用叠加法求挠度与转角
- 格式:doc
- 大小:293.00 KB
- 文档页数:7
平面弯曲内力 134 第8章 由于y ″的正负号与弯矩的正负号相同,如图8-23所示,所以上式右端应取正号,即
()
M x y E I ′′= (8.31)
上式称为挠曲线近似微分方程。
对于静定梁,弯矩可由截面法求得。
于是,求等截面直梁
的变形问题归结为求解一个二阶常微分方程。
图8-23 曲率与弯矩正负号的关系
8.6.3 积分法求梁的挠度和转角
对与等截面直梁,EI 为常量,式(8.31)可改写成
()EIy M x ′′= (8.32) 积分一次可得转角方程
()d EI EIy M x x C θ′==+∫ (8.33) 再积分一次可得挠度方程
()d d EIy M x x x Cx D =++∫∫ (8.34)
上式中的C 、D 为积分常数,可利用梁的边界条件和连续性条件确定。
8.6.4 叠加法求梁的挠度和转角
在弯曲变形很小,且材料服从胡克定律的情况下,挠曲线微分方程是线性的。
又因在很小变形前提下,计算弯矩时,用梁变形前的位置,结果弯矩与载荷的关系也是线性的。
这样梁在几个力共同作用下产生的变形(或支座反力、弯矩)将等于各个力单独作用时产生的变形(或支座反力、弯矩)的代数和。
8.7 梁的刚度计算
在工程实际中,对弯曲构件的刚度要求,就是要求其最大挠度或转角不得超过某一规定的限度,即。
第四章习题4-1 求下列各梁指定截面上的剪力Q和弯矩M。
各截面无限趋近于梁上A、B、C等各点。
4-2 试列出下列各梁的剪力方程和弯矩方程,作剪力图和弯矩图,并求和。
4-3 用叠加法作以下各梁的弯矩图。
并求出。
4-4 用剪力、弯矩和分布载荷集度之间的微分关系校核前面已画的剪力图和弯矩图是否正确。
4-5 不列剪力方程和弯矩方程,作以下各梁的剪力图和弯矩图,并求出和。
4-6 用合适的方法作下列各梁的剪力图和弯矩图。
4-7 试根据载荷、剪力图和弯矩图之间的关系,检查下列各梁的剪力图和弯矩图是否正确,并对错误之处加以改正。
4-8 作下列构件的内力图。
4-9 在梁上行走的小车二轮的轮压均为P ,如图所示。
问小车行至何位置时梁内的弯矩最大?最大弯矩值是多少?设小车的轮距为c,大梁的跨度为。
参考答案4-1 解:题(b)(1)求支反力(见图)由,l-P l=0 =由,(2)剪力按计算剪力的规则(3)弯矩按计算弯矩的规则其它各题的答案:(a)(c)(d)(e)(f)4-2 解:题c(1)剪力和弯矩方程以左端A为原点,任一截面距左端的距离为x(图)\剪力方程:弯矩方程:(2 )剪力图与弯矩图按上述剪力方程和弯矩方程绘剪力图和弯矩图(3)与值由及得=200N =950题(f)(1)求支反力(见图)由,600-1004040=0=由,q4020-60=0=校核:+=2667+1333=4000N=q40=10040 所以支反力计算正确(2)剪力和弯矩方程以左端为原点,任一截面距左端的距离为x,则得剪力方程:弯矩方程(2)剪力图和弯矩图按上述剪力及弯矩方程绘出图及所示的剪力图和弯矩图所示剪力图和弯矩图.图中最大弯矩的截面位置可由,即剪力的条件求得Q(x)=3333-100x=0x=33.3cm(4)及由及得=2667N ,=355其他各题的答案:(a)=ql =(b)(d)(e)(g)(h)(i)(j)4-3 解:题c分别作、q单独作用时的弯矩图(图、),然后将此二图叠加得总的弯矩图。
习 题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。
7-1(a ) 0M()M x = ''0EJ M y ∴='0EJ M y x C =+ 201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-'2231111=(-)EJ 226y ql x qlx qx θ=+-3-1=6EJ B ql θ 4-1=8EJB y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++ 边界条件:0x = 时 0y = ;'0y = 代入上面方程可求得:4024q l C l -= 50120q l D l =()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=023'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=-⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C = 4224qa D =-()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤ 43412476B B qa y EJqa EJθ=-=-(f)()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =- 4224a D =-437124136B B qa y EJqa EJθ=-=-7-2 用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。
当材料在线弹性范围内工作时,梁的挠度、转角均与载荷成线性关系.而且弯曲变形是很小的.因此,当梁上同时作用几种载荷时,任一载荷引起的变形,不会受到其他载荷的影响,即每种载荷对弯曲变形的影响是各自独立的。
所以,几种载荷同时作用下梁的挠度和转角,等于各种载荷单独作用下挠度和转角的代数和,这就是求解弯曲变形的叠加法.当只需确定某些指定截面的挠度和转角时,应用叠加法是比较方便的.下面举例说明.
例7-3 图7-8 所示简支梁,承受均布载荷q 和集中力偶M0作用,已知M0 =ql2。
试求跨度中点的挠度f c 和 A 截面的转角θA。
解:利用叠加法求解时,首先将q , M0同时作用下的简支梁( 图7 -8a ) ,分解为q 作用下的简支梁( 图7-8b) 和M0作用下的简支梁( 图7 -8c ) ,然后,由表7.1 查取结果叠加。
从表的第9 栏查得均布载荷q 作用下的中点挠度和A 端面转角分别为
由表7.1 第5 栏查得集中力偶M0作用下的中点挠度和A 端面转角分别为
叠加以上结果,求得q , M0 同时作用下的中点挠度和A 截面转角为
f c为负值,表示挠度向下.θA为负值,表示A 截面顺时针转动.
例7-4 简支梁如图7 — 10a 所示,在2a 的长度上对称地作用有均布载荷q. 试求梁中点挠度和梁端面的转角.
解:利用叠加法求解。
由于简支梁上的载荷对跨度中点C 对称,故C 截面的转角应为零.因而从C 截面取出梁的一半,可将其简化为悬臂梁,如图7 — 10b 所示。
梁上作用有均布载荷q 和支座B 的反力R B = qa.这样,悬臂梁上B 端面的挠度在数值上等于原梁中点C 的挠度,但符号相反,B 端面的转角即为原梁B 端面的转角.经这样处理后,应用叠加原理求解比较方便.
由表7 · 1 的第 2 栏查得,当集中力R B (=qa) 作用时( 图7 — 10c ) ,B 端面的转角和挠度分别为
由表7 · 1 的第 4 栏查得,当均布载荷q 作用时( 图7 — 10d) ,E 截面的转角和挠度分别为
由于EB 梁段上无载荷作用,所以q 引起 B 点的转角和挠度分别为
=
=
叠加上述结果,可得B 端面的转角和挠度分别为
于是,原梁( 图7 — 10a ) 中点C 的挠度f c为
例7-6 某一变截面外伸梁如图7 — 11a 所示.AB 、BC 段的抗弯刚度分别为EI1和EI2,在C 端面处受集中力P 作用,求 C 端面的挠度和转角.
解:由于外伸梁是变截面的,故不能直接应用表7 .1 中的结果.为此,必须将外伸梁分为AB 、BC 两段来研究.首先假设梁的外伸段BC 是刚性的,研究由于简支梁AB 的变形所引起的 C 截面的挠度和转角.然后,再考虑由于外伸段BC 的变形所引起的 C 截面的挠度和转角.最后将其两部分叠加,得C 截面的实际变形.
由于假设BC 段为刚性,故可将P 力向简支梁AB 的 B 端简化,得P 和Pa .P 力可由B 支座的反力平衡,不会引起简支梁的弯曲变形。
集中力偶Pa 引起 B 截面的转角( 图7 — 11 b) 由表6 . 1 查得
它引起C 截面的转角和挠度分别为
在考虑BC 段的变形时,可将其看作悬臂梁( 图7 — 11c ) ,由表6 · 1 查得,在P 力作用下C 截面的转角和挠角分别为
将图7 — 11b 、c 中的变形叠加后,求得C 端面实际的转角和挠度分别为
例7-7 在悬臂梁AB 上作用线性分布载荷,如图7-12 所示.试求自由端B 点的挠度.
解:本例同样可以应用叠加法求解.将图中dx 微段上载荷qdx 看作集中力,查表7 · 1 的第3 栏求得微段载荷qdx 作用下自由端B 截面的挠度为
(1)
根据题意,线性分布载荷的表达式为
(2)
按照叠加原理,自由端B 点的挠度应为df B的积分.将(2) 式代入(1) 式,积分得
f B为负号,表示方向向下.。