声发射检测技术
- 格式:ppt
- 大小:457.50 KB
- 文档页数:35
无损检测之声发射检测无损检测之声发射检测7.声发射检测声发射检测技术是一种与X射线、超声波等常规检测方法不同的、特殊无损检测方法。
用仪器探测、记录、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射技术。
7.1 声发射的概念声发射——材料中局域源快速释放能量产生瞬态弹性波的现象。
(AcousticEmission,简称AE),也称为应力波发射。
声发射事件—引起声发射的局部材料变化。
声发射源——材料中直接与变形和断裂机制有关的弹性波发射源声发射源的实质是指声发射的物理源点或发生声发射的机制源。
材料在应力作用下的变形与裂纹扩展,是结构失效的重要机制。
其它声发射源——流体泄漏、摩擦、撞击、燃烧等与变形和断裂机制无直接关系的另一类弹性波源。
也称为二次声发射源。
声发射技术是一种动态无损检测方法,它通过探测受力时材料内部发出的应力波判断承压设备内部损伤程度。
声发射检测技术主要用于在用承压设备装个系统安全性评价。
原理:从声发射源发射的弹性波最终传播到达材料的表面,引起可以用声发射传感器探测的表面位移,这些探测器将材料的机械振动转换为电信号,然后再被放大、处理和记录。
根据观察到的声发射信号进行分析与推断以了解材料产生声发射的机制。
声发射检测的的主要目的①确定声发射源的部位;②分析声发射源的性质;③确定声发射发生的时间或载荷;④评定声发射源的严重性。
一般而言,对超标声发射源,要用其它无损检测方法进行局部复检,以精确确定缺陷的性质与大小。
示例:球罐的声发射检测能力范围a)能检测出金属材料承压设备加压试验过程的裂纹等活性缺陷的部位、活性和强度;b)能够在一次加压试验过程中,整体检测和评价整个结构中缺陷的分布和状态;c)能够检测出活性缺陷随载荷等外变量而变化的实时和连续信息。
局限性a)难以检测出非活性缺陷;b)难以对检测到的活性缺陷进行定性和定量,仍需要其它无损检测方法复验;c)对材料敏感,易受到机电噪声的干扰,对数据的正确解释要有较为丰富的数据库和现场检测经验。
机械设备故障诊断讲稿__声发射监测技术声发射技术是根据结构内部发出的应力波来判断结构内部损伤程度的一种动态无损检测技术。
由于该方法能连续监视结构内部损伤的全过程,因此得到了广泛应用。
一、声发射监测的基本原理在日常生活中,人们会注意到,折断竹杆可以听到噼啦的断裂声,打碎玻璃可以听到清脆的破碎声,水开时可以听到对流声,这些都是人耳可觉查到的声发射现象。
通常,人们把物体在状态改变时自动发出声音的现象称为声发射。
其实质是物体受到外力或内力作用产生变形或断裂时,就以弹性波形式释放能量的一种现象。
由于声发射提供丁材料状态变化的有关信息,所以可用于设备的状态监测和故障诊断。
声发射源往往是材料损坏的发源地。
由于声发射源的活动常在材料破坏之前很早就会出现,因此,可根据材料的微观变形和开裂以及裂纹的发生和发展过程所产生声发射的特点及强度来推知声发射源目前的状态(存在、位置、严重程度),而且可知道它形成的历史,并预测其发展趋势。
这就是声发射监测的基本原理。
二、声发射监测具有以下持点:(1)声发射监测可以获得有关缺陷的动态信息。
结构或部件在受力情况下,利用声发射进行监测,可以知道缺陷的产生、运动及发展状态,并根据缺陷的严重程度进行实时报警。
而超声波探伤,只能检测过去的状态,属于静态情况下的探伤。
(2)声发射监测不受材料位置的限制。
材料的任何部位只要有声发射,就可以进行检测并确定声源的位置。
(3)声发射监测只接收由材料本身所发射的超声波;而超声波监测必须把超声波发射到材料中,并接收从缺陷反射回来的超声波。
(4)灵敏度高。
结构缺陷在萌生之初就有声发射现象;而超声波、x射线等方法必须在缺陷发展到一定程度之后才能检测到。
(5)不受材料限制。
因为声发射现象普遍存在于金属、塑料、陶瓷、木材、混凝土及复合材料等物体中,因此得到广泛应用。
由于声发射具有以上特点,因此得到了科学家和工程技术人员的重视。
美国在l 964年就研制成功一套实用的声发射监测系统,并用于火箭发动机壳体水压试验的监测。
无损检测技术中的声发射检测方法声发射检测方法是无损检测技术中的一种重要方法,它通过监测材料或结构在受力或变形时产生的声波信号,识别出潜在的缺陷或病态信号,从而实现对材料或结构的监测和评估。
声发射检测方法具有灵敏度高、可靠性强、非破坏性的特点,被广泛应用于航空航天、能源、交通、制造等领域。
声发射检测方法的基本原理是利用物体在受力或变形时产生的应变能释放出声波信号。
当材料或结构中存在缺陷或病态时,这些缺陷会在受力或变形时产生能量释放,从而引起声波信号的发射。
通过分析和处理这些声波信号的特征参数,可以确定缺陷的位置、大小、性质以及材料或结构的损伤程度。
声发射检测方法在无损检测领域中有着广泛的应用。
首先,它可以用于评估材料或结构的完整性。
在航空航天领域,飞机的结构完整性是至关重要的,声发射检测方法可以用来监测飞机的机翼、机身等关键结构是否存在潜在的裂纹、疲劳或腐蚀等问题。
其次,声发射检测方法还可以用于监测材料或结构在受力或变形时的响应情况。
例如,在能源领域,声发射检测方法可以用来监测核电站压力容器的变形和疲劳破坏,以确保其安全运行。
此外,声发射检测方法还可以用于提前预警材料或结构的潜在问题,以便采取相应的维修和保养措施,避免事故的发生。
声发射检测方法具有许多独特的优点。
首先,它是一种非破坏性的检测方法,不需要对材料或结构进行破坏性的取样或试验,可以对大型、复杂的结构进行在线监测。
其次,声发射检测方法对缺陷的敏感性高,能够检测到微小的缺陷,如微小裂纹、微小气泡等。
第三,声发射检测方法具有较高的可靠性和准确性,可以对缺陷进行实时监测和评估,及时发现潜在问题并采取相应的措施。
此外,声发射检测方法还具有较强的定位能力,可以确定缺陷的具体位置和分布。
然而,声发射检测方法也存在一些局限性。
首先,对于复杂结构和材料的检测,声发射检测方法可能受到环境噪音的干扰,影响信号的采集和处理。
其次,在某些情况下,声发射检测方法可能存在误报和漏报的情况,需要进一步的分析和判断。
无损检测中的声发射技术研究与应用无损检测(non-destructive testing,NDT)是一种非破坏性检测技术,它能够在不影响被检测物体完整性的情况下对其进行检测。
无损检测在机械、航空、电力、化工等领域得到广泛应用,是保证工业设备安全可靠的重要手段。
声发射技术是无损检测中的一种重要技术,主要应用于金属、混凝土等材料的疲劳损伤、龟裂、渗透等缺陷的检测。
本文将探讨声发射技术在无损检测中的研究与应用。
一、声发射技术的原理声发射是指物体表面发生微小裂纹和变形等异常情况时产生的声波,其频率范围一般在几百赫兹至几兆赫兹之间。
声发射技术是通过监测物体表面的声波信号来寻找和定位缺陷的。
声发射检测系统一般由传感器、信号放大器、模拟滤波器及数据处理器等组成。
传感器是关键部件,其接收材料内部的微小声波信号,并将其转换成电信号输出。
信号放大器将低电平的声发射信号放大后,再通过模拟滤波器进行滤波和去噪处理,最终由数据处理器记录并分析信号。
二、声发射技术的应用声发射技术主要应用于金属、混凝土等材料的缺陷检测。
在金属材料上的应用较为广泛,可用于疲劳损伤、龟裂、脆性断裂等缺陷的检测。
在混凝土检测方面,声发射技术一般用于寻找混凝土中的龟裂、空洞以及钢筋锈蚀等缺陷。
声发射技术在材料疲劳损伤检测中有非常重要的应用,其原理是监测金属材料在加载循环中产生的微裂纹的声波信号。
当材料承受重复的外部载荷时,其内部将产生微小的裂纹,声发射技术可通过监测这些微小裂纹的声波信号来预测金属材料的寿命。
声发射技术在航空、机械等行业的应用较为广泛,可用于检测航空发动机、飞机翼和螺旋桨等重要部件的安全状况。
同时,在火电厂、核电站等重要设备中,声发射技术也常被使用。
其原理是通过监测设备内部的声波信号,发现管道、阀门、轴承、齿轮等部件的缺陷,以避免因缺陷导致的事故。
三、声发射技术的研究声发射技术自问世以来,一直在不断地发展和完善。
近年来,它在无损检测中的应用也有了很大的拓展。
声发射检测技术原理
1 声发射检测技术
声发射检测技术是一种用于检测机械设备中微小振动、声发射的
非接触式的无损检测技术,是综合应用声学、声电子、数据处理等多
学科领域的技术,可以检测被检机械设备的噪声信息和机械振动信息,隐含着某种机械故障信息,经数据分析处理后,可以准确同时预测出
机械设备故障的发生及严重程度、故障类型及损伤部位。
2 声发射检测技术原理
当机械设备受力失衡或磨损时,会产生微小振动,这些振动信号
隐含有机械设备故障的信号,而声发射技术就是检测这些微小振动信号,从而获取机械设备故障的信息。
声发射检测技术一般分为三个步骤:首先,通过传感器将环境噪
声及机械设备的振动信号采集成电信号;其次,通过数据处理后,将
获得的信号分解成许多振动频率模式,即频谱图,然后在频谱图中分
析振动模式;最后,通过分析结果,可以判断机械设备的故障类型或
损伤部位。
3 声发射检测技术的优势
声发射检测技术最大的优势是非接触式,可以在机械设备正常工
作中进行无损检测、及早发现机械故障,并可以准确预测出机械设备
故障的发生及严重程度、故障类型及损伤部位,避免了台位检测时需
要拆开机械设备的必要性–造成的浪费。
此外,声发射检测技术可提供的数据量大、可以长期应用于监测,具有重用性、可复制性和灵活性,可大大提高维修和维护检测的效率与精度。
总之,声发射技术是一种新兴的检测技术,由于不仅针对机械设备具有强大的检测深度以及无损检测功能,在工业和航空领域已开始被广泛采用,其优势无疑将会在维护保养领域发挥出越来越重要的作用。