长绳子的两端,然后相对旋转。
则各自对中心的角动量=L ,当各自收绳到绳长为5m 时,各自速率为=v 。
3.一飞轮以角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω = .
三、计算题
1. 如图7.2所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .
绳系重物m 2后的张力?
v /2
图7.1
图7.2
图7.3
2. 如图7.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.
No. 7 参考答案
一、选择题
1. (B );
2. (A )提示:人在向外运动的过程中,由于所受合外力矩为零,故角动量是
守恒的,由 ωω)(20mR J J +=可得;3. (B ),提示:子弹在与细杆相互作用的过程中,整个系统对细杆转轴的角度量是守恒的,则v L m J mLv 2⋅+=ω,其中,2
3
1mL J =,得到,棒的角速度为=ω3mv/(2ML ). 二、填空题
1. 2
38m kg ⋅;2. =L 122275-⋅⋅s m kg ,
=v s m /13, 提示:质点对轴的角动量p r L
⨯=,大小为1
2
2275705.65-⋅⋅=⋅⋅=s m kg L ,各自收绳时,系统的角动量是守恒的,故可得人的速度为=v s m /13; 3. 3
ωω=,提示:系统作用过程中,合外力矩为零,角动量守恒,ωω1013J J =;
三、计算题
1. 解: 摩擦阻力矩m N gr m M f ⋅==04.01
系上m 2物体后,
a m T g m 22=-
βJ M Tr f =- N T 5.0≈
βr a = 249.1m kg J ⋅≈ 2
2t S a =
2. 解:设小球碰撞前速度为v ω⋅=
-23
1
)(ML a L mv 2/L a = 2
)
(3ML
a L mv -=ω )cos 1(2
312122θω-=⋅L
Mg ML 解出 3)
cos 1()(θ--=
Lg a L m ML v
化简得到, 3
)
cos 1(2θ-=Lg m
M v。