大学数学 概率论第一章
- 格式:doc
- 大小:112.50 KB
- 文档页数:5
概率论主要内容第一章 随机事件与概率主要内容:一.事件的运算:交、并、补等二.概率的性质:加法公式等三.三种概型:古典概型、几何概型、伯努利概型古典概型,满足有限性(样本点总数有限)、等可能性,计算概率用样本点个数之比; 几何概型,满足有限性(样本空间测度有限)、等可能性,计算概率用测度之比; 伯努利概型,满足两种结果、相互独立,概率不变,计算概率用伯努利定理,n k p p C k X P k n k k n ,,1,0,)1(}{L =−==−。
四.条件概率及其三个公式:乘法公式、全概率公式、贝叶斯公式乘法公式,事件积的概率等于一个事件的概率乘以另一事件的条件概率;全概率公式,用于一个结果可在多种原因下发生,根据原因求结果,∑==ni i i B A P B P A P 1)|()()(; 贝叶斯公式,用于一个结果可在多种原因下发生,结果发生了,问原因,∑==n i ii k k k B A P B P B A P B P A B P 1)|()()|()()|(。
五.事件独立性重点:条件概率及其三个公式;事件独立性。
第二章 随机变量及其分布主要内容:一.三类变量:离散、连续、混合离散随机变量,全部可能取值为有限个或可列无限个,分布函数为阶梯形函数,一般用概率函数刻画,求概率时用概率函数求和;连续随机变量,分布函数为连续函数且不可导的点最多只有可列无限个,一般用密度函数刻画,求概率时用密度函数积分;混合随机变量,分布函数不连续也不是阶梯形函数且不可导的点最多只有可列无限个,只能用分布函数刻画,求概率时用斯蒂阶积分。
二.三个函数:概率函数、密度函数、分布函数概率函数,L ,2,1,}{===k p x X P k k ,基本性质-非负性、正则性,适用于离散随机变量; 密度函数,)(x p ,基本性质-非负性、正则性,适用于连续随机变量;分布函数,}{)(x X P x F ≤=,基本性质-单调性、正则性、右连续性,适用于所有随机变量。
第一章第一章 随机事件1.1 概述§1.1§1.2 事件的概率§1.3 古典概率模型§1.4 条件概率§1.5 事件的独立性二.有无限个可数个可能结果的随机试验.例1:观察某交换台早晨8:00-9:00接到电话的次数,设数字i 表示呼叫次数, i =0,1,2=0,1,2……..,则: Ω={0,1,2,={0,1,2,…….}三.可能结果不可数的随机试验.例1:在分析天平上称量某物品并记录称量的结果.记x 为此物的称量, 则Ω={|0}x x ≥例2:在一批灯泡中任取一个,测其寿命记t 为所取灯泡的寿命, 则Ω=}0|{≥t t 例3:观察某块地的玉米产量. 记y 为此块地的玉米产量, 则Ω={|0}y y M ≤≤类似的可推广到多个事件相加,以及无数可列个事件相加.n 个事件的并(和)12,,,n A A A ⋯表示n 个事件中至少有一个发生,记为n A A A +++⋯21nA A A ∪∪∪⋯21可列个事件的并(和)12,,,,n A A A ⋯⋯11n nn A A A ∞=+++=∑⋯⋯表示可列个事件中至少有一个发生,记为或是1nn A ∞=∪或“可列个”在本学科里通常表示无限个可数的。
ABAB-A AAB A-B⇒⇔事件例 掷一颗骰子的试验,观察出现的点数:事件A 表示“奇数点”;B 表示“偶数点”;C 表示“小于3的点”,D 表示“大于2小于5的点” E 表示“大于4的点”,求事件间的关系.D ={3,4}, E ={5,6}, Ω={1,2,3,4,5,6}解:显然有:A ={1,3,5}, B ={2,4,6}, C ={1,2}互不相容事件有:A 与BC 与D, 或说事件C,D,E 两两互不相容对立事件有:A 与BD 与E,C 与EC D E ++=ΩA B +=Ω又因为A,B 构成Ω的一个最小的划分C ,D ,E 构成Ω的一个划分1.[关系]事件的包含2. [关系]事件的相等:3. [运算]事件的并(和)4. [运算]事件的交(积)5.[运算]事件的差(A-B)6.[关系]互不相容事件(互斥事件)7.[关系]对立事件(互逆事件)8.[关系] Ω的一个划分小结本节首先介绍随机试验、样本空间的基本概念,然后介绍随机事件的各种运算及运算法则。
概率统计是研究随机现象数量规律的数学学科, 理论严谨, 应用广泛, 发展迅速. 目前, 不仅高等学校各专业都开设了这门课程, 而且从上世纪末开始,这门课程特意被国家教委定为本科生考研的数学课程之一,希望大家能认真学好这门不易学好又不得不学的重要课程.《概率论与数理统计概率论与数理统计》》前言《应用概率统计应用概率统计》》 主要教学参考书陈魁 主编 清华大学出版社《概率论与数理统计概率论与数理统计》》刘军凤 等编著 科技文献出版社(复习指导书)每周第一次课收前一周作业,课代表收齐按名单序号排好后课前交教师。
答疑:每周3,晚7:00~9:00,3教5楼教师休息室国内有关经典著作1.1.《《概率论基础及其应用概率论基础及其应用》》 王梓坤著 科学出版社 1976 年版 2.《数理统计引论数理统计引论》》陈希儒著 科学出版社 1981年版国外有关经典著作1.《概率论的分析理论概率论的分析理论》》P.- S.拉普拉斯著 1812年版2. 《统计学数学方法统计学数学方法》》H. 克拉默著 1946年版概率论的最早著作数理统计最早著作 概率统计专业首位中科院院士本学科的 A B C概率(或然率或几率) ) ——————随机事件出现的可能性的量度————其起源用骰子赌博. 1616世纪意大利学者开始研究掷骰子等赌博世纪意大利学者开始研究掷骰子等赌博中的一些问题;中的一些问题;171717世纪中叶,法国数学家世纪中叶,法国数学家世纪中叶,法国数学家B. B. B. 帕帕斯卡、荷兰数学家斯卡、荷兰数学家C. C. C. 惠更斯惠更斯惠更斯基于排列组合的方法,研究了较复杂方法,研究了较复杂 的赌博问题,的赌博问题, 解决了“ 合理分配赌注问题” 。
概率论是研究客观世界随机现象数量规律的 数学分支学科.19331933年苏联柯尔莫哥洛夫完成了概率的公理化体系。
数理统计学是一门研究怎样去有效地收集、整理和分析带有随机性的数据,以对所考察的问题作出推断或预测,直至为采取一定的决策的科学艺术使概率论成为数学一个分支的真正奠基人是瑞士数学家是瑞士数学家J.J.J.伯努利;而概率论的飞速发展伯努利;而概率论的飞速发展则在则在171717世纪微积分学说建立以后世纪微积分学说建立以后世纪微积分学说建立以后.. 概率论是数理统计学的基础,数理统计学是概率论的一种应用.但是它们是两个并列的数学分支学科,并无从属关系.本学科的应用概率统计理论与方法的应用几乎遍及所有科学技术领域、工农业生产和国民经济的各个部门中. 例如1.1. 气象、水文、地震预报、人口控制及预测都与 概率论 紧密相关;2. 产品的抽样验收,新研制的药品能否在3. 寻求最佳生产方案要进行 实验设计 和数据处理;临床中应用,均需要用到 假设检验;4. 电子系统的设计, 火箭卫星的研制与发射都离不开可靠性估计;5. 探讨太阳黑子的变化规律时,时间序列分析方法非常有用;6. 研究化学反应的时变率,要以马尔可夫过程来描述;7. 在生物学中研究群体的增长问题时提出了生灭型随机模型,传染病流行问题要用到多变量非线性生灭过程;8. 许多服务系统,如电话通信、船舶装卸、机器维修、病人候诊、存货控制、水库调度、购物排队、红绿灯转换等,都可用一类概率模型来描述,其涉及到的知识就是排队论.目前,概率统计理论进入其他自然科学领域的趋势还在不断发展. 在社会科学领域,特别是经济学中研究最优决策和经济的稳定增长等问题,都大量采用概率统计方法. 正如法国数学家拉普拉斯所说: “生活中最重要的问题,其中绝大多数在实质上只是概率的问题.”第一章概率论的基本概念§1 随机试验§2 样本空间、随机事件§3 频率与概率§4 等可能概型§5 条件概率§6 独立性序 言1.自然界和人类社会中的两类不同现象:例:同性电荷相斥.北京地区7、 8、 9三个月的降雨量.一个标准大气压下,100o 水沸腾.朝某方向一直走,终究返回原地.例:癌症患者手术后生存时间.我校西面马路上一个月内发生车祸的次数.一定条件下必发生称为必然现象新生婴儿的体重.随机现象随机现象是不是没有规律可言?2.随机现象统计规律的实例:肿瘤医院医生对其病人手术后生存时间估计很准确。
新编概率论与数理统计(肖筱南著)课后答案下载新编概率论与数理统计(肖筱南著)特色及评论第一章随机事件及其概率1 随机事件及其运算一、随机现象与随机试验二、样本空间三、随机事件四、随机事件间的关系与运算习题1-12 随机事件的概率一、概率的统计定义二、概率的古典定义习题1-2(1)三、概率的几何定义四、概率的公理化定义与性质习题1-2(2)3 条件概率与全概率公式一、条件概率与乘法公式二、全概率公式与贝叶斯(bayes)公式习题1-34 随机事件的独立性一、事件的相互独立性二、伯努利(bernoulli)概型及二项概率公式习题1-45 综合例题一、基本概念的理解二、几种典型的古典概型问题三、有关概率加法公式的应用四、条件概率和乘法公式五、全概率公式和贝叶斯公式的应用六、独立性的性质与应用七、二项概率公式的应用总习题一第二章随机变量及其分布1 离散型随机变量及其分布律一、随机变量的定义二、离散型随机变量及其分布律三、常见的离散型随机变量的分布习题2-12 随机变量的分布函数一、分布函数的概念二、分布函数的性质习题2-23 连续型随机变量及其概率密度一、连续型随机变量的.概率密度二、连续型随机变量的性质三、离散型随机变量与连续型随机变量的比较习题2-34 几种常见的连续型随机变量的分布一、均匀分布二、指数分布三、正态分布习题2-45 随机变量函数的分布一、离散型情形二、连续型情形习题2-56 二维随机变量及其联合分布函数一、二维随机变量的概念二、联合分布函数的定义及意义三、联合分布函数的性质习题2-67 二维离散型随机变量一、联合分布律二、边缘分布律三、条件分布律习题2-78 二维连续型随机变量一、联合概率密度二、边缘概率密度三、两种重要的二维连续型分布四、条件概率密度习题2-89 随机变量的相互独立性一、随机变量相互独立的定义二、离散型随机变量相互独立的充分必要条件三、连续型随机变量相互独立的充分必要条件四、二维正态变量的两个分量相互独立的充分必要条件习题2-910 两个随机变量的函数的分布一、离散型情形二、连续型情形习题2-1011 综合例题一维部分一、基本概念的理解二、求随机变量概率分布中的未知参数三、求分布律四、求分布函数五、已知常见分布,求相关概率六、随机变量函数的分布二维部分一、基本概念的理解二、二维离散型随机变量三、二维联合分布函数四、二维联合概率密度总习题二第三章随机变量的数字特征1 数学期望一、离散型随机变量的数学期望二、连续型随机变量的数学期望三、随机变量函数的数学期望四、数学期望的性质习题3-12 方差一、方差的定义二、常见分布的方差三、方差的性质习题3-23 协方差与相关系数一、协方差二、相关系数三、相关系数的意义习题3-34 矩与协方差矩阵习题3-45 综合例题一、基本概念的理解二、数学期望和方差的应用三、有关数字特征的计算总习题三第四章大数定律与中心极限定理第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析新编概率论与数理统计(肖筱南著)本书目录《新编概率论与数理统计(第2版)/21世纪高等院校教学规划系列教材》是根据教育部__新颁布的全国高校理工科及经济类“概率论与数理统计课程教学基本要求”并参考“理学、工学、经济学硕士研究生入学考试大纲”进行编写的。
第一章 随机事件及其概率
一、填空题
1.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 .
2.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .
3.在区间(0, 1)中随机地取两个数,则事件“两数之和小于
56 ”的概率为 . 4.已知P (A )=0.4, P(B )=0.3,
(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= .
(2) 当B ⊂A 时, P(A+B )= ; P (AB )= ;
5. 事件C B A ,,两两独立, 满足21)()()(<
===C P B P A P ABC ,φ,且P (A+B+C )=16
9, )(A P 则= . 6.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .
7.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 .
8. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 .
9. 甲、乙、丙三人入学考试合格的概率分别是5
2 ,21 ,32,三人中恰好有两人合格的概率为 .
10. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为 ;A 至多发生一次的概率为 . 二、选择题
1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为( ).
(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;
(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.
2. 对于任意二事件A 和B 有=-)(B A P ( ).
(A) )()(B P A P -; (B ))()()(AB P B P A P +-;
(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.
3. 当事件A 、B 同时发生时,事件C 必发生则( ).
(A)()()()1;(B)()()()1;
(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+
4. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( ).
() (|)(|)1; () (|)(|)(|)(|);
() (|)(|)1; () (|)(|)(|).
A P A C P A C
B P A B
C P A C P B C P AB C C P A C P A C
D P A B C P A C P B C +==+-+== 5. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为( ).
1212() ; () ; () ; () .4455A B C D
6. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ( ).
(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;
(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.
7. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为( ).
222222(A)3(1); (B)6(1);
(C)3(1); (D)6(1).p p p p p p p p ----
三、解答题
1. 从数字1,2,3,…,10中任意取3个数字,
(1)求最小的数字为5的概率;
(2)求最大的数字为5的概率。
2.已知10只晶体管中有2只次品,在其中取二次,每次随机取一只,作不放回抽样,求下列事件的概率。
(1)两只都是正品;(2)两只都是次品;(3)一只是正品,一只是次品;(4)至少一只是正品。
3.从0 ~ 9中任取4个数构成电话号码(可重复取)求:
(1)有2个电话号码相同,另2个电话号码不同的概率p;
(2)取的至少有3个电话号码相同的概率q.
4. 某门课只有通过口试及笔试两种考试,方可结业. 某学生通过口试概率为80%,通过笔试的概率为65%,至少通过两者之一的概率为75%,问该学生这门课结业的可能性有多大?
5. 已知16
1)()(,0)(,41)()()(====
==BC P AC P AB P C P B P A P ,求事件C B A ,,全不发生的概率.
6. 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?
7. 某一工厂有C B A ,,三个车间生产同一型号螺钉,每个车间的产量分别占该厂螺钉总产量的25 %、35 %、40 %,每个车间成品中的次品分别为各车间产量的5 %、4 %、2 %,如果从全厂总产品中抽取一件产品螺钉为次品,问它是C B A ,,车间生产的概率.
8. 已知男人中有5 %的色盲患者,女人中有0.25 %的色盲患者,今从男女人数中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?
9. 某类电灯泡使用时在1000小时以上的概率为0.2,求三个灯泡在使用1000小以后最多只有一个坏的概率.
10. 一射手对同一目标独立进行了四次射击,若至少命中一次的概率为
81
80, 求该射手的命中率.
11. 设有三门火炮同时对某目标射击,命中概率分别为0.2、0.3、0.5,目标命中一发被击毁的概率为0.2,命中二发被击毁的概率为0.6,三发均命中被击毁的概率为0.9,求三门火炮在一次射击中击毁目标的概率.。