初三数学 线段的垂直平分线1 北师版
- 格式:doc
- 大小:38.23 KB
- 文档页数:4
某某省枣庄市第四十二中学九年级数学第一章《线段的垂直平分线》教案北师大版教材分析:线段的垂直平分线的概念前面已学过,本课是进一步理解线段垂直平分线的性质,学会线段的垂直平分线的做法,会做轴对称图形的对称轴。
线段的垂直平分线的性质,在计算、证明、作图中有着广泛的应用,可以简化证明,方便计算。
在本课的学习中,应注重联系线段的垂直平分线性质,提高综合运用知识的能力。
学情分析:由于本课的难点是线段的垂直平分线定理和逆定理的联系,因此,需注重对定理和逆定理的题设与结论的分析,使同学们能正确理解这两个定理的关系,能根据命题的条件准确地选择定理、选择方法,从而提高解决问题的能力。
教学目标:知识和技能:1.经历探索猜测证明的过程,进一步发展学生的推理证明意识和能力.2.能够证明线段垂直平分线的性质定理、判定定理..过程和方法:通过折纸的办法引入线段垂直平分线的性质定理,判断定理的理论证明.情感态度与价值观:在独立思考、分析推理的基础上,积极参与讨论,敢于发表自己的观点,并尊重与理解他人的见解.教学重点:线段垂直平分线的性质定理、判定定理的掌握.教学难点:线段垂直平分线的性质定理、判定定理的证明.教法与学法指导:线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹.在几何证明、计算、作图中都有重要应用.我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用.本课的教学方法可以概括为:观察实践法,分组讨论法,讲练结合法,自主探究.在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索.在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论.从而把知识的形成过程转化为学生亲自参与、发现、探索的过程.在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教学设计一. 教材分析《线段垂直平分线的性质定理及其逆定理》是北师大版数学八年级下册第1章第3节的内容。
本节课主要介绍线段垂直平分线的性质定理及其逆定理,通过证明线段垂直平分线上的点到线段两端点的距离相等,以及线段垂直平分线垂直平分线段这两个性质,让学生理解线段垂直平分线的重要性和应用。
同时,通过逆定理的证明,让学生掌握如何判断一条直线是线段的垂直平分线。
二. 学情分析学生在学习本节课之前,已经掌握了线段、射线、直线的基本概念,以及全等三角形的性质和判定。
但线段垂直平分线的性质定理及其逆定理较为抽象,需要学生具备一定的逻辑思维能力和空间想象能力。
因此,在教学过程中,需要关注学生的认知水平,通过生动形象的比喻和具体例子,帮助学生理解和掌握。
三. 教学目标1.理解线段垂直平分线的性质定理及其逆定理。
2.学会运用线段垂直平分线的性质定理及其逆定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.线段垂直平分线的性质定理及其逆定理的证明。
2.如何运用线段垂直平分线的性质定理及其逆定理解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体案例,让学生理解线段垂直平分线的性质定理及其逆定理;通过小组合作学习,培养学生之间的交流和合作能力。
六. 教学准备1.PPT课件。
2.尺子、圆规、直尺等作图工具。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入:在平面直角坐标系中,点A(2,3)和点B(6,7)之间有一条线段,求线段的垂直平分线方程。
让学生思考如何解决这个问题,从而引出本节课的主题。
2.呈现(15分钟)讲解线段垂直平分线的性质定理及其逆定理。
通过PPT课件和板书,呈现定理的证明过程,让学生理解定理的含义。
同时,给出一些例子,让学生学会运用定理解决实际问题。
1.3 线段的垂直平分线 第1课时 线段的垂直平分线1.掌握线段垂直平分线的性质;(重点) 2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,你能帮测量人员计算BC 的长吗?二、合作探究 探究点一:线段的垂直平分线的性质定理【类型一】 应用线段垂直平分线的性质定理求线段的长如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为()A .5cmB .10cmC .15cmD .17.5cm 解析:∵△DBC 的周长=BC +BD +CD =35cm ,又∵DE 垂直平分AB ,∴AD =BD ,故BC +AD +CD =35cm.∵AC =AD +DC =20,∴BC =35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质定理与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD . 解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段的垂直平分线的判定定理如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .理由如下:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠F AD ,∠AED =∠AFD .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,DE =DF ,∴直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.。
教师: 科目: 学生:上课时间: 授课内容:线段的垂直平分线与角平分线专题知识要点详解:1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等。
(2)线段关于它的垂直平分线对称。
(折叠问题)2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上. 定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部。
反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA于点C ,DF ⊥OB 于点D ,则CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线。
1.3线段的垂直平分钱(一)知识与技能目标:1.经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理.2.能够利用尺规作已知线段的垂直平分线.过程与方法目标:1.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.2.体验解决问题策略的多样性,发展实践能力和创新精神。
3.学会与人合作,并能与他人交流思维的过程和结果.情感态度与价值观目标:1.能积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.重点、难点、关键:1.重点:理解和掌握线段垂直平分线定理,并能正确运用。
教学过程:定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
提问:尝试写出证明过程。
想一想定理:到一条线段两个端点的距离相等的点,在这条线段的垂直平分线上。
操作幻灯机,展示证明过程随堂练习:随堂练习1.课堂小结:作业:1.课本P26、2、31.3线段的垂直平分线(二)知识与技能目标:1.经历探究、发现的过程,提高推理证明能力。
2.进一步发展学生的推理证明意识和能力。
过程与方法目标:1.创设思考的时间和空间,体验线段垂直平分线定理的实际应用。
2.能运用所学定理进行尺规作用,并能说明作图依据.3.能够证明线段垂直平分线的性质定理.情感态度与价值观目标:1.培养学生的逻辑思维能力,动手操作能力,以及参与意识.2.培养学生探究精神,参与意识,形成合作交流的课堂氛围。
重点、难点、关键:1.重点:掌握尺规作图的方法。
2.难点。
尺规作图的构思.3.关键:把握住线段垂直平分线的定理,运用尺规作图的基本方法,首先构思而后再画出规范的图形.这里先进行草图构思是关键。
教学过程:动手操作:分四人小组,让每位学生剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?与同伴进行交流。
北师大版数学八年级下册1.3《线段的垂直平分线》(第1课时)教案一. 教材分析《线段的垂直平分线》是北师大版数学八年级下册第1.3节的内容,本节课主要让学生掌握线段的垂直平分线的性质,以及如何运用这些性质解决实际问题。
教材通过引入线段的垂直平分线,让学生进一步理解线段的中点性质,并为后续学习圆的性质打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了线段的性质、中点的性质以及射线的性质。
但他们对线段的垂直平分线的概念可能比较陌生,因此需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对如何运用线段的垂直平分线解决实际问题感到困惑,需要教师的引导和启发。
三. 教学目标1.理解线段的垂直平分线的概念,掌握其性质。
2.学会运用线段的垂直平分线解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.线段的垂直平分线的概念及其性质。
2.如何运用线段的垂直平分线解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、讨论来发现和总结线段的垂直平分线的性质。
2.用实例和练习来巩固所学知识,提高学生的应用能力。
3.采用小组合作学习,培养学生的团队精神和沟通能力。
六. 教学准备1.准备相关的教学素材,如线段、直尺、圆规等。
2.制作PPT,展示线段的垂直平分线的性质和应用。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如剪刀的切割、线段的折叠等,引导学生思考:这些实例中是否存在一种特殊的线段,使得它同时垂直于原线段并平分原线段?2.呈现(10分钟)讲解线段的垂直平分线的定义和性质,如:线段的垂直平分线垂直于原线段,并且平分原线段;线段的垂直平分线上的点到线段两端点的距离相等。
3.操练(10分钟)让学生分组讨论,运用线段的垂直平分线的性质解决一些实际问题,如:已知线段AB,求线段AB的垂直平分线方程。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对线段的垂直平分线的理解和掌握。
北师大版数学九年级上册1.3《线段的垂直平分线》教案1一. 教材分析《线段的垂直平分线》是北师大版数学九年级上册1.3节的内容。
本节课主要介绍了线段的垂直平分线的性质和判定方法。
通过学习,学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对于图形的性质和判定方法有一定的了解。
但是,对于线段的垂直平分线的概念和性质可能较为抽象,需要通过实例和操作来加深理解。
三. 教学目标1.了解线段的垂直平分线的概念。
2.掌握线段的垂直平分线的性质和判定方法。
3.能够运用线段的垂直平分线解决实际问题。
四. 教学重难点1.线段的垂直平分线的概念。
2.线段的垂直平分线的性质和判定方法的运用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过实例讲解,让学生直观地理解线段的垂直平分线的性质;通过小组合作学习,培养学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT。
2.实例图片和图形。
3.练习题。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾已学的平面几何知识,为新课的学习做好铺垫。
2.呈现(15分钟)a.介绍线段的垂直平分线的概念。
b.通过实例展示线段的垂直平分线的性质。
c.讲解线段的垂直平分线的判定方法。
3.操练(15分钟)a.学生分组讨论,总结线段的垂直平分线的性质和判定方法。
b.学生独立完成练习题,巩固所学知识。
4.巩固(5分钟)通过问题驱动,让学生运用线段的垂直平分线解决实际问题。
5.拓展(5分钟)引导学生思考:线段的垂直平分线在实际应用中的意义和作用。
6.小结(5分钟)对本节课的主要内容进行总结,强调线段的垂直平分线的性质和判定方法。
7.家庭作业(5分钟)布置练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点。
教学过程每个环节所用时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
北师大版《数学》(九年级上册)知识点总结第一章证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
b<a③等腰三角形的三边关系:设腰长为a,底边长为b,则2④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形.三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形(一)、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。