估计有关的习题集及详解
- 格式:doc
- 大小:3.64 MB
- 文档页数:43
高中数学集合习题及详解一、单选题1.已知集合(){}ln 2A x y x ==-,集合1,32xB y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .∅B .()2,8C .()3,8D .()8,+∞2.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R3.已知集合{}1A xy x ==-∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5D .{}2,3,4,55.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}26.设R U =,1{|2}2x A x =<,{|1}B x x =>,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤7.已知全集,集合{|(2)0}A x x x =+<,{|||1}B x x ,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-⋃C .(2,1)[0,1]--D .[0,1]8.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .79.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 10.已知集合{|13,N}A x x x =-<<∈,则A 的子集共有( )A .3个B .4个C .8个D .16个11.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()RA B =( )A .(2,2)-B .(1,2)C .[)1,2D .(1,2] 12.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( ) A .10B .9C .7D .413.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6}B .{0,9}C .{1,9}D .∅14.已知集合{}{}|14,|04U x x A x x =-<≤=≤≤,则UA =( )A .[-1,0)B .[-1,0]C .(-1,0)D .(-1,0]15.设集合{}2Z20A x x x =∈--≤∣,{0,1,2,3}B =,则A B =( ) A .{0,1}B .{0,1,2}C .{1,0,1,2,3}-D .{2,1,0,1,2,3}--二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.18.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.19.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.20.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______. 23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.若集合M 满足{}1,2,3,4M,则这样的集合M 有______个.三、解答题26.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .27.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.28.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合A ={}123x m x m -≤≤+, . (1)当m =1时,求A B ,(RA )B ;(2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数()f x B ;② 不等式2x ≤的解集为B . 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】一、单选题 1.B 【解析】 【分析】先求出集合,A B ,然后直接求A B 即可. 【详解】集合(){}{}ln 22A x y x x x ==-=>,集合{}1,3082xB y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =,故选:B . 2.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.C 【解析】【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 5.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 6.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 7.C【解析】 【分析】首先解一元二次不等式求出集合A ,再解绝对值不等式求出集合B ,阴影部分表示的集合为()A BAB ⋃,根据交集、并集、补集的定义计算可得;【详解】解:由(2)0x x +<,解得20x -<<,所以}{|(2)0{|20}A x x x x x <-=<<+=, 又{|||1}{|11}B x x x x =-≤≤=≤,所以(2,1]A B =-,[1,0)A B =-, 所以阴影部分表示的集合为()(2,1)[0,1]A BA B ⋃=--,故选:C.8.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 9.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 10.C 【解析】 【分析】根据题意先求得集合{0,1,2}A =,再求子集的个数即可. 【详解】由{|13,N}A x x x =-<<∈,得集合{0,1,2}A = 所以集合A 的子集有32=8个, 故选: C 11.B 【解析】 【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可. 【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=,{}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R,∴()RAB =(1,2).故选:B. 12.C 【解析】利用交集的运算求解. 【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=, 所以a =2,b =5, 所以a b +=7, 故选:C 13.B 【解析】 【分析】根据集合的交运算和补运算求解即可. 【详解】因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A , 则{0,1,4,6,7,8,9,10},{0,3,5,9}UA B ==,故(){0,9}U A B =.故选:B .14.C 【解析】 【分析】根据已知集合,应用集合的补运算求UA 即可.【详解】因为{}{}|14,|04U x x A x x =-<≤=≤≤, 所以{|10.} UA x x =-<<故选:C 15.B 【解析】 【分析】解一元二次不等式,得到集合A ,根据集合的交集运算,求得答案. 【详解】解不等式220x x --≤得:12x -≤≤ ,故{}2Z20{1,0,1,2}A x x x =∈--≤=-∣, 故{0,1,2}A B ⋂=, 故选:B二、填空题16.3323n n -⋅+【解析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.1或3-##3-或1 【解析】 【分析】由题意可得223m m +=,求出m ,因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3- 故答案为:1或3-18.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.19.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2620.2a ≤【解析】 【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围. 【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤.21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.5m ≥【解析】 【分析】由交集和空集的定义解之即可. 【详解】(),5P =-∞,[),Q m =+∞ 由P Q =∅可知,5m ≥ 故答案为:5m ≥23.16【解析】 【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果. 【详解】由题可知,A 的长度为23,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:1624.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.15 【解析】 【分析】结合真子集公式可直接求解. 【详解】 因为{}1,2,3,4M,故集合M 有42115-=个.故答案为:15三、解答题26.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-, 令()22h m m m=++,其中20m -≤<,下面证明函数()h m在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a ≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数,当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果.27.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4}; (2){a |1<a ≤2}, 【解析】 【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得. (1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4}; (2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2,因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}. 28.(1)∅,{1},{2},{1,2}; (2)UB {|0x x =<或3}x >,{|13}BC x x ⋃=-≤≤.【解析】 【分析】(1)直接写出集合A 的所有子集即可; (2)直接写出UB ,求得C ,再求B C ⋃即可.(1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2. (2)因为{}|12C x x =-≤≤,UB ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤.29.B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.30.(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤< (2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或【解析】 【分析】(1)利用集合的运算求解即可.(2)通过A B =A 得出A B ⊆,计算时注意讨论A 为空集的情况. (1) 选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5RA x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致; (2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤-综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或。
《概率与数理统计》课程习题集西南科技大学成人、网络教育学院所有习题【说明】:本课程《概率与数理统计》〔编号为01008〕共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。
一、计算题11.设A,B,C表示三个随机事件,试将如下事件用A,B,C表示出来。
(1) A出现,B、C不出现;(2) A、B都出现,而C不出现;(3) 所有三个事件都出现;(4) 三个事件中至少一个出现;(5) 三个事件中至少两个出现。
2.在分别标有1,2,3,4,5,6,7,8的八卡片中任抽一。
设事件A为“抽得一标号不大于4的卡片〞,事件B为“抽得一标号为偶数的卡片〞,事件C为“抽得一标号为奇数的卡片〞。
试用样本点表示如下事件:〔1〕AB;〔2〕A+B;〔3〕B;〔4〕A-B;〔5〕BC3.写出如下随机试验的样本空间:〔1〕一枚硬币掷二次,观察能出现的各种可能结果;〔2〕对一目标射击,直到击中4次就停止射击的次数;〔3〕二只可识别的球,随机地投入二个盒中,观察各盒装球情况。
4.设A,B,C为三事件,用A,B,C的运算关系表示如下事件。
〔1〕A发生,B与C不发生;〔2〕A,B,C都发生;〔3〕A,B,C中不多于一个发生。
5.甲、乙、丙三人各向目标射击一发子弹,以A、B、C分别表示甲、乙、丙命中目标。
试用A、B、C的运算关系表示如下事件:〔1〕至少有一人命中目标〔2〕恰有一人命中目标〔3〕恰有二人命中目标〔4〕最多有一人命中目标〔5〕三人均命中目标6. 袋有5个白球与3个黑球。
从其中任取两个球,求取出的两个球都是白球的概率。
7. 两台车床加工同样的零件,第一台出现废品的概率是,第二台出现废品的概率是。
加工出来的零件放在一起,并且第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率。
8. 某地区的由7个数字组成〔首位不能为0〕,每个数字可从0,1,2,…,9中任取,假定该地区的用户已经饱和,求从码薄中任选一个的前两位数字为24的概率。
高中数学集合练习题及答案一、单选题1.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞2.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥3.已知集合{}24A x x =<,{}2log 0B x x =>,则A B =( )A .{}22x x -<<B .{}02x x <<C .{}21x x -<<D .{}12x x <<4.设实数集为R ,集合{}1,0,1,2A =-,{}230B x x x =-≥,则()R A B ⋂=( )A .{}1,0-B .{}1,2C .{}1,0,1-D .{}0,1,25.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π6.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( )A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤7.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( ) A .M P = B .M P ⊆ C .P M ⊆ D .M P ⋂=∅ 8.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( )A .()1,2-B .()1,2C .(]1,3-D .(]1,39.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a 的取值范围是( ) A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭10.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( )A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}11.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞12.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤13.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( ) A .{1}B .{3}C .{1,2,3}D .{3,4,5}14.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,615.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--二、填空题16.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________17.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____.18.集合A =[1,6],B ={x |y ,若A ⊆B ,则实数a 的范围是________________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.21.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.22.集合{12}A =,的非空子集是________________. 23.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.24.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合()(){}20A x x a x a =---≤,{}220B x x x =+-<.(1)若0a =,求()RAB ;(2)若命题P :“x A ∀∈,x B ∉”是真命题,求实数a 的取值范围.27.已知全集U =R ,集合{}22150A x x x =--<,集合()(){}2210B x x a x a =-+-<.(1)若1a =,求UA 和UB ;(2)若A B A ⋃=,求实数a 的取值范围.28.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>. (1)若A B A ⋃=,求实数m 的取值范围; (2)若x A ∈是x B ∈的充分条件,求m 的取值范围.29.已知集合()(){}{}250121A x x x B x m x m =+-<=+≤≤-,. (1)当3m =时,求集合()A B R ; (2)若A B B =,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 2.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 3.D 【解析】 【分析】先求得集合A 、B ,根据交集运算的概念,即可得答案. 【详解】由题意得集合{22}A x x =-<<, 因为22log 0log 1x >=,所以1x >, 所以集合{1}B x x =>, 所以{12}A B x x ⋂=<<. 故选:D 4.B 【解析】 【分析】解出B 集合,得到B 的补集的范围,再与A 取交集. 【详解】解得{|30}B x x x =≥≤或,()R 03B =(,),()R {12}A B ⋂=,故选:B. 5.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 6.A 【解析】 【分析】先求出集合N ,再由交集的定义即可得出答案. 【详解】{}{}2|30|03N x x x x x =-≤=≤≤,所以MN ={|23}x x <≤.故选:A 7.C 【解析】 【分析】用列举法表示集合M 、P ,即可判断两集合的关系; 【详解】解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭,所以P M ⊆, 故选:C 8.B 【解析】 【分析】求出集合A 的解集,即可求出A B 的结果. 【详解】因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<,{|13}B x x =<≤,所以{|12}A B x x =<<,故选:B.9.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 10.A 【解析】 【分析】由已知,先有集合U 和集合A 求解出UA ,再根据集合B 求解出()UA B ⋂即可.【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8UA =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A. 11.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D 12.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 13.C 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 14.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 15.A 【解析】 【分析】利用并集和补集的定义可求得结果. 【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A.二、填空题16.{(1,1)}【解析】 【分析】由集合中的条件组成方程组求解可得. 【详解】 将21y x =-代入2y x ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =. 故答案为:{(1,1)} 17.±1 【解析】 【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可. 【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集,所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意;当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1. 故答案为:±1.18.(,1]-∞【解析】 【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围 【详解】由0x a -≥,得x a ≥, 所以[,)B a =+∞, 因为A =[1,6],且A ⊆B , 所以1a ≤,所以实数a 的范围是(,1]-∞, 故答案为:(,1]-∞ 19.3或-1##-1或3【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1. 故答案为:3或-1.20.4【解析】 【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.2a ≥【解析】 【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解. 【详解】 由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立; 当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥ ∴实数a 的取值范围是2a ≥. 故答案为:2a ≥.22.{}{}12{12},,, 【解析】 【分析】结合子集的概念,写出集合A 的所有非空子集即可. 【详解】集合{1,2}A =的所有非空子集是{}{}12{12},,,. 故答案为:{}{}12{12},,,. 23.232##11.5 【解析】 【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论. 【详解】{1P =,2}, {|P P x x a b ∴+==+,aP ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2,∴元素之和为323234122++++=, 故答案为:232. 24. ∉, ∈, ∈ ∈【解析】 【分析】(1)利用元素与集合的关系判断. (2)利用元素与集合的关系判断. (3)利用元素与集合的关系判断. (4)利用元素与集合的关系判断. 【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈ 25.{}12x x -<<## ()1,2- 【解析】 【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1){}12x x ≤≤ (2)41a a ≤-≥或 【解析】 【分析】①由一元二次不等式的解,得出集合A,B ,然后根据集合的交和补运算即可求解.②将命题P 为真,转化为集合之间的包含关系.(1)当0a =时,(){}{}2002A x x x x x =-≤=≤≤,{}{}22021B x x x x x =+-<=-<<,则{}21R C B x x x =≤-≥或,(){}12R A B x x ⋂=≤≤ (2){}21B x x =-<<,{}21R C B x x x =≤-≥或, 由命题P :“x A ∀∈,x B ∉”是真命题可知:()R A B ⊆()(){}{}202A x x a x a x a x a =---≤=≤≤+ 故221a a +≤-≥或,解得:41a a ≤-≥或.实数a 的取值范围为:41a a ≤-≥或27.(1)(][)35,U A =-∞-⋃+∞,,U B R =(2)[-【解析】【分析】(1)根据一元二次不等式的解法,求解集合()3,5A =-,B =∅,再根据补集运算求解即可;(2)由题知B A ⊆,再分B =∅和B ≠∅两种情况讨论求解即可;(1)解:由已知,()3,5A =-所以(][)35,U A =-∞-⋃+∞,当1a =时,(){}210B x x =-<=∅,所以U B R =,(2)若A B A ⋃=,则B A ⊆当B =∅时,1a =,适合题意故B ≠∅,从而1a ≠∵()()222110a a a --=-≥(当且仅当1a =时取等号)∴221a a >-,∴()221,B a a =- 由B A ⊆得221351a a a -≥-⎧⎪≤⎨⎪≠⎩,解之得1a -≤≤1a ≠ 综上所述,a 的取值范围为[-28.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.29.(1){}()5R A B ⋂=(2){}3|m m <【解析】【分析】(1)由题知{}25A x x =-<<{}|45B x x =≤≤,再根据集合交集,补集运算求解即可; (2)由题知B A ⊆,再分B =∅和B ≠∅两种情况讨论求解即可.(1) 解:集合()(){}{}25025A x x x x x =+-<=-<<,当3m =时,{}|45B x x =≤≤,所以{|2R A x x =≤-或5}x所以{}()5R A B ⋂=.(2)因为A B B =,所以B A ⊆,①当B =∅时,121m m +>-,解得2m < ,此时B A ⊆②当B ≠∅时,应满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得23m ≤<,此时B A ⊆综上,m 的取值范围是{}3|m m <30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}3.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,3,54.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤-C .{}3a a >D .{}1a a <-5.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞6.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 7.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR8.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a的取值范围是( ) A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤11.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<12.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-13.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,114.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}--- C .{2,1,0,1,2}--D .()3,3-二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.全集U =R ,集合{}3A x x =≤-,则 UA =______.18.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 19.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.20.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.21.集合*83A x NN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”. (1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”? (2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆. (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ; (3)若A 中至少有一个元素,求a 的取值范围.29.用描述法表示下列集合: (1)所有被3整除的整数组成的集合; (2)不等式235x ->的解集;(3)方程210x x ++=的所有实数解组成的集合; (4)抛物线236y x x =-+-上所有点组成的集合; (5)集合{}1,3,5,7,9.30.(1)集合{a, b, c, d }的所有子集的个数是多少? (2)集合{a 1, a 2, …, an }的所有子集的个数是多少?【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 2.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤,所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=; 故选:A 4.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B 5.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D6.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C. 7.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 8.A 【解析】 【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围. 【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z ,∵M N ⋂有且只有2个元素,∴0<a ≤1. 故选:A. 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.B 【解析】 【分析】化简集合A 和B ,根据集合并集定义,即可求得答案. 【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B. 11.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 12.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 13.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B. 14.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.A B C ##C B A 【解析】 【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系. 【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=,集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=,集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.{}3x x >-【解析】 【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-, 所以UA ={}3x x >-,故答案为:{}3x x >- 18. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.19.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭20.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 21.{1,2}##{2,1} 【解析】 【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}22.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2623.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立,当1x =时,不等式214x ≤<成立,当2x =时,不等式214x ≤<不成立,当4x =时,不等式214x ≤<不成立,所以{}1A B ⋂=,故答案为:{}124.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤. 综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个.28.(1)9,8⎛⎫+∞ ⎪⎝⎭ (2)当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)9,8⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用A 是空集,则Δ00a <⎧⎨≠⎩即可求出a 的取值范围; (2)对a 分情况讨论,分别求出符合题意的a 的值,及集合A 即可; (3)分A 中只有一个元素和有2个元素两种情况讨论,分别求出参数的取值范围,即可得解.(1)解: A 是空集,0a ∴≠且∆<0,9800a a -<⎧∴⎨≠⎩,解得98a >, a ∴的取值范围为:9,8⎛⎫+∞ ⎪⎝⎭; (2)解:①当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎬⎩⎭, ②当0a ≠时,0∆=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭, 综上所求,当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)解:A 中至少有一个元素,则当A 中只有一个元素时,0a =或98a =;当A 中有2个元素时,则0a ≠且0∆>,即9800a a ->⎧⎨≠⎩,解得98a <且0a ≠; 综上可得98a ≤时A 中至少有一个元素,即9,8a ⎛⎤∈-∞ ⎥⎝⎦ 29.(1){|3,Z}x x k k =∈ (2){}4,R x x x ∈(3)2{|10,R}x x x x ++=∈(4)()2{,|36}x y y x x =-+-(5){|21,15x x n n =-≤≤且*N }n ∈【解析】【分析】根据题设中的集合和集合的表示方法,逐项表示,即可求解.(1)解:所有被3整除的整数组成的集合,用描述法可表示为:{|3,Z}x x k k =∈(2)解:不等式235x ->的解集,用描述法可表示为:{}4,R x x x ∈.(3)解:方程210x x ++=的所有实数解组成的集合,用描述法可表示为:2{|10,R}x x x x ++=∈.(4)解:抛物线236y x x =-+-上所有点组成的集合,用描述法可表示为:()2{,|36}x y y x x =-+-.(5)解:集合{}1,3,5,7,9,用描述法可表示为:{|21,15x x n n =-≤≤且*N }n ∈. 30.(1)16;(2)2n【解析】【分析】设集合A 为集合的子集,利用分步计数原理分析每个元素出现的情况,即得解【详解】(1)由题意,若A 为集合{a, b, c, d }的子集则集合A 中的元素只能从a, b, c, d 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有222216⨯⨯⨯=种情况故集合{a, b, c, d }的所有子集的个数是16(2)由题意,若A 为集合{a 1, a 2, …, an }的子集则集合A 中的元素只能从a 1, a 2, …, an 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有22...22n ⨯⨯⨯=种情况故集合{a 1, a 2, …, an }的所有子集的个数是2n。
集合的压轴小题练习题和详细的分析解答(1)新定义问题1.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素2.对于任意两个正整数,m n ,定义某种运算,法则如下:当,m n 都是正奇数时,m n m n =+ ;当,m n 不全为正奇数时,mn mn =,则在此定义下,集合(){,|M a b a=16,*,*}b a N b N =∈∈的真子集的个数是( )A .721-B .1121-C .1321-D .1421-3.当一个非空数集G 满足“如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,aG b∈”时,我们称G 就是一个数域,以下四个关于数域的命题:①0是任何数域的元素;②若数域G 有非零元素,则2017G ∈;③集合{}|2,P x x k k Z ==∈是一个数域;④有理数集是一个数域,其中真命题有() A .1个B .2个C .3个D .4个4.定义一个集合A的所有子集组成的集合叫做集合A的幂集,记为P(A),用n(A)表示有限集A的元素个数,给出下列命题:①对于任意集合A,都有A⊆P(A);②存在集合A,使得n[P(A)]=3;③用ø表示空集,若A∩B=ø,则P(A)∩P(B)=ø;④若A B,,则P(A)P(B);⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)]其中正确的命题个数为().A.4B.3C.2D.15.设是直角坐标平面上的任意点集,定义.若,则称点集“关于运算*对称”.给定点集,,,其中“关于运算* 对称”的点集个数为A.B.C.D.6.设集合S={A0,A1,A2,A3},在S上定义运算⊕为:A1⊕A=A b,其中k为I+j被4除的余数,I,j=0,1,2,3.满足关系式=(x⊕x)⊕A2=A0的x(x∈S)的个数为A.4B.3C.2 D.17.用C(A)表示非空集合A 中的元素个数,定义A*B=.若A={1,2},B=,且A*B=1,设实数的所有可能取值集合是S ,则C(S)=( )A .4B .3C .2D .18.规定:函数()y f x =,有限集合S ,如果满足:当x S ∈,则()f x S ∈,且*S N ⊆,那么称集合S 是函数()f x 的生成集,已知减函数()2ax bf x x +=-(2x >),b 为不超过10的自然数,而且()f x 有6个元素的一个生成集S ,则a b +=________.9.若集合{}1,2,3,,2019A =⋅⋅⋅,集合B A ⊆,且B ≠∅,记()W B 为B 中元素的最大值与最小值之和,则对所有的B ,()W B 的平均值是__________.10.向量集合(){},,,S a a x y x y R ==∈,对于任意,S αβ∈,以及任意()0,1λ∈,都有()1S λαλβ+-∈,则称S 为“C 类集”,现有四个命题:①若S 为“C 类集”,则集合{},M a a S R μμ=∈∈也是“C 类集”; ②若S ,T 都是“C 类集”,则集合{},M a b a S b T =+∈∈也是“C 类集”; ③若12,A A 都是“C 类集”,则12A A ⋃也是“C 类集”;④若12,A A 都是“C 类集”,且交集非空,则12A A ⋂也是“C 类集”. 其中正确的命题有________(填所有正确命题的序号)11.若X 是一个非空集合,M 是一个以X 的某些子集为元素的集合,且满足:(1)X M M ∈∅∈,;(2)对于X 的任意子集A B ,,当A M ∈且B M ∈时,有A B M ⋃∈;(3)对于X 的任意子集A B ,当A M ∈且B M ∈时,有A B M ⋂∈,则称M 是集合X 的一个“M ——集合类”例如:{}{}{}{}{}M b c b c a b c =∅,,,,,,,是集合{}X a b c =,,的一个“M ——集合类”.已知{}X a b c =,,,则所有含{}b c ,的“M ——集合数”的个数为( ) A .9 B .10C .11D .1212.在n 元数集{}12,,,n S a a a =⋅⋅⋅中,设()12na a a x S n++⋅⋅⋅+=,若S 的非空子集A 满足()()x A x S =,则称A 是集合S 的一个“平均子集”,并记数集S 的k 元“平均子集”的个数为()S f k .已知集合{}1,2,3,4,5,6,7,8,9S =,{}4,3,2,1,0,1,2,3,4T =----,则下列说法错误的是( ) A .()()91S T f f = B .()()81S T f f = C .()()64S T f f =D .()()54S T f f =集合的压轴小题练习题和详细的分析解答(1)新定义问题1.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A 【解析】 【分析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可. 【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ; 下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==,又44441231p p p p p p p >>>>,故441331p pp p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i qp i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A . 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 2.对于任意两个正整数,m n ,定义某种运算,法则如下:当,m n 都是正奇数时,m n m n =+ ;当,m n 不全为正奇数时,mn mn =,则在此定义下,集合(){,|M a b a=16,*,*}b a N b N =∈∈的真子集的个数是( )A .721-B .1121-C .1321-D .1421-【答案】C 【解析】由题意,当m n , 都是正奇数时,m n m n =+※ ;当m n ,不全为正奇数时,m n mn =※ ;若a b , 都是正奇数,则由16a b =※ ,可得16a b += ,此时符合条件的数对为(115313151⋯,),(,),(,)满足条件的共8个; 若a b ,不全为正奇数时,m n mn =※ ,由16a b =※ ,可得16ab = ,则符合条件的数对分别为116284482161(,),(,),(,),(,),(,)共5个; 故集合**{|16}M a b a b a N b N ==∈∈(,)※,, 中的元素个数是13, 所以集合**{|16}M a b a b a N b N ==∈∈(,)※,,的真子集的个数是1321.- 故选C .【点睛】本题考查元素与集合关系的判断,解题的关键是正确理解所给的定义及熟练运用分类讨论的思想进行列举,3.当一个非空数集G 满足“如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,aG b∈”时,我们称G 就是一个数域,以下四个关于数域的命题:①0是任何数域的元素;②若数域G 有非零元素,则2017G ∈;③集合{}|2,P x x k k Z ==∈是一个数域;④有理数集是一个数域,其中真命题有() A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】 逐项分析即可. 【详解】①:当0a =时,有0aG b=∈,所以0是任何数域的元素,正确; ②:取G 为实数域,令2016a G =∈,1b G =∈,则2017a b G +=∈,正确; ③:若{}|2,P x x k k Z ==∈为数域,取2a =,4b =,则12a Pb =∈不成立,错误; ④:取有理数1x ,2x ,令1a x =,2b x =,则()12a b x x +=+∈有理数集, ()12a b x x -=-∈有理数集,()12a b x x ⋅=⋅∈有理数集,且12x a b x =∈有理数集(20x ≠),所以有理数集是数域.正确的有:①②④. 故选:C .【点睛】本题考查集合中的新定义问题,难度较难.对于新定义的问题,关键是能读懂定义并能做出合理判断.4.定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为P(A),用n(A)表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有A ⊆P(A);②存在集合A ,使得n[P(A)]=3;③用ø表示空集,若A∩B=ø,则P(A)∩P(B)=ø;④若AB,,则P(A)P(B);⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)]其中正确的命题个数为( ). A .4 B .3C .2D .1【答案】B 【解析】由()P A 的定义可知①正确,④正确,设()n A n =,则()()2nn P A = ,所以②错误;若A B =∅ ,则()(){}P A P B ⋂=∅ ,③不正确;()()1n A n B -= ,即A 中元素比B 中元素多一个,则()()2n P A n P B ⎡⎤⎡⎤=⨯⎣⎦⎣⎦,⑤正确,故选B. 【方法点睛】本题考查结合的概念与性质、新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题利用定义集合A 的幂集达到考查集合性质的目的.5.设是直角坐标平面上的任意点集,定义.若,则称点集“关于运算*对称”.给定点集,,,其中“关于运算 * 对称”的点集个数为A .B .C .D .【答案】B 【解析】试题分析:将(1,1)y x --带入221x y +=,化简得1x y +=,显然不行,故集合A 不满足关于运算*对称,将(1,1)y x --带入1y x =-,即111x y -=--,整理得1x y +=,显然不行,故集合B 不满足关于运算*对称,将(1,1)y x --带入11x y -+=,即1111y x --+-=,化简得11x y -+=,故集合C 满足关于运算*对称,故只有一个集合满足关于运算*对称,故选B. 考点:新定义问题的求解.6.设集合S={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A 1⊕A=A b ,其中k 为I+j 被4除的余数,I,j=0,1,2,3.满足关系式=(x ⊕x )⊕A 2=A 0的x(x ∈S)的个数为 A.4 B.3 C.2 D .1 【答案】B 【解析】略7.用C(A)表示非空集合A 中的元素个数,定义A*B=.若A={1,2},B=,且A*B=1,设实数的所有可能取值集合是S ,则C(S)=( )A .4B .3C .2D .1 【答案】B 【解析】试题分析:因为C(A)=2,A ∗B =1,所以C(B)=1或C(B)=3.由x 2+ax =0得:x 1=0,x 2=−a .当a =0时,B ={0},C(B)=1,满足题设.对,当Δ=0时,a =±2√2,此时C(B)=3符合题意.当Δ>0时,a <−2√2或a >2√2,此时必有C(B)=4,不符合题意.所以S ={0,−2√2,2√2}.选B.考点:1、新定义;2、一元二次方程.8.规定:函数()y f x =,有限集合S ,如果满足:当x S ∈,则()f x S ∈,且*S N ⊆,那么称集合S 是函数()f x 的生成集,已知减函数()2ax bf x x +=-(2x >),b 为不超过10的自然数,而且()f x 有6个元素的一个生成集S ,则a b +=________. 【答案】10【解析】 【分析】利用生成集的定义和函数的单调性进行判断求解. 【详解】2()22ax b a bf x a x x ++==+--,∴()f x 在(2,)+∞是单调的,显然20a b +≠, 若20a b +<,()f x 单调递增,则方程()f x x =即2ax bx x +=-有6个自然数解,这是不可能的,故20a b +>,()f x 单调递减,设S 中最小值为m ,最大数为n ,则()()f m nf n m =⎧⎨=⎩,由22ma bn m na b m n +⎧=⎪⎪-⎨+⎪=⎪-⎩,解得22()a b mn m n =⎧⎨=-+⎩,22()4(2)(2)()222a b mn m n m n f x a a a x x x +-++--=+=+=+---, ∵函数定义域是(2,)+∞,S 中至少有6个元素, *S N ⊆,∴3,8m n ≥≥,∴(2)(2)6m n --≥,又10b ≤,∴(2)(2)414m n b --=+≤,S 中有6个元素,∴(2)(2)m n --一定有6个正因数,在[6,14]中有6个正因数的整数只有12,∴8b =, 此时28()2x f x x +=-,{3,4,5,6,8,14}S =, ∴10a b +=, 故答案为:10. 【点睛】本题考查数学的中新定义问题,考查学生的创新意识,考查函数的单调性,考查学生的推理能力和计算能力,属于难题.9.若集合{}1,2,3,,2019A =⋅⋅⋅,集合B A ⊆,且B ≠∅,记()W B 为B 中元素的最大值与最小值之和,则对所有的B ,()W B 的平均值是__________. 【答案】2020【解析】 【分析】先归纳出集合{}()1,2,3,,n A n n N *=∈时,集合n B A '⊆且B '≠∅时,()W B '的平均值,然后令2019n =可得出()W B 的平均值. 【详解】先考虑集合时,集合n B A '⊆且B '≠∅时,()W B '的平均值.{}11A =,{}1B '=,则()112W B '=+=,此时,()W B '的平均值为221=;{}21,2A =,当{}1B '=时,()112W B '=+=,当{}2B '=时,()224W B '=+=,当{}1,2B =时,()123W B '=+=,此时,()W B '的平均值为24333++=; {}31,2,3A =,当{}1B '=时,()112W B '=+=,当{}2B '=时,()224W B '=+=,{}3B '=时,()336W B '=+=,当{}1,2B '=时,()123W B '=+=,当{}1,3B '=时,()134W B '=+=,当{}2,3B '=时,()235W B '=+=,当{}1,2,3B '=时,()134W B '=+=,此时,()W B '的平均值为246345447++++++=;依此类推,对于集合n A ,()W B '的平均值为1n +. 由于2019A A =,所以,()201912020W B =+=. 故答案为:2020. 【点睛】本题考查了集合的新定义,同时也考查了归纳推理,解题的关键就是利用归纳推理得出()W B '的表达式,考查推理论证能力,属于难题.10.向量集合(){},,,S a a x y x y R ==∈,对于任意,S αβ∈,以及任意()0,1λ∈,都有()1S λαλβ+-∈,则称S 为“C 类集”,现有四个命题:①若S 为“C 类集”,则集合{},M a a S R μμ=∈∈也是“C 类集”; ②若S ,T 都是“C 类集”,则集合{},M a b a S b T =+∈∈也是“C 类集”;③若12,A A 都是“C 类集”,则12A A ⋃也是“C 类集”;④若12,A A 都是“C 类集”,且交集非空,则12A A ⋂也是“C 类集”. 其中正确的命题有________(填所有正确命题的序号) 【答案】①②④ 【解析】 【分析】因为集合(){},,,S a a x y x y R ==∈,对于任意,S αβ∈,且任意()0,1λ∈,都有()1S λαλβ+-∈,可以把这个“C 类集”理解成,任意两个S 中的向量所表示的点的连线段上所表示的点都在S 上,因此可以理解它的图象成直线,逐项判断,即可求得答案. 【详解】集合(){},,,S a a x y x y R ==∈,对于任意,S αβ∈, 且任意()0,1λ∈,都有()1S λαλβ+-∈∴可以把这个“C 类集”理解成,任意两个S 中的向量所表示的点的连线段上所表示的点都在S 上,因此可以理解它的图象成直线对于①,{},M a a S R μμ=∈∈,向量a 整体μ倍,还是表示的是直线,故①正确; 对于②,因为S ,T 都是“C 类集”,故{},M a b a S b T =+∈∈还是表示的是直线,故②正确;对于③,因为12,A A 都是“C 类集”,可得12A A ⋃是表示两条直线,故③错误;对于④,12,A A 都是“C 类集”,且交集非空,可得12A A ⋂表示一个点或者两直线共线时还是一条直线.综上所述,正确的是①②④. 故答案为:①②④. 【点睛】本题考查了集合的新定义,解题关键是要充分理解新定义,结合向量和集合知识求解,考查了分析能力和计算能力,属于难题.11.若X 是一个非空集合,M 是一个以X 的某些子集为元素的集合,且满足:(1)X M M ∈∅∈,;(2)对于X 的任意子集A B ,,当A M ∈且B M ∈时,有A B M ⋃∈;(3)对于X 的任意子集A B ,当A M ∈且B M ∈时,有A B M ⋂∈,则称M 是集合X 的一个“M ——集合类”例如:{}{}{}{}{}M b c b c a b c =∅,,,,,,,是集合{}X a b c =,,的一个“M ——集合类”.已知{}X a b c =,,,则所有含{}b c ,的“M ——集合数”的个数为( ) A .9 B .10C .11D .12【答案】D 【解析】 【分析】根据题意知M 一定包含{}{},,,,,b c a b c ∅,对剩余{}{}{}{}{}{},,,,,,,,,a b c a b a c a b c 分类讨论得到答案. 【详解】{}X a b c =,,的子集有:{}{}{}{}{}{}{},,,,,,,,,,,,a b c a b a c b c a b c ∅.根据题意:M 一定包含{}{},,,,,b c a b c ∅,剩余{}{}{}{}{}{},,,,,,,,,a b c a b a c a b c . 当5个都不取时,{}{}{},,,,,M b c a b c =∅,1个;当只取1个时,{}{}{}{},,,,,,M a b c a b c =∅,{}{}{}{},,,,,,M b b c a b c =∅,{}{}{}{},,,,,,M c b c a b c =∅满足,3个;当只取2个时,{}{}{}{}{},,,,,,,,M b a b b c a b c =∅,{}{}{}{}{},,,,,,,,M c a c b c a b c =∅, {}{}{}{}{},,,,,,,M b c b c a b c =∅满足,3个;当只取3个时,{}{}{}{}{}{},,,,,,,,,M a b a b b c a b c =∅,{}{}{}{}{}{},,,,,,,,,M c b a b b c a b c =∅,{}{}{}{}{}{},,,,,,,,,M a c a c b c a b c =∅, {}{}{}{}{}{},,,,,,,,,M b c a c b c a b c =∅满足,4个;当只取4个时,不满足;当取5个时,{}{}{}{}{}{}{}{},,,,,,,,,,,,M a b c a b a c b c a b c =∅满足,1个;共12个.故选:D . 【点睛】本题考查了集合的新定义问题,分类讨论是解题的关键. 12.在n 元数集{}12,,,n S a a a =⋅⋅⋅中,设()12na a a x S n++⋅⋅⋅+=,若S 的非空子集A 满足()()x A x S =,则称A 是集合S 的一个“平均子集”,并记数集S 的k 元“平均子集”的个数为()S f k .已知集合{}1,2,3,4,5,6,7,8,9S =,{}4,3,2,1,0,1,2,3,4T =----,则下列说法错误的是( ) A .()()91S T f f = B .()()81S T f f = C .()()64S T f f = D .()()54S T f f =【答案】C 【解析】 【分析】根据新定义求出k 元平均子集的个数,逐一判断,由此得出正确选项. 【详解】()5x S =,将S 中的元素分成5组()1,9,()2,8,()3,7,()4,6,()5.则()121456S f C C =⋅=,()3464S f C ==,()4481S f C ==,()91S f =;同理:()0x T =,将T 中的元素分成5组()1,1-,()2,2-,()3,3-,()4,4-,()0. 则()1111T f C ==,()2446T f C ==.∴()()91S T f f =,()()81S T f f =,()()54S T f f =,()()64S T f f ≠. 故选:C . 【点睛】本小题主要考查新定义集合的概念理解和运用,考查分析、思考与解决问题的能力,属于中档题.。
高一数学集合练习题及答案经典一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}111,202xA x xB x ⎧⎫⎪⎪⎛⎫=+<=-≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()AB =R( )A .()2,1--B .(]2,1--C .()1,0-D .[)1,0-3.已知集合{A x y ==,{}0,1,2,3B =,则A B =( ) A .{}3B .{}2,3C .{}1,2,3D .{}0,1,2,34.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-5.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3B .{}3,7,8C .{}1,3,7,8D .{}1,3,6,7,86.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.已知集合{}220A x x x =--≤,{}2log B x x k =>.若A B =∅ ,则实数k 的取值范围为( ) A .02k <≤ B .04k << C .2k ≥D .4k ≥9.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,3 10.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1611.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞12.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .A B C = B .A B = C .()S A B ⋂=∅D .SSABC13.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤14.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .1415.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( )A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.19.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ; (3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 20.若{}31,2a ∈,则实数=a ____________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.集合{12}A =,的非空子集是________________. 23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________. 24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.以下各组对象不能组成集合的是______(用题号填空). ①中国古代四大发明 ②地球上的小河流 ③方程210x -=的实数解 ④周长为10cm 的三角形 ⑤接近于0的数三、解答题26.已知集合{|124}x A x =≤≤,{|()(1)0}B x x a x =--≤. (1)求A ;(2)若A B B =,求实数a 的取值范围.27.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.28.设集合(){}1A x x x a a =+-≤,{}260B x x x =+-<,{}260C x x x =--≤.(1)求B C ⋃.(2)若()R A B ⋂=∅,求实数a 的取值范围.29.已知集合{}2430M x x x =-+<,{}12N x x =-<<.(1)求()RM N ⋃;(2)若集合()(){}20P x x m x =+-≤,且“x ∈N ”是“x P ∈”的充分不必要条件,求m 的取值范围.30.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.C 【解析】 【分析】由绝对值不等式的解法求出集合A ,再利用指数函数的单调性求解集合B ,最后根据集合的补集、交集的定义即可求解. 【详解】解:由题意,{}{}|111|20A x x x x =-<+<=-<<,{}{}|22|1xB x x x -=≥=≤-,∴{}1R B x x =>-,∴(){}()|101,0R A B x x ⋂=-<<=-. 故选:C . 3.C 【解析】 【分析】根据定义域的求法解出集合A ,然后根据交集的运算法则求解. 【详解】 解:由题意得:{{}|1A x y x x ===≥ {}1,2,3A B ∴⋂= 故选:C 4.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 5.C 【解析】 【分析】先求A B ,再求()A B C ⋂⋃. 【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.D 【解析】 【分析】由于A B =∅ ,B 集合所表示的区间在A 集合之外. 【详解】由220x x --≤ ,解得12x -≤≤ ,即[]1,2A =- ,A B =∅ ,2log 2k ∴≥ ,4k ≥ ;故选:D. 9.D【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 10.B 【解析】 【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得. 【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集. 故选:B 11.A 【解析】 【分析】由对数函数定义域和指数函数值域可求得集合,A B ,由交集定义可得结果. 【详解】由20x ->得:2x <,(),2A ∴=-∞;由20x >得:()0,B =+∞;()0,2A B ∴⋂=.故选:A. 12.D 【解析】 【分析】根据集合A ,B ,C 的关系求解即可. 【详解】集合A ,B ,C 的关系如下图,由图可知只有SSABC 正确.故选:D.13.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 14.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答. 【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B 15.D 【解析】 【分析】 解不等式后求解 【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R 3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.19. ⊆ = ⊇ ⊆ 【解析】 【分析】根据集合子集的定义及集合相等的概念求解. 【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆ 20.5##32【解析】 【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果. 【详解】 因为{}31,2a ∈, 所以23a =,解得32a =. 故答案为:32.21.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂22.{}{}12{12},,, 【解析】 【分析】结合子集的概念,写出集合A 的所有非空子集即可. 【详解】集合{1,2}A =的所有非空子集是{}{}12{12},,,. 故答案为:{}{}12{12},,,. 23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}124.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.②⑤ 【解析】 【分析】利用集合元素的基本特征判断. 【详解】①中国古代四大发明是造纸术,指南针,火药和印刷术,是确定的,能构成集合; ②地球上的小河流,不确定,不能构成集合;③方程210x -=的实数解是1或-1,是确定的,能构成集合; ④周长为10cm 的三角形,是确定的,能构成集合; ⑤接近于0的数,不确定,不能构成集合. 故答案为:②⑤三、解答题26.(1)[]0,2A = (2)[]0,2 【解析】 【分析】(1)结合指数不等式求得集合A .(2)对a 进行分类讨论,由此求得B ,根据A B B =来求实数a 的取值范围 (1)2122,02x x ≤≤≤≤,所以[]0,2A =.(2)A B B B A ⋂=⇒⊆当1a =时,{}1B A =⊆;当1a <时,{}|1B x a x A =≤≤⊆,则01a ≤<;当1a >时,{}|1B x x a A =≤≤⊆,则12a <≤;综上:a 的取值范围是[]0,2.27.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 28.(1){}33B C x x ⋃=-<≤(2)23a -<<【解析】【分析】(1)先解出集合,B C ,再计算B C ⋃即可;(2)由()R A B ⋂=∅得A B ⊆,再按照两根的大小分类讨论解不等式即可.(1){}32B x x =-<<,{}23C x x =-≤≤,则{}33B C x x ⋃=-<≤;(2)()(){}10A x x a x =+-≤,由()R A B ⋂=∅得A B ⊆, ①当<1a -时,即1a >-时,{}1A x a x =-≤≤,只需3a ->-,即13a -<<; ②当1a -=时,即1a =-时,{}1A x x ==,满足条件;③当1a ->时,即1a <-时,{}1A x x a =≤≤-,只需2a -<,即21a -<<-; 综上可得:a 的取值范围是23a -<<.29.(1){1x x ≤-或}3x ≥(2)[)1,+∞【解析】【分析】(1)求出集合M ,再根据补集和并集的定义求解;(2)由题意得N P ,再根据包含关系列不等式求解. (1) 由已知{}{}243013M x x x x x =-+<=<<, 所以{}13M N x x ⋃=-<<,则(){1R M N x x ⋃=≤-或}3x ≥.(2)由题意得N P , 则1m -≤-,解得1m ≥.故m 的取值范围是[)1,+∞.30.0≤m ≤4.【解析】【分析】先由一元二次不等式的解法化简集合P ,再由必要条件得到两集合间包含关系,结合非空集合S 和包含关系建立关于m 的不等关系,最后取交集解出范围.【详解】由x 2-x -20≤0,得-4≤x ≤5,∴P ={x |-4≤x ≤5}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴1415m m -≥-⎧⎨+≤⎩解得m ≤4. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0.综上,若x ∈P 是x ∈S 的必要条件,则0≤m ≤4.。
数量的估计和比较练习题数量的估计和比较是数学中一项基础且常见的技能。
在日常生活中,我们经常需要对事物的数量进行估计和比较,因此掌握这一技能十分重要。
本文将通过一些练习题来帮助读者提升对数量估计和比较的能力。
1. 估计:1.1 你所在的城市有多少人口?答案:根据你所在的城市规模和了解,估计出大致的人口数量。
1.2 假设一个水杯可以装多少毫升的水?答案:可以通过观察类似体积的其他容器或者使用标尺测量水杯的高度和直径来估计。
1.3 一颗树上有多少片叶子?答案:可以通过选择一小片叶子,然后计算树的总体积(比如通过测量一段树干的长度和直径),最后估算树上叶子的密度并乘以总体积。
2. 比较:2.1 比较两个城市的人口量。
答案:可以查找两个城市的相关数据并进行比较,如人口普查数据或官方发布的统计信息。
2.2 比较两个杯子的容量。
答案:可以使用一个已知容量的容器(比如1升水瓶)逐渐倒入杯子中,直到达到容量上限,然后比较两个杯子的水位。
2.3 比较两片树叶的面积。
答案:可以通过将两片树叶分别放入格子纸中并计数所覆盖的格子数量来比较树叶的面积。
通过以上的练习题,我们可以锻炼自己对数量的估计和比较能力。
通过不断的实践和练习,你将能够更加准确地估计和比较不同事物的数量,提升自己的数学技能。
数学是一门实践性很强的学科,理解和运用数学的概念需要通过实际问题来学习和掌握。
数量的估计和比较是数学中的一个重要部分,它帮助我们更好地认识和理解周围的世界。
希望本文提供的练习题能够帮助读者提高自己的数量估计和比较能力,为学习数学打下坚实的基础。
高中数学集合习题及详解一、单选题1.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的2.设R U =,1{|2}2x A x =<,{1}B x =,则()U B A ⋂=( ) A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤3.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个 B .2个 C .3个 D .4个 4.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞5.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .{}21x x -≤≤C .102x x ⎧⎫-≤≤⎨⎬⎩⎭D .102x x ⎧⎫<≤⎨⎬⎩⎭ 6.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x > 7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤<B .{}|15x x ≤<C .{}|15x x -≤<D .{}|13x x ≤≤8.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( )A .(]2,3B .[)1,+∞C .()2,+∞D .(],3-∞ 10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤ 11.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( )A .AB .BC .(5,1]-D .[4,0)- 12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤14.设集合{}{21,2,3|50}A B x x bx =---=++=,.若{}1A B ⋂=-,则B =( ) A .(-1,-3} B .{-1,3} C .{}1,5-- D .{}1,5-15.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.已知集合{}2,1,2A =-,{}1,B a a =,且B A ⊆,则实数a 的值是___________. 18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,y A 是y B ∈的充分不必要条件,则m 的取值范围是______.20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.21.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.22.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示)23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 三、解答题26.已知集合______,集合{}22,B x m x m m R =<<∈.从下列三个条件中任选一个,补充在上面横线中.①301x A x x ⎧⎫-=<⎨⎬+⎩⎭;②{}12A x x =-<;③{}2230A x x x =--<. (1)当1m =-时,求()R A B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.(1)已知U =R ,且{}|44A x x =-<<,{|1B x x =≤或}3x ≥,求A B ; (2)设{}Z|66A x x =∈-≤≤,{}1,2,3B =,{}3,4,5,6C =,求()()A A B C .29.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.30.把区间[)1,+∞看成全集,写出它的下列子集的补集:()1,A =+∞;{}1B =;{}15C x x =≤<;[)3,D =+∞.【参考答案】一、单选题1.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .2.B【解析】【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂.【详解】11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1U A x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1U BA x x =>. 故选:B3.C 【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =.故选:C4.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】 因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.5.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .6.B【解析】【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可.【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}MN x x =<<.故选:B.7.D【解析】【分析】求解分式不等式的解集,再由补集的定义求解出A R ,再由交集的定义去求解得答案.【详解】 1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R .故选:D8.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D9.B【解析】【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤,所以A B ⋃=[)1,+∞,故选:B10.B【解析】【分析】 化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.11.C【解析】【分析】根据集合并集的概念及运算,正确运算,即可求解.【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-.故选:C.12.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.13.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.14.C【解析】【分析】根据交集结果得到1B -∈,所以150b -+=,解出6b =,从而解方程,求出B ={}1,5--.【详解】因为{1}A B ⋂=-,所以150b -+=,解得6b =,则2650x x ++=的解为1x =-或5x =-,故B ={}1,5--故选:C15.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:118. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.[)1,+∞【解析】【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求.【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞.故答案为:[)1,+∞.20.[2,+∞)【解析】【分析】根据A B ⊆结合数轴即可求解.【详解】 ∵{}22A x x =-≤≤≠∅,A B ⊆,∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:422.{0,3,6}【解析】【分析】根据给定条件直接计算作答.【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =.故答案为:{0,3,6}23.16【解析】【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 24.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2.故答案为:2,0,2.三、解答题26.(1)(){}1,1R A B x x x ⋂=≤-≥ (2)122m -≤≤ 【解析】【分析】(1)首先分别求两个集合,再求集合的运算;(2)由条件可知B A ⊆,分B =∅和B ≠∅两种情况,求实数m 的取值范围.(1)若选①301x x -<+,则13x ,所以{}13A x x =-<<, 若选②12212x x -<⇔-<-<,得13x ,若选③()()2230130x x x x --<⇔+-<,得13x ,1m =-时,{}21B x x =-<<,{}11A B x x ⋂=-<<(){}1,1R A B x x x ⋂=≤-≥; (2)B A ⊆当B =∅,22m m ≥,得02m ≤≤当B ≠∅,22221,3m m m m ⎧<⎪≥-⎨⎪≤⎩得102m -≤< ∴122m -≤≤. 27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-. 故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){|41A B x x ⋂=-<≤或}34x ≤<;(2)()(){}6,5,4,3,2,1,0A A B C =------.【解析】【分析】(1)利用集合的交运算即可求解A B ;(2)根据已知集合的描述,应用集合的交并补混合运算求()()A AB C . 【详解】(1){}{|44|1A B x x x x ⋂=-<<⋂≤或}3{|41x x x ≥=-<≤或}34x ≤<.(2)由题意,}{6,5,4,3,2,1,0,1,2,3,4,5,6A =------,且{}1,2,3B =,{}3,4,5,6C =, 所以{}1,2,3,4,5,6B C ⋃=,则(){}6,5,4,3,2,1,0A B C =------. 所以()(){}6,5,4,3,2,1,0A A B C =------.29.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-. 30.{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =【解析】【分析】根据补集的定义计算可得;【详解】解:因为[)1,U =+∞,所以{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =。
高一数学集合练习题及答案(新版)一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合102x A xx -⎧⎫=<⎨⎬-⎩⎭,{1}B x x =>-,则( ) A .RA B ⊆B .RA B ⊆ C .B A ⊆ D .A B ⊆3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-5.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-6.已知集合{1,0,1}A =-,{|3x B x =≥,则A B =( )A .{0}B .{0,1}C .{0,1}-D .{1,0,1}-7.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .38.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤9.设集合{}02A x x =≤≤,B={1,2,3},C={2,3,4},则()A B C =( ) A .{2}B .{2,3}C .{1,2,3,4}D .{0,1,2,3,4}10.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,211.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-12.已知集合(){}2{34},log 22A x Zx B x x =∈-≤<=+<∣∣,则A B 的元素个数为( ) A .3B .4C .5D .613.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅14.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0 B .2C .4D .815.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3-二、填空题16.若{}31,3,a a ∈-,则实数a 的取值集合为______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______. 21.已知集合{}1,2,3A =,{}1,0,1B =-,则A B ⋃=___________.22.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.23.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.24.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.25.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 三、解答题26.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .27.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ; (2)若______,求实数a 的取值范围.28.设函数()()21,R f x ax a x =-∈的不动点(满足()f x x =)、稳定点(满足()()f f x x =)的集合分别为A 、B .若A B =≠∅,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.D 【解析】 【分析】首先解分式不等式求出集合A ,再根据补集的定义求出RA 、RB ,再根据集合间解得基本关系判断可得; 【详解】 解:由102x x -<-,等价于()()120x x --<,解得12x <<, 所以{}10|122x A xx x x -⎧⎫=<=<<⎨⎬-⎩⎭,{}R|12A x x x =≤≥或又{1}B x x =>-,所以{}R 1B x x =≤-, 所以A B ⊆ 故选:D 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 4.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-,41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 5.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 6.B 【解析】 【分析】由对数的运算性质,并解指数不等式可得31{|log }2B x x =≥,再由集合的交运算求A B . 【详解】由31{|log }2B x x =≥,而311log 02-<<, 所以{0,1}A B =. 故选:B 7.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 8.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 9.C 【解析】 【分析】根据集合交、并的定义,直接求出()A B C . 【详解】因为集合{}02A x x =≤≤,B={1,2,3},所以{}1,2A B =, 所以()A B C ={1,2,3,4}. 故选:C 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D 12.A 【解析】 【分析】根据对数函数的单调性解得集合B ,再求A B ⋂即可得到其元素个数. 【详解】因为{34}A x Zx =∈-≤<∣{}3,2,1,0,1,2,3=---, ()2log 22x +<,即()22log 2log 4x +<,故024x <+<,解得22x -<<,即{|22}B x x =-<<,则{}1,0,1A B ⋂=-,其包含3个元素.13.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解. 【详解】 由x31,得03x <≤, 所以}{N ,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.{}0,1,3【解析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,3 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2. 18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:820.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1.21.{}10123-,,,, 【解析】 【分析】根据并集的定义可得答案. 【详解】{}1,2,3A =,{}1,0,1B =-,∴{}10123A B ⋃=-,,,,. 故答案为:{}10123-,,,,. 22.24a ≤≤【解析】 【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围. 【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a ax <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132aa ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤.故答案为:24a ≤≤23.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.24.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤25.9,4⎧-⎨⎩【解析】 【分析】 由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x 1x =a ={1A =;若方程(*)有一个根是x =1x =a ={1A =+.综上,a 的取值集合为9{,4-.故答案为:9{,4-.三、解答题26.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅ 【解析】 【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可; (2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.27.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.28.13,44⎡⎤-⎢⎥⎣⎦【解析】【分析】根据函数的不动点、稳定点的定义结合题意分别求出集合A 、B ,再结合结合A B =≠∅即可求解.【详解】由题意可知,()21f x ax x =-=, {}210A x ax x -=-=,由()()f f x x =,得()()342222221110a x a x x a ax x a xax a --+-=--+-+=, (){}2211B x a ax x =--={}3422210x a x a x x a =--+-=. ()(){}222110x ax x a x ax a =--+-+=. 当0a =时,()1f x =-.则集合{}1A B ==-,满足题设要求.当0a ≠时,当A B =≠∅时,方程210ax x --=有解,对方程2210a x ax a +-+=根的情况进行分类讨论若方程2210a x ax a +-+=有两个不相等的实数根,则22 1+40-4(1-) >0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a >, 此时两个方程没有公共解,集合B 中有四个元素,不合题意,舍去. 若方程2210a x ax a +-+=有两个相等的实数根,则22 1+40-4(1-) =0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a = 此时方程210ax x --=的两根分别为2,23-, 方程2210a x ax a +-+=的根为1223x x ==-. 验证得2,23A B ⎧⎫==-⎨⎬⎭⎩ 若方程2210a x ax a +-+=无实数根,此时A B =,则22 1+40-4(1-) <0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得1344a -≤<且0a ≠ 综上所述,实数a 的取值范围为13,44⎡⎤-⎢⎥⎣⎦. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。
高中数学集合习题及详解一、单选题1.已知全集{}2,1,0,1,2,3,4,5,6U =--,{}2,3,5,6M =,{}2,1,1,3,5N =--,如图Venn 中阴影部分表示的集合为( ).A .{}0,2,5,6B .{}1,2,3,5,6-C .{}0,2,3,4,5,6D .{}2,0,1,2,3,4-2.设集合(){}0.5log 10A x x =->,{}24xB x =<,则( )A .A =B B .A B ⊇C .A B B =D .A B B ⋃= 3.若集合{|ln(2)1}A x Z x =∈-≤,则集合A 的子集个数为( )A .3B .4C .7D .84.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(, C .{}0x x ≤D .{}32x x -≤<-5.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-6.已知集合{}|21xA x =>,{}22B xy x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞7.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥B .{}1a a ≤-C .{}3a a >D .{}1a a <-8.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,510.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3 D .{}1,211.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3} 12.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-13.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--14.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,215.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( )A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3-二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.18.集合{}33A x Z x =∈-<<的子集个数为______. 19.若{}31,2a ∈,则实数=a ____________.20.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.21.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?28.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围.29.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .30.已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】明确图中阴影部分表示的是() UM N ⋃,根据集合的运算求得答案.【详解】 由题意得:{}0,2,4,6UN =,故图中阴影部分表示的集合为(){} U0,2,3,4,5,6M N ⋃=,故选:C . 2.D 【解析】 【分析】化简集合,A B ,再判断各选项的对错. 【详解】因为0.5{|log (1)0}{|12}A x x x x =->=<<,{}24={|2}xB x x x =<<,所以A B ⊆且A B ≠,所以A 错,B 错,{|12}A B x x A =<<=,C 错, {|2}A B x x B =<=,D 对, 故选:D. 3.B 【解析】【分析】根据对数的运算性质,求得集合{3,4}A =,进而求得集合A 的子集个数,得到答案. 【详解】由ln(2)1x -≤,可得202x x e ->⎧⎨-≤⎩,解得22x e <≤+,所以集合{|22}{3,4}A x Z x e =∈<≤+=,所以集合A 的子集个数为224=. 故选:B. 4.D 【解析】 【分析】根据韦恩图,写出相应集合即可 【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是UA ,所以{}32UA x x =-≤<-;故选:D 5.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 6.B 【解析】 【分析】先求出集合A ,B ,再根据交集定义即可求出. 【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =. 故选:B. 7.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B8.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 9.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.A 【解析】 【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进行求解. 【详解】因为集合A={-8,1},B={-8,-5,0,1,3}, Venn 图中阴影部分表示的集合为∁BA={-5,0,3}. 故选:A. 12.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 13.A 【解析】 【分析】利用并集和补集的定义可求得结果. 【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A. 14.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<. 故选:D. 15.A 【解析】 【分析】根据交集运算求A B 【详解】{|13}A x x =-<<,1,{}1,2B =-, {1,2}AB ∴=,故选:A二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}1 17.-2 【解析】 【分析】由二次不等式和一次不等式的解法,求出集合A ,B ,再由交集的定义,可得a 的方程,解方程可得a . 【详解】集合2{|40}{|22}A x x x x =-=-,{|20}{|}2B x x a x x a =+=-, 由{|21}A B x x ⋂=-,可得12a-=,则2a =-. 故答案为:-2. 18.32 【解析】 【分析】由n 个元素组成的集合,集合的子集个数为2n 个. 【详解】解:由题意得{}2,1,0,1,2A =--,则A 的子集个数为5232=. 故答案为:32. 19.5##32【解析】 【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果. 【详解】 因为{}31,2a ∈, 所以23a =,解得32a =. 故答案为:32.20.11023-、、 【解析】 【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 21.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭22.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.23.2a ≥【解析】 【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解. 【详解】 由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立; 当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥ ∴实数a 的取值范围是2a ≥. 故答案为:2a ≥. 24.3 【解析】 【分析】根据题意21a a -+7=,结合7A =,即可求得a . 【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意. 故答案为:3. 25.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:4三、解答题26.[]0,3. 【解析】 【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出SP ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P ,∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.103;23.【解析】【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少.【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.28.(1)[3,0]-(2)][(),62,∞∞--⋃+【解析】【分析】(1)根据()y f x =在区间[]1,0-上的单调性,结合零点存在性定理可得;(2)将问题转化为两个函数值域的包含关系问题,然后可解.(1)()y f x =的图象开口向上,对称轴为1x =,所以函数()f x 在[]1,0-上单调递减.因为函数()y f x =在区间[]1,0-上存在零点,所以(1)30(0)0f a f a -=+≥⎧⎨=≤⎩,解得30a -≤≤,即实数a 的取值范围为[3,0]-.(2)记函数()22f x x x a =-+,[1,3]x ∈-的值域为集合A ,()5g x ax a =+-,[1,3]x ∈-的值域为集合B .则对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立⇔A B ⊆. 因为()y f x =的图象开口向上,对称轴为1x =,所以当[1,3]x ∈-,min max ()(1)1,()(3)3f x f a f x f a ==-==+,得{|13}A y a y a =-≤≤+.当0a =时,()g x 的值域为{5},显然不满足题意;当0a >时,()g x 的值域为{|5252}B y a y a =-≤≤+,因为A B ⊆,所以521523a a a a -≤-⎧⎨+≥+⎩,解得2a ≥;当0a <时,()g x 的值域为{|5252}B y a y a =+≤≤-,因为A B ⊆,所以521523a a a a +≤-⎧⎨-≥+⎩,解得6a ≤-.综上,实数a 的取值范围为][(),62,∞∞--⋃+29.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.30.(1)1(,][3,)2-∞-⋃+∞; (2)(,2]-∞-.【解析】【分析】(1)求对数复合函数定义域、解一元二次不等式求出集合A 和B ,利用集合的并补运算求()A B R .(2)解含参一元二次不等式求集合B ,根据充分条件有A ⊆B ,列不等式求m 的范围即可.(1)由题设40210x x ->⎧⎨+>⎩得:142x -<<,即函数的定义域A =1(,4)2-,则R 1(,][4,)2A =-∞-⋃+∞, 当m =2时,不等式(4)(3)0x x --≤得:34x ≤≤,即B =[3,4],所以()A B R =1(,][3,)2-∞-⋃+∞. (2)由2()(21)0x m x m --+=得: x =m 2或x =21m -,又2221(1)0m m m -+=-≥,即221m m ≥-,综上,2()(21)0x m x m --+≤的解集为B =2[21,]m m -,若x∈A是x∈B的充分条件,则A⊆B,即241212mm⎧≥⎪⎨-≤-⎪⎩,得:2m≤-,所以实数m的取值范围是(,2]-∞-.。
高中数学集合习题及详解一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.已知集合{}2M x Z x =∈≤,()(){}1230N x x x =+->,则R M N ⋂=( ) A .{}1,0-B .{}1,0,1-C .{}0,1,2D .{}2,1,2--3.集合{}240xA x =->,{}lg 10B x x =-<,则A B =( )A .()2,eB .()e,10C .()2,10D .()0,104.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则MN =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞5.设集合{}13A x x =-<<,集合{}32B x x =-≤≤,则A B =( ) A .{0,1,2} B .{1,2} C .{}33x x -≤<D .{}12x x -<≤6.已知集合{}24A x x =≤,{}1B y y =≥-,则A B =( )A .∅B .[]1,2-C .[)2,-+∞D .[)1,2-7.已知集合{}21A x x =<,{}02B x x =<<,则A B =( )A .1,2B .0,1C .()0,2D .1,28.设集合{}220A x x x =--≤,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-9.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x >10.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+11.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-12.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( ) A .2B .3C .4D .513.设集合{}10A x x =-<,{}16B x x =-<<,则A B ⋃=( ) A .(),6-∞ B .()6,1-C .()1,1-D .(),1-∞14.从集合{1,2,3}U =的非空子集中随机选择两个不同的集合A ,B ,则{1}A B ⋂=的概率为( ) A .421B .542C .17D .55615.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( ) A .1B .2C .3D .4二、填空题16.已知{}12A x x =-≤<,{}1B x x =<则A B =_________ 17.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ; (3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 18.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________.19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.21.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________. 22.写出集合{1,1}-的所有子集______.23.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知集合{}21,3,A a =,()(){}|120B x x x a =---=,是否存在实数a ,使得A B A ⋃=若存在,求出a 的值;若不存在,说明理由.27.设全集为R ,集合{}|37A x x =≤<,{(2)(10)0}B xx x =--<∣. (1)求A B ; (2)求()A B ⋃R.28.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+.(1)若2a =,求()RA B ⋃;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.29.设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈. (1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围; (2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.30.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 2.B 【解析】 【分析】首先解一元二次不等式与绝对值不等式求出集合M 、N ,再根据补集、交集的定义计算可得; 【详解】解:由2x ≤,解得22x -≤≤,即{}{}{}2222,1,0,1,2M x Z x x Z x =∈≤=∈-≤≤=--, 由()()1230x x +->,解得32x >或1x <-,所以()(){}()31230,1,2N x x x ∞∞⎛⎫=+->=--⋃+ ⎪⎝⎭,所以R 31,2N ⎡⎤=-⎢⎥⎣⎦,所以{}R 1,0,1M N ⋂=-;故选:B 3.C 【解析】 【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得; 【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402xA x x x =->=;由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<< 故选:C 4.D 【解析】 【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得. 【详解】因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥-易知N =R ,所以1{|}4M y N y ≥=-,即1[,)4-+∞故选:D 5.D 【解析】 【分析】对两个集合直接求交集即可. 【详解】集合{}13A x x =-<<,集合{}32B x x =-≤≤, 则A B ={}12x x -<≤, 故选:D 6.B 【解析】 【分析】求出集合A ,利用交集的定义可求得集合A B . 【详解】因为{}{}2422A x x x x =≤=-≤≤,所以[]1,2A B ⋂=-.故选:B. 7.B 【解析】 【分析】解一元二次不等号求集合A ,再由集合的交运算求A B . 【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<< 所以{|01}A B x x =<<. 故选:B 8.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>-即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B9.B 【解析】 【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可. 【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}M N x x =<<.故选:B. 10.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 11.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-. 故选:D 12.D 【解析】 【分析】根据集合的交运算结果,即可求得参数值. 【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.13.A 【解析】 【分析】解不等式10x -<,可化简集合{}1A x x =<,最后求A B 即可. 【详解】由101x x -<⇒<,所以{}1A x x =<, 所以(),6A B ⋃=-∞, 故选:A 14.A 【解析】 【分析】写出集合{1,2,3}U =的非空子集,求出总选法,再根据{1}A B ⋂=,列举出集合,A B 的所有情况,再根据古典概型公式即可得解. 【详解】解:集合{1,2,3}U =的非空子集有{}{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,1,2,3共7个,从7个中选两个不同的集合A ,B ,共有2742A =种选法,因为{1}A B ⋂=,当{}1A =时,则B 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2A =时,{}1,3B =共1种,同理当{}1B =时,则A 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2B =时,{}1,3A =共1种, 则符合{1}A B ⋂=的共有31318+++=种, 所以{1}A B ⋂=的概率为844221=. 故选:A. 15.B 【解析】 【分析】根据元素与集合的关系、集合与集合的关系即可判断. 【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个.二、填空题16.[)1,1-【解析】 【分析】利用交集的运算解题即可. 【详解】交集即为共同的部分,即{}|11A B x x ⋂=-≤<. 故答案为:[)1,1- 17. ⊆ = ⊇ ⊆ 【解析】 【分析】根据集合子集的定义及集合相等的概念求解. 【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆18.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<, 所以{}{}{}1212x x x x x x A B ><=<<=.故答案为:{}12x x <<.19.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃20.{}0y y >##()0,∞+ 【解析】 【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解.解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭,所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>, 故答案为:{}0y y >.21.{}34x x ≤<【解析】 【分析】求出{}24A x x =<<与{}3B x x =≥,进而求出A B . 【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤<故答案为:{}34x x ≤< 22.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.23.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =. 故答案为:{1,2,3,4,6,8}.24.13,2⎡⎫--⎪⎢⎣⎭【解析】 【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围. 【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-.故答案为:[3-,1)2-.25.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.存在,2 【解析】 【分析】先得到B A ⊆,分别讨论1a =-和1a ≠-两种情况即可. 【详解】由A B A ⋃=,得B A ⊆,当21a +=,即1a =-时,{1}B =,此时21a =不合题意,故1a ≠- 当1a ≠-时,{}1,2B a =+,因为B A ⊆,所以2a A +∈ 所以23a +=或22a a +=,解得1a =或2a =, 当1a =时,21a =不合题意;当2a =时,{}1,3,4A =,{}1,4B =,符合题意, 综上所述,存在实数2a =,使得A B A ⋃=成立. 27.(1){37}x x ≤<; (2){2x x ≤或10}x ≥. 【解析】 【分析】(1)根据给定条件利用交集的定义直接计算即可作答.(2)利用并集的定义求出A B ,再借助补集的定义直接求解作答.(1)因为{}|37A x x =≤<,{}{(2)(10)0}|210B x x x x x =--<=<<, 所以{|37}A B x x =≤<.(2)因为{}|37A x x =≤<,{}|210B x x =<<,则{|210}A B x x ⋃=<<,而全集为R ,所以(){|2A B x x ⋃=≤R 或10}x ≥.28.(1){1x x ≤-或}4x ≥(2)01a <≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<, 因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.29.(1)1,22⎡⎫⎪⎢⎣⎭(2)[)2,+∞【解析】【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可, (2)由题意R BA ≠∅,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合,故有122125a a +⎧⎨+<⎩,解得122a <, 所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭, (2) 解:因为{}15A x x =≤<,所以{|1R A x x =<或5}x ,因为命题“x B ∃∈,x A ∈R ”是真命题,所以R B A ≠∅,即125a +,解得2a . 所以a 的取值范围[)2,+∞.30.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+. 因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.。
概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。
第一章绪论复习思考题1.从统计工作的产生和发展说明统计工作的性质和作用。
2.试说明统计工作与统计学的关系。
3.我国统计工作的基本任务是什么?4.试述统计学的研究对象和性质。
5.解释并举例说明下列概念:统计总体、总体单位、标志、统计指标、变异、变量。
6.试说明标志与指标的区别和联系。
练习题一、填空题:1.统计总体的特征可概括成、和。
2.统计学的发展史有三个起源,即技术学派、及数理统计学派。
3.统计研究的基本方法有、统计分组法和三种方法。
4.在现实生活中,“统计”一词有三种涵义,即、及统计学。
5.统计的作用主要体现在它的三大职能上,即信息职能、及。
6.从认识的特殊意义上看,一个完整的统计过程,一般可分为四个阶段,即、统计调查、及。
7. 当某一标志的具体表现在各个总体单位上都相同时,则为。
8. 当某一标志的具体表现在各个总体单位上不尽相同时,则为。
9. 同一变量往往有许多变量值,变量按变量值是否连续可分为和。
10. 凡是客观存在的,并在某一相同性质基础上结合起来的许多个别事物组成的整体,我们称之为。
二、单项选择题:1. 要了解某市工业企业的技术装备情况,则统计总体是()。
A、该市全部工业企业B、该市每一个工业企业C、该市全部工业企业的某类设备D、该市工业企业的全部设备2. 对交院学生学习成绩进行调查,则总体单位是()。
A、交院所有的学生B、交院每一位学生C、交院所有的学生成绩D、交院每一位学生成绩3. 对全国城市职工家庭生活进行调查,则总体单位是()。
A、所有的全国城市职工家庭B、所有的全国城市职工家庭生活C、每一户城市职工家庭D、每一户城市职工家庭生活4. 对全国机械工业企业的设备进行调查,则统计总体是()。
A、全国所有的机械工业企业B、全国所有的机械工业企业的设备C、全国每一个机械工业企业E、全国每一个机械工业企业的设备5. 对食品部门零售物价进行调查,则总体单位是()。
A、所有的食品部门零售物B、每一个食品部门零售物C、所有的食品部门零售物价D、每一个食品部门零售物价6. 港口货运情况调查,则统计总体是()。
人教版高中数学必修第二册9.2.2总体百分位数的估计同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.1至10排列的10个整数中,第60百分位数是()A.5B.5.5C.6D.6.52.给出一组数据:8,8,7,6,5,4,其40%分位数是()A.8B.7C.6D.53.已知按从小到大的顺序排列的一组数据:3,6,a,b,12,若其60%分位数为8,则下列情况可能的是()A.a=7,b=9B.a=7,b=10C.a=8,b=9D.a=8,b=104.2至20排列的10个偶数中,下四分位数是()A.6B.6.5C.7D.7.55.如图L9-2-22是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,由图可知这10天的最低气温的第80百分位数是()图L9-2-22A.-2℃B.0℃C.1℃D.2℃6.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取10位北京市民,他们的幸福感指数为3,4,5,5,6,7,7,8,9,10.则这组数据的75%分位数是()A.7B.7.5C.8D.8.57.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,第50百分位数为b,则有()A.a=13.7,b=15.5B.a=14,b=15C.a=12,b=15.5D.a=14.7,b=158.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花的纤维长度(棉花的纤维长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图L9-2-23所示.估计棉花的纤维长度的样本数据的80%分位数是()图L9-2-23A.28mmB.28.5mmC.29mmD.29.5mm二、填空题(本大题共4小题,每小题5分,共20分)9.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是.10.某组数据的中位数是2019,那么它的第50百分位数是.11.一组样本数据的频率分布直方图如图L9-2-24所示,试估计此样本数据的第50百分位数为.图L9-2-2412.已知30个数据的第60百分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是.三、解答题(本大题共2小题,共20分)13.(10分)某网络营销部门随机抽查了某市200名网友在2019年11月11日的网购金额,所得数据如下表:网购金额(单位:千元)人数频率(0,1]160.08(1,2]240.12(2,3]x p(3,4]y q(4,5]160.08(5,6]140.07合计2001.00已知网购金额不超过3千元与超过3千元的人数比恰为3∶2.(1)试确定x,y,p,q的值,并补全频率分布直方图(如图L9-2-25).(2)估计网购金额的25%分位数(结果保留3位有效数字).图L9-2-2514.(10分)为了了解居民的用电情况,某市供电局抽查了该市若干户居民的月均用电量(单位:kW·h),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图L9-2-26所示.(1)若样本中月均用电量在[240,260)内的居民有30户,求样本量;(2)求样本中月均用电量的中位数;(3)在月均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用比例分配的分层随机抽样的方法抽取22户居民,则月均用电量在[260,280)内的居民应抽取多少户?图L9-2-2615.(5分)某班有n名学生,他们都参加了某次高三复习检测考试,第i个学生的某科成绩记为X i(i=1,2,3,…,n),设P i=该科成绩不超过X i的该班人数÷n,定义P i为第i个学生的该科成绩的百分位.现对该班的甲、乙两名同学的该次检测成绩作对比分析,若甲、乙两名同学的各科成绩的百分位如图L9-2-27所示,则以下分析不正确的是()图L9-2-27A.甲同学的语文、数学、英语、综合的总分高于乙同学B.甲同学的语文、数学、英语成绩都好于乙同学C.甲同学的各科成绩都居该班上游(百分位大于66%)D.乙同学的语文分数不一定比数学分数高16.(15分)某大学艺术专业400名学生参加某次测评,根据男、女学生的人数比例,使用分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如图L9-2-28所示的频率分布直方图:(1)估计400名学生中分数小于70的人数;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)根据该大学规定,把15%的学生划定为不及格,利用(2)中的数据,确定本次测试的及格分数线.图L9-2-28参考答案与解析1.D[解析]由i=n×p%=10×60%=6,可知第60百分位数为6+72=6.5.故选D.2.C[解析]将这6个数从小到大重新排列:4,5,6,7,8,8.i=6×40%=2.4,所以其40%分位数是第3个数,即6.3.A[解析]i=5×60%=3,所以60%分位数为第3项和第4项的数据的平均数,即 + 2=8,所以a+b=16.故选A.4.A[解析]由i=n×p%=10×25%=2.5,可知下四分位数为第3项数据,即6.故选A.5.D[解析]由折线图可知,这10天的最低气温(℃)按照从小到大排列为:-3,-2,-1,-1,0,0,1,2,2,2,因为共有10个数据,所以10×80%=8,是整数,则这10天的最低气温的第80百分位数是2+22=2(℃).6.C[解析]由题意,这10个人的幸福感指数已经从小到大排列,因为75%×10=7.5,所以这组数据的75%分位数是第8个数据,即8.故选C.7.D[解析]把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a=110×(10+12+14+14+15+15+16+17+17+17)=14.7,第50百分位数为b=15+152=15.8.C[解析]棉花的纤维长度在25mm以下的频率为(0.01+0.01+0.04+0.06)×5=0.6=60%,在30mm以下的频率为60%+25%=85%,因此,80%分位数一定位于[25,30)内,由25+5×0.80−0.600.85−0.60=29,可以估计棉花的纤维长度的样本数据的80%分位数是29mm.9.8.4[解析]因为8×30%=2.4,故第30百分位数是第三项数据8.4.10.2019[解析]某组数据的中位数是2019,第50百分位数就相当于中位数,故它的第50百分位数是2019.11.1009[解析]样本数据小于10的比例为(0.02+0.08)×4=0.40,样本数据小于14的比例为0.40+0.09×4=0.76,所以此样本数据的第50百分位数在[10,14)内,估计此样本数据的第50百分位数为10+0.10.36×4=1009.12.8.6[解析]30×60%=18,设第19个数据为x,则7.8+ 2=8.2,解得x=8.6,即第19个数据是8.6.13.解:(1+ + +16+14=200,=32,解得 =80, =50,所以p=0.4,q=0.25.补全频率分布直方图如图所示.(2)由(1)可知,网购金额不高于2千元的频率为0.08+0.12=0.2,网购金额不高于3千元的频率为0.2+0.4=0.6,所以网购金额的25%分位数在(2,3]内,故网购金额的25%分位数约为2+0.25−0.20.6−0.2×1=2.125(千元).14.解:(1)由题知(0.0020+0.0095+0.0110+0.0125+x+0.0050+0.0025)×20=1,解得x=0.0075.∴月均用电量在[240,260)内的频率为0.0075×20=0.15.设样本量为N,则0.15N=30,解得N=200.(2)∵(0.0020+0.0095+0.0110)×20=0.45<0.5,0.0125×20=0.25,∴月均用电量的中位数在[220,240)内.设中位数为a kW·h,则0.45+0.0125×(a-220)=0.5,解得a=224,即中位数为224kW·h.(3)月均用电量为[220,240),[240,260),[260,280),[280,300]的频率分别为0.25,0.15,0.1,0.05.∴应从月均用电量在[260,280)内的居民中抽取22×0.10.25+0.15+0.1+0.05=4(户).15.A[解析]由甲、乙两名同学的各科成绩的百分位图可知,在A中,甲同学的语文、数学、英语三科得分高于乙同学,综合得分低于乙同学,∴甲同学的语文、数学、英语、综合的总分不一定高于乙同学,故A错误;在B中,甲同学的语文、数学、英语成绩都好于乙同学,故B 正确;在C中,甲同学的各科成绩百分位均超过66%,∴甲同学的各科成绩都居该班的上游,故C正确;在D中,乙同学的语文分数不一定比数学分数高,故D正确.故选A.16.解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以400名学生中分数小于70的人数为400×0.4=160.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数约为400×5100=20.(3)设样本中分数的第15百分位数为x,由(2)可知,分数小于50的频率为5+5100=0.1,分数小于60的频率为0.1+0.1=0.2,所以x∈[50,60),则0.1+(x-50)×0.01=0.15,解得x=55,所以本次考试的及格分数线为55.。
高中数学集合习题附详解一、单选题1.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( ) A .M P =B .M P ⊆C .P M ⊆D .M P ⋂=∅2.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,33.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-4.已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .55.集合{}13A x x =-<<,集合{}2B x x =<,则A B =( ) A .()2,2-B .()1,3-C .()2,3-D .()1,2-6.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-17.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤8.集合{}2{}|5,8,3100x x A B x =--≤=,则A B ⋂=R( )A .{}5B .{}8C .{}2,5,8-D .{}5-9.下列关系中正确的是( )A .{}0=∅B .{}0∅⊆C .{}(){}0,10,1⊆D .(){}(){},,a b b a =10.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( )A .4B .5C .6D .711.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1-B .{}2,1-C .{}1,2D .{}1,1,2-12.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >- D .{}28x x <≤13.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--14.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( )A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤ 15.下面给出的四类对象中,构成集合的是( )A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______ 18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________. 21.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则A B =______.22.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.23.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.三、解答题26.已知函数()23f x x x =+-A ,函数2()1g x x =+在[1,2]-的值域为B .(1)求A B ,A B ;(2)若{}|9C x m x m =<<+且()R C A ⊆,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.29.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ; (2)若______,求实数a 的取值范围.30.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】用列举法表示集合M 、P ,即可判断两集合的关系; 【详解】解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭,所以P M ⊆, 故选:C 2.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 3.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 4.C 【解析】 【分析】由列举法列出集合B 的所有元素,即可判断; 【详解】解:因为{}0,1,2A =,a A b A ∈∈,,所以0ab =或1ab =或2ab =或4ab =, 故{}{},0,1,2,4B ab a A b A =∈∈=,即集合B 中含有4个元素; 故选:C5.D 【解析】 【分析】解不等式可求得集合B ,由交集定义可得结果. 【详解】{}{}222B x x x x =<=-<<,{}()121,2A B x x ∴⋂=-<<=-.故选:D. 6.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 7.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 8.B 【解析】 【分析】先求出集合B ,进而求出集合B 的补集,根据集合的交集运算,即可求出A B ⋂R.【详解】因为{}()(){}{}2310052025x x x x x B x x x ===--≤-+≤-≤≤,所以{5B x x =>R 或}2x <-, 所以{}8A B =R故选:B. 9.B 【解析】 【分析】明确∅和{}0的含义,可判断A,B;说明{}0,1是数集,而(){}0,1是点集,判断C; 当在ab 时(){}(){},,a b b a =不成立,判断D;【详解】对于A, {}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误; 对于B ,空集为任何一个集合的子集,故{}0∅⊆正确;对于C ,{}0,1 的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误; 对于D, (,),(,)a b b a 当a b 表示不同的点,故(){}(){},,,a b b a 在ab 时不相等,故错误,故选:B 10.A 【解析】 【分析】求出集合B ,再根据并集的定义即可求出答案. 【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=,所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4. 故选:A. 11.B 【解析】 【分析】根据交集性质求解即可. 【详解】因为{}1A B ⋂=,所以1B ∈, 所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.故选:B 12.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 13.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B. 14.B 【解析】 【分析】先求出集合A 的解集,然后进行交集运算即可. 【详解】因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤. 故选:B. 15.D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.-18.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-19.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃20.[2,+∞) 【解析】 【分析】根据A B ⊆结合数轴即可求解. 【详解】∵{}22A x x =-≤≤≠∅,A B ⊆, ∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案. 【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.22.0a ≤【解析】 【分析】根据并集的运算结果列出不等式,即可得解. 【详解】解:因为A B R =, 所以0a ≤. 故答案为:0a ≤.23.9[1,]8【解析】 【分析】由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]824.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =, 或523a a =⎧⎨+=⎩,无解 所以3a =.故答案为:3.25.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.三、解答题26.(1)[][]1,3,2,5A B A B ⋂=⋃=-(2)11m ≤-或3m ≥.【解析】【分析】(1)根据函数的定义域求得集合A ,根据函数的值域求得集合B ,由此求得A B ,A B ;(2)先求得R A ,然后根据()R C A ⊆列不等式从而求得m 的取值范围. (1) []20232,330x x A x +≥⎧⇒-≤≤⇒=-⎨-≥⎩, 2()1g x x =+开口向上,对称轴为y 轴,所以最大值为()25g =,最小值为()01g =, 所以[]1,5B =,所以[][]1,3,2,5A B A B ⋂=⋃=-.(2)由(1)得()()R ,23,A =-∞-⋃+∞,由于()R C A ⊆,所以92m +≤-或3m ≥,解得11m ≤-或3m ≥.27.(1)1{|03A B x x ⋂=-<≤或1}x =; (2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解;(2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2,所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210;所以10a -=,即1a =∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 29.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤, 所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤, 所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.30.(1)[)2,A =+∞(2)(],2a ∈-∞【解析】【分析】(1)根据对数函数的单调解不等式即可; (2)先求()R ,2A =-∞,再分类讨论并满足R B A ⊆可得答案. (1) ()()2222222log log 2log log 220x x x x x x ≥⇒≥⇒≥> 解得2x ≥,故[)2,A =+∞(2)由(1)()R ,2A =-∞当1a =时,B =∅,满足题意; 当1a >时,()1,B a =,只需2a ≤; 当1a <时,(),1B a =,满足题意. 综上所述,(],2a ∈-∞.。
§估计基本题型Ⅰ 矩估计法【例7.1】总体X 的概率密度函数为1,01(;)00,x x f x θθθθ-⎧<<=>⎨⎩()其他,求未知参数θ的 矩估计.【分析】先由题设所给含有未知参数θ的随机变量概率密度求出数学期望,解出未知参数θ与数学期望的关系,再由样本一阶原点矩替换总体期望,即得参数θ的矩估计. 【解】为求未知参数θ用总体原点矩表示的式子,先求出EX 110(;)1EX xf x dx x x dx θθθθθ+∞--∞==⋅=+⎰⎰因而 [1]EX EX θ=-在上式中用样本一阶原点矩替换总体一阶原点矩,即得未知参数θ的估计ˆ(1)X X θ=-. 【例7.2】设总体X 服从均匀分布[,]U a b ,12(,,)n X X X L 为来自此总体的样本,求,a b的矩估计.【分析】由于总体的分布中含有两个未知参数,a b ,故需要求出总体的两个矩,为简单起见,一般先求其一阶矩(即总体的期望)和二阶矩(也可以取总体的方差),然后按矩估计法相应的样本矩替换它们,得矩法方程,最后求解便可得到,a b 的矩估计. 【解】由于总体X 服从均匀分布[,]U a b ,故总体的期望和方差分别为12();212a b b a EX DX +-== 由矩估计法,用X 替换EX ,用2S 替换2σ,便得矩法方程组1222()12a bX b a S +⎧=⎪⎪⎨-⎪=⎪⎩,即22a b Xa b ⎧+=⎪⎨-+=⎪⎩ 于是解出,a b 的矩估计分别为ˆaX =,ˆb X =+. 【例7.3】设总体X 的概率密度函数为||1(;),(0,)2x f x e x θθθθ-=>-∞<<+∞,求θ的矩估计.【分析】由于总体的分布中只含有一个未知参数θ,但总体的一阶矩为常量,需要求总体的二阶矩,从而确定矩方程,最后求解θ的矩估计量. 【解】虽然总体X 只含有一个参数,但 ||102x EX x e dx θθ-+∞-∞=⋅=⎰不含θ,不能求解θ 故需求二阶原点矩||2212x EX x e dx θθ-+∞-∞=⋅⎰222021()()22x xx x x e dx e d θθθθθθθ--+∞+∞=⋅=⎰⎰22(3)2θθ=Γ=.令2211n i i X EX n ==∑,则有θ的矩估计量为ˆθ=基本题型Ⅱ 极大似然估计法【例7.4】设总体X 具有概率密度函数1,01(;)00,x x f x θθθθ-⎧<<=>⎨⎩()其他,θ的极大似然估计量是 .【分析】设12,,n x x x L 为总体X 的观测值,则其极大似然函数为11()()n n L x x θθθ-=L ,对数似然函数为1ln ()ln (1)ln ni i L n x θθθ==+-∑,解似然方程1ln ()ln 0ni i d L n x d θθθ==+=∑ 得参数θ的极大似然估计值为1ˆln nii nxθ==-∑,从而得参数θ的极大似然估计量为1ˆln nii nXθ==-∑.【例7.5】设总体X 的分布律为X 1a 2a 3a P2θ2(1)θθ-2(1)θ-又设12,,n X X X L 为来自此总体的样本,记j n 表示12,,n X X X L 中取值为,1,2,3j a j =,的个数,求θ的极大似然估计.【分析】求极大似然估计量时,关键是求似然函数,它是样本观测值的函数. 【解】设12,,n x x x L 是样本12,,n X X X L 的观测值,则参数θ的似然函数为 1()(;)nii L P x θθ==∏312123[()][()][()]n n n P x a P x a P x a ====323122122222[2(1)](1)2(1)n n n n n n n n θθθθθθ++=--=-对数似然函数为21223ln ()ln 2(2)ln (2)ln(1)L n n n n n θθθ=++++- 从而似然方程为231222ln ()01n n n n d L d θθθθ++=-=-. 得θ的极大似然估计量122ˆ2n n nθ+=. 【例7.6】设12,,n X X X L 为总体的一个样本,求下列总体概率密度中的未知参数的极大似然估计()1,(;)0,x u ex u f x θθθ--⎧≥⎪=⎨⎪⎩其他,其中0θ>,,u θ为常数.【解】设12,,n x x x L 是样本12,,n X X X L 的观测值,则参数θ的似然函数为1(())1,(,)0,ni i x u i n e x u L u θθθ=--⎧∑⎪≥=⎨⎪⎩其他. 取对数 1ln (,)ln ()nii L u n x u θθθ==---∑.对参数,u θ求偏导,令其为0,则21ln (,)()0ln (,)0n i i L u n x u L u n u θθθθθθ=∂⎧=-+-=⎪⎪∂⎨∂⎪==⎪∂⎩∑110n i i u x x n n θθ=⎧+==⎪⎪⇒⎨⎪=⎪⎩∑. 显然,上式第二式不能求出参数,u θ的关系,但由定义,当θ固定时,要使(,)L u θ最大,只需u 最大,因12,,n u x x x ≤L ,则参数u 的似然估计值为(1)ˆux =,从而得参数θ的极大似然值为(1)ˆx x θ=-,故,u θ的极大似然估计量为(1)ˆu X =,(1)ˆX X θ=-.基本题型Ⅲ 评价估计量的标准(无偏性与有效性)【例7.7】 样本12,,n X X X L 取自总体X ,2,EX u DX σ==,则可以作为2σ的无偏估计的是 【 】()A 当u 已知时,统计量21()ni i X u n =-∑. ()B 当u 已知时,统计量21()(1)ni i X u n =--∑.()C 当u 未知时,统计量21()ni i X u n =-∑. ()D 当u 未知时,统计量21()(1)ni i X u n =--∑.【分析】当u 已知时,21()nii Xu n =-∑为统计量,利用定义有22()i i DX E X u DX σ=-==.从而 222111[()]()nn nii i i i i E Xu E X u DX n σ===-=-==∑∑∑,故 222211[()][()]nnii i i E Xu n E X u n n n σσ==-=-==∑∑.而 222211[()(1)][()](1)1)nnii i i E Xu n E X u n n n σσ==--=--=-≠∑∑所以当u 已知时,()A 入选,()B 不能入选. 当u 未知时,样本函数21()ni i Xu n =-∑,21()(1)ni i X u n =--∑均不是统计量,因而不能作为2σ的估计量,更不能作为无偏估计量. 选()A .【例7.8】设12,,n X X X L 是总体X 的简单随机样本,则下列不是总体期望u 的无偏估计 【 】()A 11ni i X n =å. ()B 120.20.50.3n X X X ++.()C 12X X + . ()D 123X X X -+. 【分析】要验证统计量是否为无偏估计,即验证ˆE θθ=. 1111[]n n i i i i E X EX u n n====邋;1212[0.20.50.3]0.20.50.30.20.50.3n n E X X X EX EX EX u u u u ++=++=++=; 1212[]2E X X EX EX u u +=+=?;123123[]E X X X EX EX EX u u u u -+=-+=-+=;选()C .【例7.9】试证明均匀分布1,0(;)0,x f x θθθ⎧<≤⎪=⎨⎪⎩其他中未知参数θ的极大似然估计量不是无偏的.【分析】 涉及总体分布时,先求估计量的概率密度(或分布律). 【解】设12,,n x x x L 是样本12,,n X X X L 的观测值,则参数θ似然函数为1(),0,1,i nL x i n θθθ=<≤=L .是θ的一个单值递减函数.由于每一个i x θ≤,最大次序统计量的观测值()1max n i i nx x θ≤≤=≤ 在0,1,,i x i n θ<≤=L 中要使1()nL θθ=达到极大,就要使θ达到最小.但θ不能小于()n x ,否则样本观测值12,,n x x x L 就不是来自这一总母体,所以()ˆn x θ=是θ的极大似然估计值.故最大次序统计量()ˆn X θ=是参数θ的极大似然估计量. 为要证明估计量()ˆn X θ=不是θ的无偏估计量,需求出()[]n E X ,为此先求()n X 的概率密度.因统计量()ˆn X θ=为随机样本12,,n X X X L 的最大值,而12,,n X X X L 独立同分布,故()n X 的概率分布函数为()ˆ()()[()]n n X F x F x F x θ==,其中()F x 为总体X 的分布函数. 由X 的概率密度可知0,0(),01,xF x x x x θθθ≤⎧⎪=<≤⎨⎪>⎩.因此()111ˆˆ,0()()[()]{[()]}()()0,n n n n n X nx x f x f x F x F x nFx f x 其他θθθθ---⎧<≤''====⋅=⎨⎩从而 1ˆ()1n nnx n E xf x dx dx n θθθθθ-+∞-∞===≠+⎰⎰. 即极大似然估计量ˆθ不为参数θ的无偏估计.【例7.10】若未知参数θ的估计量是$θ,若θθ=)ˆ(E 称$θ是θ的无偏估计量.设$$12,θθ是未知参数θ的两个无偏估计量,若)ˆ()ˆ(21θθD D <则称$1θ较$2θ有效.【分析】由无偏估计量和有效性的定义可得.【评注】估计量的有效性是在无偏估计类的基础上定义的,这一点也特别明确. 【例7.11】设总体2(,2)X N u :,123,,X X X 为总体的一个样本,试证明11231ˆ(2)4uX X X =++和21231ˆ()3u X X X =++均为总体期望的无偏估计,并比较哪一个更有效.【证明】由于112311ˆ()(2)(4)44E uEX EX EX EX u =++== 21231ˆ()()3E uEX EX EX u =++= 故统计量12ˆˆ,uu 均为期望u 的无偏估计,又 2211231333ˆ()(4)216882D uDX DX DX σ=++==⨯=. 2221231314ˆ()()29933D uDX DX DX σ=++==⨯=. 由于12ˆˆ()()D uD u >,故2ˆu 是比1ˆu 更有效的估计量. 【例7.12】从总体X 中抽取样本12,,n X X X L ,设12,,n C C C L 为常数,且11nii C==∑,证明:(1)1ˆni ii uC X==∑为总体均值u 的无偏估计;(2)在所有这些无偏估计量1ˆni i i uC X ==∑中,样本均值11ni i X X n ==∑的方差最小. 【分析】注意到样本12,,n X X X L 相互独立,且与总体X 同分布,易得ˆu的无偏性及其方差ˆ()D u,利用拉格朗日乘数法则,不难证明,当ˆu X =时方差最小. 【证明】因为样本,(1,,)i X i n =L 与总体X 服从相同分布,故 ,1,2,,i EX EX u i n ===L又11nii C==∑,则11ˆ()()n ni i i i i i EuE C X C EX u =====∑∑ 从而1ˆni ii uC X==∑为总体均值u 的无偏估计.设总体方差2DX σ=,则2,1,2,i DX DX i n σ===L .又样本12,,n X X X L 相互独立,故222111ˆ()()n nniiii i i i i DuD C X CDX C σ======∑∑∑为确定u 的无偏估计量ˆu的方差ˆ()D u 在什么情况下最小,应当求ˆ()D u 满足条件11nii C==∑的条件极值.为此考虑函数 22111(,)()(1)nnn ii i i G C C CC σλ===+-∑∑L ,其中λ为常数.求偏导数(1,2,)iGi n C ∂=∂L ,并令它们等于零,得 220,1,2,i C i n σλ+==L (*)即 2,1,2,2i C i n λσ=-=L .代入11ni i C ==∑,得212n λσ-=,即22n σλ-= 代入方程(*)中,即得1,1,2,i C i n n==L 由此可知,当11ˆni i uX X n ===∑时,方差最小. 【例7.13】设分别来自总体21(,)N u σ和22(,)N u σ中抽取容量为12,n n 的两个独立样本,其样本方差分别为21S ,22S ,试证:对于任意常数,,(1)a b a b +=,2212Z aS bS =+都是2σ得无偏估计,并确定常数,a b ,使DZ 最小.【证明】由题意,222212()EZ aES bES a b σσ=+=+=. 故对任意常数,,(1)a b a b +=,2212Z aS bS =+都为2σ得无偏估计.由于222(1)(1)n S n χσ--:,则 22(1)()2(1)n S D n σ-=-,即224(1)2(1)n DS n σ-=-,故4221DS n σ=-,则 44222222121222(1)11DZ a DS b DS a a n n σσ=+=+--- 对a 求导,并令其为零,有 44122222(1)011dDZ a a da n n σσ=--=--解得 12121211,22n n a b n n n n --==+-+-.又 24421244011d DZ da n n σσ=+>--,故当12121211,22n n a b n n n n --==+-+-时,DZ 达到最小值. 11、设12,,n X X X L 为来自正态总体2(,)N u σ的简单随机样本,u 已知,22*11ˆS σ=,222ˆS σ=,22311ˆ()1n i i X X n σ==-+∑,22411ˆ()n i i X u n σ==-∑.问在21ˆσ,22ˆσ,23ˆσ,24ˆσ中(1)那个是2σ的无偏估计量;(2)那个比较有效;(3)那个方差最小;(4)那个是2σ的相合估计量.【分析】因为2222312222ˆˆˆ(1)(1)(1)n n n n σσσχσσσ+-==-:,又(0,1)i X uN σ-:,故22221()()(1)i i X uX u χσσ-=-:,由2χ分布性质知2242ˆ()n n σχσ:.从而可求诸估计量的数学期望与方差,并回答上述问题.【解】由分析知221ˆE σσ=,2222(1)ˆ()n E n nσσσ-=→→∞, 22231ˆ()1n E n n σσσ-=→→∞+,224ˆE σσ=. 且 4212ˆ0()1D n n σσ=→→∞-,24222(1)ˆ0()n D n n σσ-=→→∞,24322(1)ˆ0()(1)n D n n σσ-=→→∞+,4242ˆ0()D n nσσ=→→∞ 从而(1)21ˆσ与24ˆσ为2σ的无偏估计量; (2)24ˆσ比21ˆσ有效;(因为2241ˆˆD D σσ<);(3)22223241ˆˆˆˆD D D D σσσσ<<<, 即估计量23ˆσ方差最小. (4)21ˆσ,22ˆσ,23ˆσ与24ˆσ均为2σ的相合估计.基本题型Ⅳ 评价估计量的标准(一致性)【例7.14】 设总体的期望u 和方差2σ均存在,求证:(1)样本均值11ni i X X n ==∑是u 的一致估计.(2)如总体服从正态分布,则样本修正方差2211()1ni i S X X n ==--∑为2σ的一致估计. 【分析】要证明参数θ的估计量ˆθ的一致性,关键是要证明:对任意0ε>,有{}ˆlim 1n n P θθε→∞-<=.从事件对应概率{}ˆnP θθε-<的极限求解上,可以使用切比雪夫不等式,即{}2ˆ()ˆD P θθθεε-≥≤或{}2ˆ()ˆ||1D P θθθεε-<≥-. 【证明】(1)由切比雪夫不等式有,对0ε∀>2111()11(||)111()ni ni i i D X n P X u n n nσεεε==≥-<≥-=-→→∞⋅∑∑.由夹逼定理可得,{}lim 1n P X u ε→∞-<=,即11ni i X X n ==∑为参数u 的一致估计量.(2)因为2221111[()]()11n n i i i i ES E X X E X X n n ===-=---∑∑.22221111[][]11n ni i i i E X nX EX nEX n n ===-=---∑∑ 2222211[()()]1n i u n u n nσσσ==+-+=-∑,即2S 为2σ的无偏估计. 又样本来自正态总体,由抽样分布定律知222(1)(1)n S n χσ--:,有22(1)()2(1)n S D n σ-=-从而22424422222(1)(1)2()()()2(1)(1)(1)(1)1n S n S D S D D n n n n n σσσσσσ--===-=----. 由切比雪夫不等式有,0ε∀>2422()21(||)111()(1)D S P S n n σσεεε≥-<≥-=-→→∞-从而有22lim (||)1n P S σε→∞-<=,即2S 为2σ的一致估计量.【例7.15】设ˆnθ为θ的估计量(用容量为n 的样本),如果ˆlim n n E θθ→∞=,ˆlim 0n n D θ→∞=,则ˆnθ为θ的一致估计量. 【证明一】为证ˆnθ为θ的一致估计量,下证{}ˆlim 0n n P θθε→∞-≥=. 而 {}22ˆˆ22ˆˆˆ()()ˆ()()nnn nnnE P f x dx f x dx θθθθεθθθθθθεεε+∞-∞-≥---≥=≤=⎰⎰又 22222ˆˆˆˆˆ()(2)2n n n n n E E E E θθθθθθθθθθ-=-+=-+ 22ˆˆˆ()2n n nD E E θθθθθ=+-+ 故{}22ˆ()ˆlim lim[]0nnn n E P θθθθεε→∞→∞--≥≤=,即ˆnθ为θ的一致估计量. 【证明二】由切比雪夫不等式有{}2ˆˆ(||)n nP D θθεθθ-≥≤-. 而 222ˆˆˆˆ(||)()(||)()n n n nD E E E θθθθθθθθ-=---≤-. 由证明一知,2ˆlim (||)0nn E θθ→∞-=,或者用下列方法直接证明 22ˆˆˆˆ()()n n n nE E E E θθθθθθ-=-+-22ˆˆˆˆˆˆ()2[()()]()n n n n n n E E E E E E E θθθθθθθθ=-+--+- 222ˆˆˆˆˆ0()()2n n n n nD E D E E θθθθθθθθ=++-=+-+ 22222ˆˆˆˆ()220()n n n n D D E E n θθθθθθθθθ=++-+→-+=→∞ 故{}ˆlim 0n n P θθε→∞-≥=,即ˆnθ为θ的一致估计量. 【评注】用定义验证估计量是一致估计量,一般都不太容易,可利用上例中的结论证明之,从而将统计量的一致性的证明转化为统计量的期望与方差的极限性质的论述,这是一个比较实用的证法.【例7.16】设随机变量X 在[0,]θ上服从均匀分布,由此总体中抽取一随机样本1X ,试证明:1121ˆˆ2,X X θθ==都不为θ的一致估计.【分析】由上例(例7.16)可知,只需论证估计量的期望和方差的极限性质.【证明】因111ˆ(2)222E E X EX θθθ===⋅=,故1ˆθ为θ的无偏估计,且21ˆ2E EX θθθ==≠,故2ˆθ不为θ的无偏估计.为证1ˆθ不为θ的一致估计,只需证明1ˆlim 0n D θ→∞= 22111ˆlim lim (2)lim 4lim 4lim0123n n n n n D D X DX θθθ→∞→∞→∞→∞→∞===⋅=≠.故1ˆθ不为θ的一致估计. 【例7.17】设总体X 服从均匀分布[0,]U θ,试证明:θ的极大似然估计()1max n ii nX X ≤≤=为θ的一致估计.【证明】 设总体X 的密度函数为()f x ,则1,0()0,x f x θθ⎧≤≤⎪=⎨⎪⎩其他,故最大次序统计量()n X 的概率密度函数为1,0()0,n n n nx x f x θθ-⎧≤≤⎪=⎨⎪⎩其他,从而1()0()0()1n n nnx nE X xdx n n θθθ-==→→∞+⎰ 且 1222()()2n n nnx nE Xxdx n θθθ-==+⎰ 故222()()()()()()2n n n n D X E X EX EX θθθ=-=-+ 2222220()21(1)(2)n n n n n n n θθθθ=-+=→→∞++++ 由前例可知,θ的极大似然估计()1max n i i nX X ≤≤=为θ的一致估计.基本题型Ⅴ 求置信区间相关题型【例7.18】设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,即【 】()A ),(θθ以概率a -1包含θ . ()B θ 以概率a -1落入),(θθ.()C θ以概率a 落在),(θθ之外 . ()D 以),(θθ估计θ的范围,不正确的概率是a -1.【分析】由置信区间的定义可知, 区间(),θθ为随机区间. 选()A .【例7.19】设),(~2σμN X 且2σ未知,若样本容量为n ,且分位数均指定为“上侧分位数”时,则μ的95%的置信区间为 【 】()A )(025.0u n X σ±.()B ))1((05.0-±n t n S X .()C ))((025.0n t nS X ±. ()D ))1((025.0-±n t nSX .【分析】由题意,总体),(~2σμN X ,且2σ未知,故应构造统计量(1)X T t n =-:,则参数μ的置信水平为195%α-=的置信区间为))1((025.0-±n t nS X .选()D .【例7.20】假设00.2,80.0,25.1,50.0是总体X 的简单随机样本值,已知X Y ln =服从正态分布)1,(μN .(1)求X 的数学期望EX (记EX 为b ); (2)求μ的置信度为95.0的置信区间;(3)利用上述结果求b 的置信度为95.0的置信区间. 【解】(1)Y 的概率密度为: +∞<<-∞=--y y f e y ,21)(22)(μπ,于是,(令μ-=y t )dy Ee EX b ee y y Y⎰+∞∞---===2)(221μπ22111222(1)2t t t dt dt e e eem m m +??+-+--+??===蝌(2)当置信度95.01=-α时,05.0=α.标准正态分布的水平为05.0=α的分位数为96.105.0=μ.故由)41,(~μN Y ,可得95.096.12196.12196.121=⎭⎬⎫⎩⎨⎧⨯+<<⨯-=⎭⎬⎫⎩⎨⎧<-Y Y P Y P μμ其中01ln 41)2ln 125.0ln 8.0ln 5.0(ln 41==+++=Y . 于是 {}95.098.098.0=<<-μP 从而)98.0,98.0(-就是μ的置信度为95.0的置信区间. (3)由函数xe 的严格递增性,有 {}e e e P P 48.148.02148.12148.095.0<<=⎭⎬⎫⎩⎨⎧<+<-=+-μμ 因此b 的置信度为95.0的置信区间为),(48.148.0e e -.【例7.21】某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位:毫米)如下14.6,14.7,15.1,14.9,14.8,15.0,15.1,15.2,14.8 设滚珠直径服从正态分布,若(1) 已知滚珠直径的标准差为0.15σ=毫米; (2) 未知标准差σ;求直径均值u 的置信度0.95的置信区间.【分析】对于正态分布总体,若已知标准差σ时,均值u 的置信度1α-的置信区间为/2/2X u X u αα⎛-+ ⎝;未知标准差σ时,均值μ的置信度1α-的置信区间为/2/2((X t n X t n αα⎛--+- ⎝,其中S 时样本的标准差.【解】(1)0.025 1.96u =,9n =.经计算14.91x =.故已知滚珠直径的标准差0.15σ=毫米时,直径u 的置信度0.95的置信区间为:()14.91 1.96 1.9614.81,15.01⎛-+= ⎝.(2)经计算:样本标准差0.2028S =,查表可知0.025(8) 2.306t =,于是直径u 的置信度0.95的置信区间为:()14.91 2.306 2.30614.75,15.07⎛-+= ⎝.【例7.22】设某糖厂用自动包装机装箱外运糖果,由以往经验知标准差为1.15kg ,某日开工后在生产线上抽测9箱,测得数据如下(单位:kg )99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 (1)试估计生产线上包装机装箱糖果的期望重量的区间估计(0.05α=);(2)试求总体标准差σ的置信度为0.95的置信区间,并判断以前经验数据标准差为1.15kg 是否仍然合理可用?【解】(1)由题设可知,总体方差1.15σ=为已知,根据经验数据有911899.899.9899i i x x ====∑,当0.05α=时,查表可得0.02521.96U U α==,故参数u 的置信度为0.95的置信区间为0.0250.025((99.23,100.73)x U x U -+=.(2)由题设可知总体均值未知,故根据经验数据有2211() 1.4694n i i S x x n ==-=∑,当0.05α=时,查表可得220.9750.025(8) 2.180,(8)17.35χχ==,从而参数2σ的置信度为0.95的置信区间为22220.0250.975(1)(1),(0.6704,5.3923)(8)(8)n S n S χχ⎛⎫--= ⎪⎝⎭,故参数σ的置信度为0.95的置信区间为(0.8188,2.3221).而以往经验数据标准差为 1.15S =,仍然在(0.8188,2.3221)内,故认为仍然合理可用.【例7.23】设总体X 服从正态分布2(,)N u σ,已知220σσ=,要使总体均值u 对应于置信水平1α-的置信区间的长度不大于l ,问应抽取多大容量的样本?【解】由于2(,)X N u σ:,且220σσ=为已知,因此当置信水平1α-时,均值u 的置信区间为22(,)X X αα+,其区间长度为2α,于是有2l α≤,即可得220224n U l ασ≥. 【例7.24】设总体X 服从正态分布2(,)N u σ,20,u σ均为未知参数,12,,n X X X L 为来自总体X 的一个随机样本,求关于u 的置信水平为1α-的置信区间的长度l 的平方的数学期望.【解】因20σ未知,选用统计量(1)X T t n =-:.得参数u 的置信水平为1α-的置信区间为/2/2((X t n X t n αα⎛--+- ⎝,其区间长度为/22(l t n α=-,于是2222222/2/2/244[4(1)](1)()(1)S El E t n t n E S t n n n n nααασ=-=-=-.【例7.25】在甲乙两城市进行家庭消费调查,在甲市抽取500户,平均每户每年消费支出3000元,标准差为1400S =元;在乙市抽取100户,平均每户每年支出4200元,标准差为2500S =元,设两城市家庭消费支出均服从正态分布211(,)N u σ和222(,)N u σ,试求:(1)甲乙两城市家庭平均每户年消费支出间差异的置信区间(置信度为0.95); (2)甲乙两城市家庭平均每户消费支出方差比的置信区间(置信度为0.90).【解】(1)在本题中虽211,u σ和222,u σ均未知,但由于抽取样本500,1000n m ==都很大(在使用中只要大于50即可),故可用U 统计量,即参数12u u -的置信度为1α-的置信区间为X Y uX Y u ⎛---+ ⎝,故由3000X =,4200Y =,1400S =,2500S =以及10.95α-=即0.05α=,查表可得0.025 1.96u =,因此30004000 1.96120046.79X Y u ⎛-±=-±-± ⎝ 即甲乙两城市家庭平均每户年消费支出间差异的置信度为0.95的置信区间为(1246.79,1153.21)--,由于此置信区间的上限小于零,在实际问题中可认为乙市家庭平均每户年消费支出要比甲市大.(2)由500,1000n m ==,1400S =,2500S =,10.90α-=即0.1α=,查表可得:0.052(1,1)(499,999) 1.13F n m F α--==,0.9510.05211(1,1)(499,999)(999,499) 1.11F n m F F α---=== ,且2212224000.64500S S == 于是所求的置信区间为22112220.0520.95110.64,(,0.64 1.11)(0.566,0.710)(499,999)(499,999) 1.13S S S F S F ⎛⎫=⨯= ⎪⎝⎭由于置信区间上限小于1,故可认为乙市家庭平均每户年消费支出的方差要比甲市大. 【例7.26】某商店销售的一种商品来自甲乙两个厂家,为考察商品性能上的差异,现从甲乙两个厂家生产产品中分别抽取了8见和9件产品,测其性能指标X 得到两组样本观测值,经计算得 2.190X =, 2.238Y =,210.006S =,220.008S =假设性能指标X 均服从正态分布2(,)(1,2)i iN u i σ=,试求方差比2122σσ及均值差12u u -的90%的置信区间.【解】(1)先求方差比2122σσ置信度为90%的置信区间.由10.90α-=即0.1α=,查F 分布表可得0.052(1,1)(7,8) 3.5F n m F α--==,0.9510.05211(1,1)(7,8)(8,7) 3.73Fn m F F α---===故所求置信区间为22112220.0520.95110.00610.006,(, 3.73)(0.214,2.798)(7,8)(7,8)0.0083.500.008S S S F S F ⎛⎫=⨯= ⎪⎝⎭. 由于此区间包含1,故可认为2212σσ=.(3)由(1)可知,2212,σσ未知,但22212σσσ==,因此12u u -的置信区间为()/220.048 1.75310.0840.4860.0480.0716X Y t n m S α-±+--±⨯⨯=± 即(0.1196,0.0236)-,其中0.05(15) 1.7531t =,()()22122110.00712wn S m S S n m -+-==+-,即两个厂家生产的产品性能上无显著性差异.§历年考研真题评析1、【02.3.3】 设总体X 的概率密度为(),,(;)0,.x e x f x x q q q q --ìï³ï=íï<ïî,而12,,,n X X X L 是来自总体X 的简单随机样本,则未知参数q 的矩估计量为_________.【分析】由于()()1x E X xe dx q qq +?--==+ò,因此,()1E X q =-,q 的矩估计量为11ˆ11ni i X X n q ==-=-å.2、【04.3.4】设总体X 服从正态分布21(,)N m s ,总体Y 服从正态分布22(,)N m s ,112,,,n X X X L 和 212,,,n Y Y Y L 分别是来自总体X 和 Y 的简单随机样本,则12221112()()2n n i i i j X X Y Y E n n ==轾犏-+-犏犏=犏+-犏犏臌邋__________. 【分析】由于11222211111(),()(1)1n n i i i i E X X EX X n n s s ==骣骣鼢珑鼢-=-=-珑鼢珑鼢-桫桫邋;22221()(1)n i j E Y Y n s =骣÷ç÷-=-ç÷ç÷ç桫å. 因此, 原式1212n n =+-1222211()()n n ii i j E X X Y Y s ==骣÷ç÷-+-=ç÷ç÷ç桫邋. 3、【97.1.5】设总体X 的概率密度为(1),01()0,x x f x θθ⎧+<<=⎨⎩其他其中1θ>-是未知参数,12,,n x x x L 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计值. 【解】总体X 的数学期望为1101()(1)2EX xf x dx x dx θθθθ+∞+-∞+==+=+⎰⎰令12X θθ+=+,得参数θ的矩估计量为21ˆ1X X θ-=-. 设12,,n x x x L 是相应于样本12,,n X X X L 的一组观测值,则似然函数为1(1),01(1,2,)0,n ni i i x x i n L θθ=⎧⎛⎫+<<=⎪ ⎪=⎨⎝⎭⎪⎩∏L 其他 当01(1,2,)i x i n <<=L 时,0L >且1ln ln(1)ln nii L n xθθ==++∑令1ln ln 01ni i d L n x d θθ==+=+∑,得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑.从而θ的极大似然估计量为1ˆ1ln nii nXθ==--∑.4、【99.1.6】设总体X 的概率密度函数为36(),0()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他,12,,nX X X L 是取自总体X 的简单随机样本.(1)求θ的矩估计量ˆθ; (2)求ˆθ的方差ˆ()D θ. 【解】(1)236()()2x EX xf x dx x dx θθθθ+∞-∞==-=⎰⎰记11n i i X X n ==∑,令2X θ=,得θ的矩估计量ˆ2X θ=. (2)由于32223066()()20x EX x f x dx x dx θθθθ+∞-∞==-=⎰⎰222226()()20220DX EX EX θθθ=-=-=因此ˆ2X θ=的方差为 24ˆ(2)4()5D D X D X DX n nθθ====. 5、【00.1.6】设某种元件的使用寿命X 的概率密度函数为2()2,(,)0,x e x f x x θθθθ--⎧>=⎨≤⎩,其中0θ>为未知参数,又设12,,n x x x L 是X 的一组样本观测值,求参数θ的最大似然估计值.【解】似然函数为12()122,(1,2,)()(,,;)0,ni i x ni n e x i n L L x x x θθθθ=--⎧∑⎪≥===⎨⎪⎩L L 其他 当(1,2,)i x i n θ≥=L 时,()0L θ>,取对数,得 1ln ()ln 22()nii L n x θθ==--∑因为ln ()20d L n d θθ=>,所以()L θ单调增加.由于θ必须满足(1,2,)i x i n θ≥=L ,因此当θ取12,,n x x x L 中的最小值时,()L θ取最大值,所以θ的最大似然估计值为12ˆmin(,,)n x x x θ=L ,最大似然估计量为12ˆmin(,,)nX X X θ=L . 6、【04.1.9】 设总体X 的分布函数为11,1(,)0,1x F x xx ββ⎧->⎪=⎨⎪≤⎩,其中未知参数1β>,12,,n X X X L 为来自总体X 的简单随机样本,求(1)β的矩估计量; (2)β的极大似然估计量.【解】X 的概率密度函数为1,1(,)0,1x f x x x βββ+⎧>⎪=⎨⎪≤⎩(1)由于11(;)1EX xf x dx xdx xβββββ+∞+∞+-∞===-⎰⎰令1X ββ=-,解得ˆ1X X β=-,故参数β的矩估计量为ˆ1X X β=-. (2)似然函数为1121,1(1,2,)()(,)()0,1nni i n i x i n L f x x x x x ββββ+=⎧>=⎪==⎨⎪≤⎩∏L L当1(1,2,)i x i n >=L 时,()0L β>,取对数得1ln ()ln (1)ln nii L n x βββ==-+∑,两边对β求导,得1ln ()ln ni i d L n x d βββ==-∑, 令ln ()0d L d ββ=,可得1ˆln nii nxβ==∑,故β的极大似然估计量为1ˆln nii nXβ==∑.7、【06.1.9】设总体X 的概率密度为,01(,)1,120,x f x x θθθ<<⎧⎪=-≤≤⎨⎪⎩其他,其中(01)θθ<<是未知参数,12,,n X X X L 为来自总体的简单随机样本,记N 为样本值12,,n x x x L 中小于1的个数,求θ的最大似然估计.【解】 由题意,设样本12,,n x x x L 按照从小到大为序(即顺序统计量的观测值)有如下关系:(1)(2)()(1)()1N N n x x x x x +≤≤≤≤≤≤≤L L L似然函数为(1)(2)()(1)()(1),1()0,N n N N N n x x x x x L θθθ-+⎧-≤≤≤≤≤≤≤=⎨⎩L L L 其他对似然函数非零部分取对数得到 ln ()ln ()ln(1)L N n N θθθ=+--ln ()01d L N n N d θθθθ-=-=-,从而ˆN n θ=,即θ的最大似然估计值为N n. 【评注】本题着重考察了最大似然估计的概念和求似然估计的基本方法,本题的难点是“N 为样本值12,,n x x x L 中小于1的个数”的理解.8、【09.1.11】设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数λλ>(0)未知,12,,n X X X L 是来自总体X 的简单随机样本 (1)求参数λ的矩估计量; (2)求参数λ的最大似然估计量. 【解】(1)由题意,2202x EX x e dx X λλλ+∞-===⎰,从而2ˆXλ=为总体的矩估计量. (2)构造似然函数121211(,,;)(;)nii nnx nn iii i L x x x f x x eλλλλ=-==∑==⋅∏∏L .取对数11ln 2ln ln nniii i L n x x λλ===+-∑∑.令ln 0d L d λ=,有120n i i n x λ=-=∑,故λ的最大似然估计值为1122ˆ1nn i i i i n x x n λ====∑∑ 故其最大似然估计量为122ˆ1ni i XX n λ===∑. 9、【04.3.13】设随机变量X 的分布函数为1(),(,,)0,x F x xx βαααβα⎧->⎪=⎨⎪≤⎩,其中参数0,1αβ>>,设12,,n X X X L 为来自总体X 的简单随机样本.(1)当1α=时,求未知参数β的矩估计量; (2)当1α=时,求未知参数β的最大似然估计量; (3)当2β=时,求未知参数α的最大似然估计量.【解】当1α=时,X 的概率密度为1,1(,)0,1x f x x x βββ+⎧>⎪=⎨⎪≤⎩(1)由于11(,)1EX xf x dx x dx xβββββ+∞+∞+-∞==⋅=-⎰⎰令1X ββ=-,解得1XX β=- 从而得未知参数β的矩估计量为ˆ1XX β=-. (2)对于总体X 的样本值12,,n x x x L ,似然函数为1121,1(1,2,)()(;)()0,nni i n i x i n L f x x x x ββββ+=⎧>=⎪==⎨⎪⎩∏L L 其他当1(1,2,)i x i n >=L 时,()0L β>,取对数得1ln ()ln (1)ln ni i L n x βββ==-+∑对β求导数,得似然方程1[ln ()]ln 0ni i d L n x d βββ==-=∑ 解得 1ln nii nxβ==∑,于是β的最大似然估计量为1ˆln nii nXβ==∑.(3)当2β=时,X 的概率密度为232,(,)0,x f x x x ααβα⎧>⎪=⎨⎪≤⎩对于总体X 的样本值12,,n x x x L ,似然函数为231212,(1,2,)()(;)()0,n nni i n i x i n L f x x x x ααββ=⎧>=⎪==⎨⎪⎩∏L L 其他当(1,2,)i x i n α>=L 时,α越大,()L α越大,即α的最大似然估计值为12ˆmin{,,}n x x x α=L . 于是α的最大似然估计量为12ˆmin{,,}n X X X α=L . 10、【03.1.8】设总体X 的概率密度函数为2()2,(,)0,x e x f x x θθθθ--⎧>=⎨≤⎩,其中0θ>为未知参数.从总体X 中抽取简单随机样本12,,n X X X L ,记12ˆmin(,,)nX X X θ=L .(1)求总体X 的分布函数()F x ;(2)求统计量ˆθ的分布函数ˆ()F x θ; (3)如果用ˆθ作为θ的估计量,讨论它是否具有无偏性. 【解】(1)2()1,()()0,x xe x F xf t dt x θθθ---∞⎧->==⎨≤⎩⎰(2)ˆ12ˆ(){}{min(,,)}nF x P x P X X X x θθ=≤=≤L 12121{min(,,)}1{,,}n n P X X X x P X x X x X x =->=->>>L L2()1,1[1()]0,n x ne x F x x θθθ--⎧->=--=⎨≤⎩(3)ˆθ概率密度为 2()ˆˆ()2,()0,n x dF x ne x f x dxx θθθθθ--⎧>==⎨≤⎩ 因为 2()ˆ01ˆ()22n x E xf x dx nxe dx nθθθθθ+∞+∞---∞===+≠⎰⎰所以ˆθ作为θ的估计量不具有无偏性. 11、【07.1.11】设总体X 的概率密度为1,021(,),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤≤⎨-⎪⎪⎪⎩其他,其中(01)θθ<<是未知参数,12,,n X X X L 为来自总体的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量ˆθ; (2)判断24X 是否为2θ的无偏估计量,并说明理由. 【解】(1)10(,)22(1)x xEX xf x dx dx dx θθθθθ+∞-∞==+-⎰⎰⎰11(1)4424θθθ=++=+. 令124X θ+=,其中11n i i X X n ==∑,解方程得θ的矩估计量为:1ˆ22X θ=-.(2) 2222(4)4()4[()]4[()]DXE X E X DX E X E X n==+=+ 而22122(,)22(1)x x EX x f x dx dx dx θθθθθ+∞-∞==+-⎰⎰⎰22221111()()()36624DX E X E X θθθ=-=++-+211366θθ=++2115121248θθ=-+. 故2222313135(4)4[()]312DX n n n E X E X n n n nθθθ+-+=+=++≠所以24X 不是2θ的无偏估计量.12、【08.1(3).11】设12,,n X X X L 是总体2(,)N u σ的简单随机样本,记11n i i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n=- (1) 证T 是2u 的无偏估计量;(2) 当0,1u σ==时,求DT .【分析】(1)要证2ET u =;(2)求DT 时,利用2X 与2S 独立性.【解】(1)222211()()()ET E X S E X E S n n=-=- 222222111()()()D X E X E S u u n n nσσ=+-=+-=所以T 是2u 的无偏估计量.(2)当0,1u σ==时,(0,1)X N :,1(0,),0X N ET n=:2222211()()()DT D X S D X D S n n=-=+22222111[(1)](1)D D n S n n n =+-- 22221122(1)(1)(1)n n n n n n =+⋅-=--. 【评注】若2(,)X N u σ:,则22222222111,,,()2(1),((1))n n EX u DX ES D S n S n n σσχσσ--====--:.13、【03.1.4】已知一批零件的长度X (单位cm )服从正态分布(,1)N m ,从中随机地抽取16个零件,得到长度的平均值为40(cm ),则m 的置信度为0.95的置信区间是_____.(注:标准正态分布函数值(1.96)0.975,(1.645)0.95F =F =).【分析】这是一个正态分布方差已知求期望值m 的置信区间问题,该类型置信区间公式为(,)I x x =-+ 其中l 由{||}0.95P U l <=确定((0,1)U N :),即 1.96l =,将40,1,16x n s ===及1.96l =代入得到m 的置信度为0.95的置信区间为(39.51,40.49).14、【05.3.13】设12,,(2)n X X X n >L 为来自总体2(0,)N σ的简单随机样本,X 为样本均值,记,1,2,i i Y X X i n =-=L ,求 (1)i Y 的方差,1,2,i DY i n =L ; (2)1Y 与n Y 的协方差1(,)n Cov Y Y ;(3)若21()n c Y Y +是2σ的无偏估计量,求常数c .【解】由题设12,,(2)n X X X n >L 是简单随机样本,因此12,,(2)n X X X n >L 相互独立,且与总体同分布,即22(0,),0,(1,2,)i i i X N EX DX i n σσ===:L .(1)111(1)n i i j i j j iY X X X X n n=≠=-=-+-∑.111()[(1)]n i i j i j j iDY D X X D X X n n=≠=-=-+-∑22222211111(1)1()(1)n n j i j j j ij in n DX DX DX DX n n n n nσ==≠≠--=-+-=+=∑∑.(2)12,,(2)n X X X n >L 相互独立,所以 ,(,),1,2,,0,i i j DX i jCov X X i j n i jL =⎧==⎨≠⎩11(,)(,)n n Cov Y Y Cov X X X X =--11(,)(,)(,)(,)n n Cov X X Cov X X Cov X X Cov X X =--+;2111111111(,)(,)(,)n n i i i i Cov X X Cov X X Cov X X DX n n n nσ======∑∑;类似地, 21(,)n n Cov X X DX n nσ==又因为2DX nσ=,故22221(,)0n Cov Y Y nnnnσσσσ=--+=-.(3)首先计算21()n E Y Y +.由于11()0n n E Y Y EY EY +=+=所以 21111()()2cov(,)n n n n E Y Y D Y Y DY Y Y DY +=+=++22221122(2)n n n n n n nσσσσ---=+-= 若21()n c Y Y +是2σ的无偏估计量,c 应满足下面等式2222112(2)[()][()]n n c n E c Y Y cE Y Y nσσ-=+=+=故 2(2)nc n =-.§习题全解( A )1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21Λ为取自X 的一个样本,试求参数p 的矩估计量与极大似然估计量.【解】由题意,X 的分布律为: ()(1),0k N kN P X k p p k N k -⎛⎫==-≤≤⎪⎝⎭.总体X 的数学期望为(1)(1)011(1)(1)1NNk N k k N k k k N N EX k p p Np p p k k ----==-⎛⎫⎛⎫=-=- ⎪ ⎪-⎝⎭⎝⎭∑∑ 1((1))N Np p p Np -=+-=则EX p N=.用X 替换EX 即得未知参数p 的矩估计量为ˆXpN =. 设12,,n x x x L 是相应于样本12,,n X X X L 的样本值,则似然函数为111211(,,;)()(1)nniii i nnx nN x n i i i i N L x x x p P X x p p x ==-==∑∑⎛⎫===⋅- ⎪⎝⎭∏∏L取对数111ln ln ln ()ln(1)nnni i i i i i N L x p nN x p x ===⎛⎫=+⋅+-⋅- ⎪⎝⎭∑∑∑,11ln (1)nni i i i x nN x d L dp p p ==-=--∑∑.令ln 0d L dp =,解得p 的极大似然估计值为 11ˆn i i x n p N==∑. 从而得p 的极大似然估计量为 11ˆni i X X npN N===∑. 2、设n X X X ,,,21Λ为取自总体X 的一个样本,X 的概率密度为22,0(;)0,xx f x θθθ⎧<<⎪=⎨⎪⎩其它.其中参数0θ>,求θ的矩估计. 【解】取n X X X ,,,21Λ为母体X 的一个样本容量为n 的样本,则2022()3xEX xf x dx x dx θθθ+∞-∞==⋅=⎰⎰32EX θ⇒= 用X 替换EX 即得未知参数θ的矩估计量为3ˆ2X θ=. 3、设12,,,n X X X L 总体X 的一个样本, X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,0,0,);(1x x e x x f x αλαλαλ其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计.【解】设12,,,n x x x L 为样本12,,,n X X X L 的一组观测值,则似然函数为1()1121(),0(,,,;)0,ni i n x n n i i n i x e x L x x x αλαλαλ=--=⎧∑⎪⋅≥=⎨⎪⎩∏L 其他 取对数 11ln ln ln (1)(ln )()n niii i L n n x x αλααλ===++--∑∑.解极大似然方程1ln 0n i i d L n x d αλλ==-=∑,得λ的极大似然估计值为1ˆni i nx αλ==∑.4、设总体X 服从几何分布 ,10,,2,1,)1()(1<<=-==-p k p p k X P k Λ试利用样本值n x x x ,,,21Λ,求参数p 的矩估计和最大似然估计.【解】因11111(1)(1)k k k k EX k p p p k p p∞∞--===⋅-=⋅-=∑∑, 用X 替换EX 即得未知参数p 的矩估计量为1ˆpX=.在一次取样下,样本值12(,,,)n x x x L ,即事件1122{},{},,{}n n X x X x X x ===L 同时发生,由于12,,,n X X X L 相互独立,得联合分布律为121122(,,,;)()(),,()n n n L x x x p P X x P X x P X x ====L L12111(1)(1)(1)n x x x p p p p p p ---=-⋅--L ,即得极大似然函数为1()(1)ni i x nnL p p p =-∑=-取对数 1ln ()ln ()ln(1)nii L p n p x n p ==+--∑解极大似然方程1ln ()01ni i x nd L p n dp p p=-=-=-∑ 得p 的极大似然估计值为11ˆ1ni i px n ==∑,从而得p 的极大似然估计量为111ˆ1ni i pXX n ===∑. 5、设总体X 的概率密度为()1;exp ,2x f x σσσ⎧⎫=-⎨⎬⎩⎭0σ>为未知参数, n X X X ,,,21Λ为总体X 的一样本,求参数σ的最大似然估计.【解】设12,,,n x x x L 为样本12,,,n X X X L 的一组观测值,则似然函数为 121111(,,,;)(;)(;)exp{||}(2)nn n ini L x x x f x f x x σσσσσ====-∑L L 取对数1211ln (,,,;)ln(2)||nn ii L x x x n x σσσ==--∑L . 解极大似然方程21ln 1||0nii d L n x d σσσ==-+=∑.得σ的极大似然估计值11ˆ||ni i x n σ==∑. 6、证明第5题中σ的最大似然估计量为σ的无偏估计量.【证明】由第5题知σ的最大似然估计量为11ˆ||ni i X n σ==∑ 故 1111ˆ(||)||n ni i i i E E X E X n n σ====∑∑ 又 1||||||exp{}2i x E X x dx σσ+∞-∞=⋅-⎰ 0012exp{}exp{}()2x x x x dx x d σσσσ+∞+∞=⋅-=⋅-⎰⎰00[exp{}|exp{}]x xx dx σσσ+∞+∞=-⋅---=⎰.从而 ˆE σσ=,即ˆσ是σ的无偏估计.。