第三章的习题课
- 格式:doc
- 大小:55.50 KB
- 文档页数:5
大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。
注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。
分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。
分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。
解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。
第三章《分光光度法》课后习题
一、选择题
(1) 符合Lambert-Beer定律的某有色溶液,当有色物质的浓度增加时,最大吸收波长和吸光度分别是………()
(A) 不变、增加
(B) 不变、减小
(C) 向长波移动、不变
(D) 向短波移动、不变
(3) 用分光光度法测定Fe3+,下列说法正确的是………( )
(A) FeSCN2+的吸光度随着SCN-浓度的增大而线性增大
(B) FeSCN2+的吸光度随着Fe3+浓度的增大而线性增大
(C) 溶液的吸光度与透射率线性相关
(D) 溶液的条件摩尔吸光度系数随着波长变化
(5) 用常规分光光度法测得标准溶液的透射率为20%,试液的透射率为10%,若以示差分光光度法测定试液,以标准溶液为参比,则试液的透过率为………( )
(A) 20%
(B) 40%
(C) 50%
(D) 80%
(7) 以KmnO4溶液滴定Fe2+,在MnO4-最大吸收波长处测量溶液吸光度的变化,得光度滴
定曲线………( )
(A) (B)
(C) (D)
(8) 标准工作曲线不过原点的可能的原因是………( )
(A) 显色反应得酸度控制不当
(B) 显色剂得浓度过高
(C) 吸收波长选择不当
(D) 参比溶液选择不当
二、计算题
作业说明:
课后习题与平时成绩及期末考核密切相关,请大家重视哈!此次作业中12300740022陈敏轩与12300740053胡可欣同学,作业认真严谨,值得表扬。
知道大家这学期课程较多,辛苦了。
望大家对大学生活早作规划,机会属于有准备的人!一起加油!
马洪影
2013年10月16日。
第三章三角恒等变换习题课1一、教学目标:知识与技能:1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).过程与方法:通过知识回顾及典例分析的过程,让学生熟悉基本题型,形成解决问题的思路。
培养学生分析归纳能力,领会数学的归纳转化思想方法.情感、态度与价值观通过复习及解题训练归,培养学生踏实细致、严谨科学的学习习惯,渗透从知识系统化的观念,帮助学生构建良好的知识网络。
二.重点难点重点:掌握两角和(差)的正弦、余弦、正切公式及二倍角公式,并能解决常见问题。
难点:知识的综合运用及分类和转化思想。
三、教材与学情分析求三角函数值及化简问题是三角函数中的基本问题之。
运用两角和(差)及二倍角公式进行变形是求三角函数值的基本方法。
在解题训练中培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。
四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一).温故知新1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β;cos(α∓β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba 或 f (α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎫其中tan φ=ab . (二)自我检测1.判断正误(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( )解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π,k ∈Z .★答案★ (1)√ (2)√ (3)× (4)√ 2.若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.45解析cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.★答案★ D3.若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17,故选A.★答案★ A4. in 347°cos 148°+sin 77°·cos 58°=________.解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. ★答案★22(三)典例解析考点一 三角函数式的化简【例1】 cos(α+β)cos β+sin(α+β)sin β=( ) A.sin(α+2β) B.sin α C.cos(α+2β)D.cos α解析 cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α. ★答案★ D规律方法: 三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”等. 【训练1】 (1)2+2cos 8+21-sin 8的化简结果是________. (2)化简:2cos 4α-2cos 2α+122tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=________.解析 (1)原式=4cos 24+2(sin 4-cos 4)2=2|cos 4|+2|sin 4-cos 4|,因为54π<4<32π,所以cos 4<0,且sin 4<cos 4,所以原式=-2cos 4-2(sin 4-cos 4)=-2sin 4.(2)原式=12(4cos 4α-4cos 2α+1)2×sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·cos 2⎝⎛⎭⎫π4-α=(2cos 2α-1)24sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 22α2sin ⎝⎛⎭⎫π2-2α=cos 22α2cos 2α=12cos 2α.★答案★ (1)-2sin 4 (2)12cos 2α考点二 三角函数式的求值【例2】 (1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280=________. (2)已知cos ⎝⎛⎭⎫π4+α=35,17π12<α<7π4,则sin 2α+2sin 2α1-tan α的值为________. (3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析 (1)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)·2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)]=22sin(50°+10°)=22×32= 6.(2)sin 2α+2sin 2α1-tan α=2sin αcos α+2sin 2α1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=sin 2α1+tan α1-tan α=sin2α·tan ⎝⎛⎭⎫π4+α.由17π12<α<7π4得5π3<α+π4<2π,又cos ⎝⎛⎭⎫π4+α=35,所以sin ⎝⎛⎭⎫π4+α=-45,tan ⎝⎛⎭⎫π4+α=-43. cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-π4=-210,sin α=-7210,sin 2α=725.所以sin 2α+2sin 2α1-tan α=-2875. ★答案★ (1)6 (2)-2875规律方法 (1)已知条件下的求值问题常先化简需求值的式子,再观察已知条件与所求值的式子之间的联系(从三角函数名及角入手),最后将已知条件及其变形代入所求式子,化简求值.(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【训练2】 (1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3D.22-1(2)已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,则cos α的值为________. (3)已知cos α=17,cos(α-β)=1314(0<β<α<π2),则tan 2α=________,β=________.解析 (1)原式=4sin 40°-sin 40°cos 40°=4cos 40°sin 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (120°-40°)-sin 40°cos 40°=3cos 40°+sin 40°-sin 40°cos 40°=3cos 40°cos 40°=3,故选C.(2)由sin ⎝⎛⎭⎫α+π3+sin α=-435,得32sin α+32cos α=-435,sin ⎝⎛⎭⎫α+π6=-45.又-π2<α<0,所以-π3<α+π6<π6,于是cos ⎝⎛⎭⎫α+π6=35. 所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6=33-410. (3)∵cos α=17,0<α<π2,∴sin α=437,tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. ∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12,∴β=π3.★答案★ (1)C (2)33-410 (3)-8347 π3考点三 三角变换的简单应用【例3】 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量. (1)求角A ;(2)求函数y =2sin 2B +cos C -3B2的最大值.解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A -cos A ),则sin 2A =34. 又A 为锐角,所以sin A =32,则A =π3. (2)y =2sin 2 B +cos C -3B2=2sin 2B +cos⎝⎛⎭⎫π-π3-B -3B 2=2sin 2B +cos ⎝⎛⎭⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin ⎝⎛⎭⎫2B -π6+1. 因为B ∈⎝⎛⎭⎫0,π2,所以2B -π6∈⎝⎛⎭⎫-π6,5π6,所以当2B -π6=π2时,函数y 取得最大值,此时B =π3,y max =2.规律方法 解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【训练3】已知函数f (x )=(2cos 2x -1)·sin 2x +12cos 4x .(1)求f (x )的最小正周期及单调减区间;(2)若α∈(0,π),且f ⎝⎛⎭⎫α4-π8=22,求tan ⎝⎛⎭⎫α+π3的值. 解 (1)f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )=22sin ⎝⎛⎭⎫4x +π4, ∴f (x )的最小正周期T =π2.令2k π+π2≤4x +π4≤2k π+32π,k ∈Z ,得k π2+π16≤x ≤k π2+5π16,k ∈Z .∴f (x )的单调减区间为⎣⎡⎦⎤k π2+π16,k π2+5π16,k ∈Z . (2)∵f ⎝⎛⎭⎫α4-π8=22,即sin ⎝⎛⎭⎫α-π4=1. 因为α∈(0,π),-π4<α-π4<3π4,所以α-π4=π2,故α=3π4.因此tan ⎝⎛⎭⎫α+π3=tan3π4+tan π31-tan 3π4tanπ3=-1+31+3=2- 3.六、课堂小结1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”. (1)变角:对角的分拆要尽可能化成同角、特殊角; (2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.七、课后作业1.课时练与测八、教学反思。
习题课——导数运算及几何意义的综合问题课后篇巩固提升基础巩固1.若f (x )=x 2-2x-4ln x ,则f'(x )>0的解集为( )A.(0,+∞)B.(-1,0)∪(2,+∞)C.(2,+∞)D.(-1,0),f (x )的定义域为(0,+∞),f'(x )=2x-2-4x ,令2x-2-4x >0,整理得x 2-x-2>0,解得x>2或x<-1.结合函数的定义域知,f'(x )>0的解集为(2,+∞).故选C .2.若曲线f (x )=13x 3+x 2+mx 的切线中,只有一条与直线x+y-3=0垂直,则实数m 的值等于( )A.2B.0C.0或2D.3,只有一条切线的斜率等于1,又f'(x )=x 2+2x+m ,所以方程x 2+2x+m=1只有一个实数根,于是Δ=4-4(m-1)=0,解得m=2.3.已知f (x )=f '(1)x+4x ,则f'(1)=( )A.1B.4C.2D.-1f (x )=f '(1)x +4x ,所以f'(x )=-f '(1)x 2+4. 因此f'(1)=-f '(1)12+4,解得f'(1)=2.4.经过点(3,0)的直线l 与抛物线y=x 22的两个交点处的切线相互垂直,则直线l 的斜率k 等于( )A.-1B.-13C.12D.-12l 的斜率为k ,则其方程为y=k (x-3),设直线l 与抛物线的两个交点为A (x 1,y 1),B (x 2,y 2),由{y =x 22,y =k (x -3),得x 2-2kx+6k=0,所以x 1x 2=6k.又对y=x 22求导有y'=x ,所以抛物线在A ,B 两点处的切线的斜率分别为x 1,x 2,于是有x 1x 2=6k=-1,所以k=-16.5.下列说法正确的是( )A.曲线的切线和曲线有且只有一个交点B.曲线的切线和曲线可能有无数个交点C.已知y=ln 2,则y'=12D.函数f (x )=x 3在原点处的切线为y 轴A,例如y=cos x 在(0,1)处的切线和y=cos x 有无数个交点,故A 错误,从而可知B 正确;对于C,y=ln2,y'=0,故C 错误;对于D,由f (x )=x 3,得f'(x )=3x 2,所以f'(0)=0,所以函数f (x )=x 3在原点处的切线方程是y=0,即为x 轴,故D 错误.故选B .6.给出定义:若函数f (x )在D 上可导,即f'(x )存在,且导函数f'(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f'(x ))',若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数,以下四个函数在(0,π2)上不是凸函数的是( ) A.f (x )=sin x+cos x B.f (x )=ln x-2x C.f (x )=-x 3+2x-1D.f (x )=-x e -xf (x )=sin x+cos x ,则f ″(x )=-sin x-cos x ,在(0,π2)上,恒有f ″(x )<0;若f (x )=ln x-2x ,则f ″(x )=-1x 2,在(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x-1,则f ″(x )=-6x ,在(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x =-xe x ,则f'(x )=x -1e x ,f ″(x )=2-x e x,在(0,π2)上,恒有f ″(x )>0,故选D .7.已知函数f (x )的图象在x=2处的切线方程为2x+y-3=0,则f (2)+f'(2)= .2x+y-3=0的斜率为-2,所以f'(2)=-2.又切点在切线上,所以2×2+y-3=0. 因此y=f (2)=-1, 故f (2)+f'(2)=-1+(-2)=-3.3 8.已知a=limΔx →0f (x 0+Δx )-f (x 0)Δx,b=limΔx →0f (x 0-Δx )-f (x 0)Δx,c=limΔx →0f (x 0+2Δx )-f (x 0)Δx,d=limΔx →0f (x 0+Δx )-f (x 0-Δx )Δx,e=limx →x 0f (x )-f (x 0)x -x 0,则a ,b ,c ,d ,e 中有相等关系的是 .c=d,又在e=limx→x0f(x)-f(x0)x-x0中,若令x-x0=Δx,则该式可化为e=limx→x0f(x)-f(x0)x-x0=lim Δx→0f(x0+Δx)-f(x0)Δx,所以a=e,因此具有相等关系的是c=d,a=e.,a=e9.曲线y=3(x2+x)e x在点(0,0)处的切线方程为.y'=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,∴k=y'|x=0=3.∴曲线y=3(x2+x)e x在点(0,0)处的切线方程为y=3x.3x10.已知曲线y=x2+1,问是否存在实数a,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出a 的取值范围;若不存在,说明理由..因为y=x2+1,所以y'=2x.设切点为(t,t2+1),所以切线斜率为y'|x=t=2t,于是切线方程为y-(t2+1)=2t(x-t),将(1,a)代入,得a-(t2+1)=2t(1-t),即t2-2t+(a-1)=0.因为切线有两条,所以Δ=(-2)2-4(a-1)>0,解得a<2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,且a的取值范围是(-∞,2).能力提升1.曲线y=2x ln x在x=e处的切线与坐标轴围成的三角形的面积为()A.e24B.e22C.e2D.2e2y'=2ln x+2,所以y'|x=e=2+2=4,且y(e)=2e,所以切线方程为y-2e=4(x-e),即y=4x-2e,所以直线与x轴、y轴交点坐标分别为(e2,0),(0,-2e),所以切线与坐标轴围成的三角形面积是S=12×e2×2e=e22,故选B.2.设f'(x)是函数f(x)(x>0)的导函数,且满足xf'(x)+2f(x)=1x2,f(1)=1,则f(x)的解析式为()A.f(x)=lnx+1x2(x>0) B.f(x)=ln x+1(x>0)C.f(x)=lnxx2+1(x>0) D.f(x)=lnxx+1(x>0)xf'(x)+2f(x)=1x2,∴x 2f'(x )+2xf (x )=1x . ∵[x 2f (x )]'=x 2f'(x )+2xf (x ), ∴可设[x 2f (x )]'=(ln x+c )',即f (x )=lnx+c x 2.又f (1)=1,∴c=1.∴f (x )=lnx+1x 2(x>0).3.若f (x )=x 3-f'(1)x 2+x+4,则f'(1)= .f (x )=x 3-f'(1)x 2+x+4,所以f'(x )=3x 2-2f'(1)x+1,所以f'(1)=3-2f'(1)+1,解得f'(1)=43.4.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为 .y'|x=1=n+1(n ∈N *),∴曲线在点(1,1)处的切线为y-1=(n+1)(x-1)(n ∈N *),令y=0,得x=x n =n n+1(n ∈N *),∴a n =lgn n+1(n ∈N *),∴a 1+a 2+…+a 99=lg 12+lg 23+…+lg 99100=lg (12×23×…×99100)=lg 1100=-2.25.已知f (x )=(x-a )(x-b )(x-c )(a>b>c ),试证明方程f'(x )=0必有两个实数根.:因为f (x )=(x-a )(x-b )(x-c )=(x-a )[(x-b )(x-c )],所以f'(x )=(x-b )(x-c )+(x-a )[(x-b )(x-c )]' =(x-b )(x-c )+(x-a )(x-c )+(x-a )(x-b ). 令g (x )=(x-a )(x-b )+(x-b )(x-c )+(x-a )·(x-c ), 因为a>b>c ,所以有g (a )=(a-b )(a-c )>0, g (b )=(b-a )(b-c )<0,g (c )=(c-a )(c-b )>0,根据函数零点的性质知,函数g (x )在区间(b ,a )和(c ,b )内各有一个零点, 故f'(x )=0有两个实根,且一个大于b ,另一个小于b. 法二:∵f (x )=(x-a )(x-b )(x-c ) =x 3-(a+b+c )x 2+(ab+bc+ac )x-abc ,∴f'(x )=3x 2-2(a+b+c )x+(ab+bc+ac ).Δ=[-2(a+b+c )]2-4×3×(ab+bc+ac ) =4[(a+b+c )2-3(ab+bc+ac )] =4(a 2+b 2+c 2-ab-bc-ac )=2[(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ac )] =2[(a-b )2+(b-c )2+(a-c )2],∵a>b>c ,∴Δ>0恒成立.∴方程f'(x )=0必有两个实数根.6.设函数f (x )=ax-bx ,曲线f (x )在点(2,f (2))处的切线方程为7x-4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y=f (x )在任一点处的切线与直线x=0和直线y=x 所围成的三角形面积为定值,并求此定值.7x-4y-12=0可化为y=74x-3.当x=2时,y=12.又f'(x )=a+b x2,于是{2a -b 2=12,a +b 4=74,解得{a =1,b =3,故f (x )=x-3x .P (x 0,y 0)为曲线上任一点,由y'=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y-y 0=(1+3x 02)(x-x 0),即y-(x 0-3x 0)=(1+3x2)(x-x 0).令x=0,得y=-6x 0,从而得切线与直线x=0的交点坐标为(0,-6x 0).令y=x ,得y=x=2x 0,从而得切线与直线y=x 的交点坐标为(2x 0,2x 0).所以曲线在点P (x 0,y 0)处的切线与直线x=0,y=x 所围成的三角形面积为12·|6x 0|·|2x 0|=6.故曲线y=f (x )在任一点处的切线与直线x=0和直线y=x 所围成的三角形面积为定值,此定值为6.。
.第三章习题课一、选择题1、在汇编语言程序的开发过程中使用宏功能的顺序是()。
A、宏定义,宏调用B、宏定义,宏展开C、宏定义,宏调用,宏展开D、宏定义,宏展开,宏调用2、汇编语言源程序中,每个语句由四项组成,如语句要完成一定功能,那么该语句中不可省略的项是()。
A、名字项B、操作项C、操作数项D、注释项3、下列叙述正确的是()A.对两个无符号数进行比较采用CMP指令,对两个有符号数比较用CMPS指令B.对两个无符号数进行比较采用CMPS指令,对两个有符号数比较用CMP指令C.对无符号数条件转移采用JAE/JNB指令,对有符号数条件转移用JGE/JNL指令D.对无符号数条件转移采用JGE/JNL指令,对有符号数条件转移用JAE/JNB指令4、编写分支程序,在进行条件判断前,可用指令构成条件,其中不能形成条件的指令有().A、CMPB、SUBC、ANDD、MOV5、测试BL寄存器容是否与数据4FH相等,若相等则转NEXT处执行,可实现的方法是()。
A TEST BL,4FHJZ NEXTB XOR BL,4FHJZ NEXTC AND BL,4FHJZ NEXTD OR BL,4FHJZ NEXT6、检查BUF的容是否为正偶数,如是正偶数,则令AL=0。
下面程序段正确的是( )。
A、MOV AL,BUF JS K1SHR AL,1JNC K1MOV AL,0K1:……B、MOV AL,BUF AND AL,11 JNZ K2MOV AL,0K2:……C 、MOV AL ,BUF TEST AL ,81H JNZ K3 MOV AL ,0 K3:……7、下列描述中,执行循环的次数最多的情况是()。
A .MOV CX ,0B .MOV CX ,1 LOP :LOOP LOP LOP :LOOP LOPC .MOV CX ,0FFFFHD .MOV CX ,256 LOP :LOOP LOP LOP :LOOP LOP8、在下列指令中,指令的执行会影响条件码中的CF 位。
第三章课后习题3.3.2 对角矩阵的压缩存储所谓对角矩阵是指矩阵中的所有非零元素都集中在以主对角线为中心的带状区域中,即除了主对角线上和直接在主对角线上、下方对称的若干条对角线上的元素之外,其余元素均为零。
下面给出的矩阵B就是一个对角矩阵(确切地说是一个三对角矩阵,这里,我们仅以三对角矩阵为例子)。
三对角矩阵一共有3n—2个非零元素。
我们可以按照某个原则(或者以行序为主序的分配方式,或者以列序为主序的分配方式,或者按照对角线的顺序进行分配)将对角矩阵B的所有非零元素压缩存储到一个一维数组LTB[3n—2]中。
这里,不妨仍然以行序为主序的分配方式对B进行压缩存储,当B中任一非零元素Bij与LTB[k]之间存在着如下一一对应关系k=2*i+j-3时,则有Bij=LTB[k]。
称LTB[3n—2]为对角矩阵B的压缩存储,如下图所示。
上面讨论的几种特殊矩阵中,非零元素的分布都具有明显的规律,因而都可以被压缩存储到一个一维数组中,并且能够确定这些矩阵的每一个元素(或非零元素)在一维数组中的位置。
但是,对于那些非零元素在矩阵中的分布没有规律的特殊矩阵(如稀疏矩阵),则需要寻求其他的方法来解决压缩存储问题。
3.5 稀疏矩阵的十字链表表示上一节讨论了用三元组表的形式来存储一个稀疏矩阵的方法。
但是,在实际应用中,当稀疏矩阵中非零元素的位置或者个数经常发生变化时,使用三元组表就不太方便了。
本节将介绍稀疏矩阵的另一种表示方法,即十字链表表示。
如何用链表形式来表示一个稀疏矩阵呢?方法之一就是将所有非零元素以行序为主序方式(当然也可以以列序为主序方式)采用循环链表链接起来。
链结点的构造由四个域组成:其中i,j分别表示某一个非零元素所在的行号与列号;value表示该非零元素的值;link 域用来指向下一个非零元素所在的链结点,它是一个指针。
另外,再设置一个链表头结点,其构造如下:其中,m,n分别表示稀疏矩阵的行数与列数;t为稀疏矩阵非零元素的总个数;link域用来指向第一个非零元素对应的链结点。
教学课题:第三章习题课
教学课时:2课时
教学班级:12级3、4、5、6、15班
教学目标:1、复习第三章的相关概念和公式
教学重点:相关概念的理解及掌握
教学难点:公式的理解与运用
教学准备:备教材、写教案、查资料。
安全措施:清点人数
获取信息:上网、教材、资料书
制定计划:2课时
教学内容:
一、素质教育以“文明”为主题
一座城市有了文明而显得更加美丽,一个家庭有了文明而显得更加和谐。
文明素质教育的目的就是为了促进同学们养成良好的文明习惯的养成,并通过我们的手牵起大家的手共同养成良好的文明习惯。
用同学们的实际行动带动和影响家长争做文明人。
二、复习
1、概念:⎪⎪⎩
⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧财务费用管理费用
营业费用餐饮成本餐馆企业的成本费用费用成本 2、毛利率⎩
⎨⎧成本毛利率销售毛利率
3、饮食产品销售价格的构成⎪⎪⎩
⎪⎪⎨⎧利润营业税
营业费用产品成本 4、求饮食产品销售价格的方法⎩
⎨⎧成本毛利率法销售毛利率法 5、饮食产品定价应遵循的原则。
6、相关的公式。
二、例题讲解
1、选择题
(1)营业成本是指按照会计核算程序计算出来的一定时期内实际耗用的原材料和燃料价值的( C )。
A 、单位平均数
B 、比值
C 、总和
D 、消耗率
(2)饮食产品价格等于( D )。
A 、毛利
B 、燃料成本
C 、成本
D 、原材料成本
(3)管理费用是指企业管理部门组织和管理企业( C )。
A 、生产经营
B 、生产
C 、经营
D 、经销
(4)费用包括( B )。
A 、成本费用
B 、营业费用
C 、生产费用
D 、耗能费用
2、计算题
例1已知菜肴炒鲜虾仁的销售价格是38.00元,销售毛利率为45%,试求这盘菜肴的成本是多少?
解:设成本为x 元.
销售价格=
销售毛利率成本-1
38%
451-=x 9.20=x
答:成本为20.9元.
例2已知点心一打(12个)萝卜酥的销售价格是32.00元,成本毛利率为80%,求一打萝卜酥的成本是多少?
解:设成本为x 元.
销售价格=成本×(1+成本毛利率)
32=(1+80%)x
8.17≈元.
答:成本为17.8元.
例3已知制做菜肴酿节瓜耗用的原材料成本为15.20元,成本毛利率为90%,试求该菜肴的销售毛利率,并用两种计价方法求它的销售价格是多少?
解:(一)、用成本毛利率法来计算销售价格.
销售价格=成本×(1+成本毛利率)
=15.2×(1+90%)
=28.88(元)
销售毛利率=
成本毛利率成本毛利率+1 =%
901%90+ ≈47.4%
(二)、用销售毛利率法来计算销售价格.
销售价格=
销售毛利率成本-1 =%
4.4712.15- 9.28≈(元)
答:销售价格为28.88元.
例4已知某菜肴的销售价格是36.20元,销售毛利率为45%,试求这盘菜肴的成本是多少?
解:设成本为x 元.
销信价格=
销售毛利率成本-1 36.2=%
451-x x =19.91(元)
答:成本为19.91元.
三、课堂练习
1、甜烧白一份售价18元,成本毛利率60%,求该菜成本?
2、已知某份菜肴销售价格为40元,耗用的原材料和燃料22元,试求它的销售毛利率和成本毛利率.
3、葱爆肉丝成本为8.20元,售价15元,求其成本毛利率和销售毛利率?
四、作业
书58P 2题.
五、小结
这是一堂成功的习题课,学生兴趣较高,但学生基础太差,为了照顾大多数同学,一堂课所讲的内容太少.。