2020-2021学年四川省成都市石室天府中学八年级(上)入学数学试卷 解析版
- 格式:doc
- 大小:362.50 KB
- 文档页数:27
一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab 3.若3a b +=-,10ab =-,则-a b 的值是( ) A .0或7 B .0或13-C .7-或7D .13-或13 4.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .9 5.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4 B .4C .﹣6D .6 6.若3a b +=,1ab =,则()2a b -的值为( )A .4B .5C .6D .77.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2 8.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n - 9.已知5a b +=,2ab =-,则a 2+b 2的值为( ) A .21B .23C .25D .29 10.下列运算中错误的是( ). A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1 11.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += 12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2-二、填空题13.如果210x x m -+是一个完全平方式,那么m 的值是__________.14.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.15.若2a x =,3b x =,则32a b x -=___________.16.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.17.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________.18.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.19.若210a a +-=,则43222016a a a a +--+的值为______.20.分解因式:2a 2﹣8=______.三、解答题21.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.22.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.23.因式分解:(1)222x - (2)32244x x y xy -+24.分解因式:(1)25105x x ++(2)()()2249a x y b y x -+-25.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.26.先化简,再求值:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a ,其中a =12.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可.【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意;B 、(a 2)3=a 6,故选项不B 符合题意;C 、(ab 2)3=a 3b 6,故选项C 不符合题意;D 、a 6÷a 2=a 4,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.2.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键. 3.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯--∴()2 49a b -=∴7a b -=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键. 4.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 5.A解析:A【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解.【详解】解:∵x 2-y 2=(x+y )(x-y )=24,∴6(x-y )=24,∴x-y=4,∴y-x=-4,故选:A .【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.6.B解析:B【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可【详解】∵3a b +=,∴22()3a b +=,即2229a ab b ++=,将1ab =代入上式得:229217a b +=-⨯=.∵222()2a b a b ab -=+-,∴2()725a b -=-=.故选:B .【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键. 7.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.8.B解析:B【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可.【详解】解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n ,∴它们的积为:3163166323?3m n m n m n -=-,故选:B .本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键. 9.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.10.C解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可.【详解】解:A:()()4444443381n n n a ba b a b --=--=- ,故答案正确; B:()41444n nn n a b a b +++=+ ,故答案正确; C:()()232262623427108n n n a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n n n n x x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确. 故选:C .【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.11.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a ,∵积中不含x 的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.15.【分析】根据同底数幂除法逆运算及积的乘方逆运算解答【详解】∵∴故答案为:【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算正确掌握计算公式并熟练应用是解题的关键 解析:89【分析】根据同底数幂除法逆运算及积的乘方逆运算解答.【详解】∵2a x =,3b x =,∴32a b x -=3232328()()239a b a b xx x x ÷=÷=÷=, 故答案为:89. 【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算,正确掌握计算公式并熟练应用是解题的关键. 16.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案.【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.17.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键. 18.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积. 19.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键 解析:2015【分析】原式变形为()22222016aa a a a +--+,由已知得到21a a +=,整体代入即可求解. 【详解】 已知得:21a a +=,43222016a a a a +--+()22222016a a a a a =+--+2222016a a a =--+ ()22016a a =-++ 12016=-+2015=.故答案为:2015.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.20.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE ,=22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--,=64﹣12﹣644, =64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.22.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.23.(1)2(1)(1)x x +-;(2)2(2)-x x y .【分析】(1)首先提公因式2,再利用平方差公式进行分解即可;(2)首先提公因式x ,再利用完全平方公式进行分解即可.【详解】(1)原式()221x =- 2(1)(1)x x =+-.(2)原式()2244x x xy y =-+2(2)x x y =-.【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 24.(1)()251x +;(2)()()()2323x y a b a b -+- 【分析】(1)先提取公因式5,再利用完全平方公式分解因式;(2)先提公因式(x-y ),再利用平方差公式分解因式.【详解】(1)解:原式()2521x x =++ ()251x =+;(2)解:原式()()2249x y a b =--()()()2323x y a b a b =-+-.【点睛】此题考查因式分解:将多项式写成整式的积的形式,叫做将多项式因式分解,因式分解的方法:提公因式法和公式法,掌握因式分解的方法并熟练应用是解题的关键. 25.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =,∴()222240a b a b ab+=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.26.a﹣12,0【分析】先根据完全平方公式和多项式乘以多项式算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】解:[(2a﹣1)2﹣(2a+1)(2a﹣1)+(2a﹣1)(a+2)]÷2a=[4a2﹣4a+1﹣4a2+1+2a2+4a﹣a﹣2]÷2a=[2a2﹣a]÷2a=a﹣12,当a=12时,原式=0.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.。
一、选择题1.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .不确定 3.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 4.已知三角形的两边长分别为1和4,则第三边长可能是( ) A .3B .4C .5D .6 5.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒6.如图,1∠等于( )A .40B .50C .60D .70 7.下列长度的三条线段能组成三角形的是( )A .3,3,4B .7,4,2C .3,4,8D .2,3,58.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°9.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米10.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°11.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm 12.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、3 二、填空题13.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.16.如图:70B ∠=︒,60A ∠=︒,将ABC 沿一条直线MN 折叠,使点C 落到1C 位置,则12∠-∠=______.17.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.18.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.19.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.三、解答题21.已知AD 是ABC 的角平分线,CE 是AB 边上的高,AD ,CE 相交于点P ,BCE 40,APC 123∠∠=︒=︒,求ADC ∠和ACB ∠的度数.22.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个; ②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =13∠CAB ,∠CDP =13∠CDB”,请直接写出∠P 与∠B 、∠C 之间存在的数量关系.23.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 24.如图,//AE DF ,BE DF ⊥于点G ,190B ∠+∠=︒.(1)判断CD 与AB 的位置关系,并说明理由.(2)若50A ∠=︒,求出DEG ∠的度数.25.如果正多边形的每个内角都比它相邻的外角的4倍多30°.(1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.26.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西65°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村观测A 、B 两村的视角ACB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∠>∠,∴2D∴选项C正确;∠=∠没有条件说明C D故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 4.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.5.C解析:C【分析】根据三角形的外角性质求解.【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=130°-55°=75°,故选C.【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.6.D解析:D根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒故选D .【点睛】本题考查了三角形外角的性质,比较简单.7.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A 、3+3>4,能构成三角形,故此选项正确;B 、4+2<7,不能构成三角形,故此选项错误;C 、3+4<8,不能构成三角形,故此选项错误;D 、2+3=5,不能构成三角形,故此选项错误.故选:A .【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠,∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.9.D解析:D【分析】连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果.【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.10.C解析:C【分析】先依据平行线的性质可求得∠ABC 的度数,然后在直角三角形CBD 中可求得∠BCD 的度数.【详解】解:∵//BC AE ,150∠=︒,∴∠1=∠ABC=50°.∵CD AB ⊥于点D ,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C .【点睛】本题主要考查平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.11.C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<,∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.12.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D 、4+5>6,能组成三角形,故此选项错误;B 、3+4>5,能组成三角形,故此选项错误;A 、2+3>4,能组成三角形,故此选项错误;D 、1+2=3,不能组成三角形,故此选项正确;故选:D .【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题13.102°【分析】首先根据∠DFC =3∠B =117°可以算出∠B =39°然后设∠C =∠D =x°根据外角与内角的关系可得39+x +x =117再解方程即可得到x =39再根据三角形内角和定理求出∠BED 的度解析:102°首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.【详解】解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.14.【分析】根据翻折变换的性质得出∠ACD=∠BCD∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC再利用平角的定义即可得出答案【详解】解:∵将Rt△ABC沿CD折叠使点B落在AC边解析:40【分析】根据翻折变换的性质得出∠ACD=∠BCD,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC,再利用平角的定义,即可得出答案.【详解】解:∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC和∠B′DC的度数是解题关键.15.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B∠2=∠C+∠D∠3=∠E+∠F∠4=∠G+∠H∴∠A+∠B+∠C+∠D+∠E +∠F+【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.16.100°【分析】由三角形内角和定理可求得∠C的度数又由折叠的性质求得∠C1的度数然后由三角形外角的性质求得答案【详解】解:如图∵∠B=70°∠A=60°∴∠C=180°﹣∠B﹣∠C=50°由折叠可知解析:100°【分析】由三角形内角和定理,可求得∠C的度数,又由折叠的性质,求得∠C1的度数,然后由三角形外角的性质,求得答案.【详解】解:如图,∵∠B=70°,∠A=60°,∴∠C=180°﹣∠B﹣∠C=50°,由折叠可知:∠C1=∠C=50°,∵∠3=∠2+∠C1∠1=∠3+∠C,∴∠1=∠2+∠C1+∠C,∴∠1﹣∠2=2∠C =100°.故答案为:100°.【点睛】此题考查了折叠的性质、三角形内角和定理以及三角形外角等于和它不相邻的两个内角和的性质.此题难度适中,注意折叠中的对应关系,注意掌握转化思想的应用. 17.【分析】先根据三角形的内角和求出∠PBC+∠PCB=故可得到∠ABC+∠ACB=即可得出答案【详解】在△BPC 中∠BPC=∴∠PBC+∠PCB=∵P 是三角形三条角平分线的交点∴∠ABC=2∠PBC ∠解析:20︒【分析】先根据三角形的内角和求出∠PBC+∠PCB=80︒,故可得到∠ABC+∠ACB=160︒,即可得出答案.【详解】在△BPC 中,∠BPC=100︒,∴∠PBC+∠PCB=80︒,∵P 是三角形三条角平分线的交点,∴∠ABC=2∠PBC ,∠ACB=2∠PCB ,∴∠ABC+∠ACB=2∠PBC+2∠PCB=160︒,∴∠BAC=180()20ABC ACB ︒-∠+∠=︒,故答案为:20︒.【点睛】此题考查三角形的内角和定理,角平分线的有关计算,熟练应用定理解决问题是解题的关键.18.180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和【详解】解:∵AB ∥DC ∴∠B+∠C =180°∴∠B 的外角与∠C 的外角的和为180°∵六边形ABCDEF 的外角和为360解析:180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和.【详解】解:∵AB ∥DC ,∴∠B +∠C =180°,∴∠B 的外角与∠C 的外角的和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°19.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.20.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P 在AB 的上方,30,20BPD PBA ∠=︒∠=︒,150BPD PBA ∴∠=∠+∠=︒,//AB CD ,150CDP ∴∠=∠=︒;(2)如图,点P 在AB 与CD 的中间,延长BP ,交CD 于点E ,//,20AB CD PBA ∠=︒,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.三、解答题21.∠ADC 83=︒,∠ACB 64=︒.【分析】由CE 是AB 边上的高,可得∠AEC=90︒,再利用三角形的外角性质可得∠ADC ,∠EAP ,∠B 的度数,再根据AD 是ABC 的平分线,可得∠BAC 的度数,再利用三角形的内角和定理即可得到∠ACB 的度数.【详解】∵CE 是AB 边上的高,∴CE ⊥AB ,即∠AEC=90︒,∵∠APC=∠BCE+∠ADC=123︒,∠BCE=40︒,∴∠ADC=123︒-4083︒=︒,∵∠APC=∠AEP+∠EAP=123︒,∴∠EAP=1239033︒-︒=︒,∵AD 是ABC 的角平分线,∴∠BAC=2∠EAP=23366⨯︒=︒,∵∠ADC=∠BAD+∠B ,∴∠B=833350︒-︒=︒,∵∠B+∠BAC+∠ACB=180︒,∴∠ACB=180665064︒-︒-︒=︒,即∠ADC 83=︒,∠ACB 64=︒.【点评】本题考查了三角形的角平分线、高线,三角形的外角性质和三角形的内角和定理.熟记性质并准确识图是解题的关键.22.(1)∠A+∠C =∠B+∠D ;(2)①3,4;②110°;③3∠P=∠B+2∠C .【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC 为边的“8字型”有3个,以点O 为交点的“8字型”有4个; ②根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C-∠P=∠P-∠B ,即∠P=12(∠C+∠B ),然后把∠C=120°,∠B=100°代入计算即可; ③与②的证明方法一样得到3∠P=∠B+2∠C .【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC ,∠B+∠D=180°-∠BOD ,∵∠AOC=∠BOD ,∴∠A+∠C=∠B+∠D ;(2)解:①以线段AC 为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB),∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB).∴2(∠C-∠P )=∠P-∠B ,∴3∠P=∠B+2∠C .【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义. 23.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.24.(1)//CD AB ,证明见解析;(2)40°【分析】(1)先求证D DFB ∠=∠,再根据平行线判定得到//CD AB ;(2)先求出B 的度数,再根据平行线的性质得到DEG ∠的度数.【详解】(1)//CD AB ;理由如下:∵BE DF ⊥,∴90FGB ∠=︒,∴18090DFB B FGB ∠+∠=︒-∠=︒,∵190B ∠+∠=︒,∴1DFB ∠=∠,∵//AE DF ,∴1D ∠=∠,∴D DFB ∠=∠,∴//CD AB .(2)∵//AE DF ,50A ∠=︒,∴50DFB A ∠=∠=︒,∵90DFB B ∠+∠=︒,∴40B ∠=︒,∵//CD AB ,∴40DEG B ∠=∠=︒.【点睛】考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a ∥b ,b ∥c ⇒a ∥c .25.(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数; (2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线. 26.80ACB ∠=︒【分析】根据平行线的性质以及三角形内角和定理即可得到结论.【详解】解:由已知,265∠=︒,315∠=︒,85DBC ∠=︒∵//BD AE∴1265∠=∠=︒∴41856520DBC ∠=∠-∠=︒-︒=︒在ABC 中18018065152080ACB ABC BAC ∠=︒-∠-∠=︒-︒-︒-︒=︒【点睛】本题考查的是方向角的概念,平行线的性质以及三角形内角和定理,熟练掌握三角形的内角和是解答此题的关键.。
2020-2021学年四川省成都市天府新区八年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数2.(3分)下列各点在正比例函数2y x=图象上的是()A.(1,2)--B.(1,2)-C.(1,2)-D.(2,1)3.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( )A.8,10,12B.3,4,5C.5,12,13D.7,24,254.(3分)已知关于x,y的二元一次方程组32129x yx y+=+⎧⎨-=⎩的解为33xy=⎧⎨=-⎩,则的值是()A.3B.2C.1D.05.(3分)八年级(1)班甲、乙、丙、丁四名同学几次数学测试成绩的平均数x(分)及方差2S如表,老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选()甲乙丙丁平均数(分)95979597方差0.50.50.20.2 A.甲B.乙C.丙D.丁6.(3分)如图,在下列条件中,能判断//AB CD的是()A.12∠=∠B.BAD BCD∠=∠C.180BAD ADC∠+∠=︒D.34∠=∠7.(3分)下列各数中,介于6和7之间的数是( ) A .72+B .45C .472-D .358.(3分)为说明命题“若m n >,则22m n >”是假命题,所列举反例正确的是( ) A .6m =,3n =B .0.2m =,0.01n =C .1m =,6n =-D .0.5m =,0.3n =9.(3分)若一次函数(2)1y x =-+的函数值y 随x 的增大而增大,则( ) A .2<B .2>C .0>D .0<10.(3分)如图,两直线1y x b =+和2y bx =+在同一坐标系内图象的位置可能是( )A .B .C .D .二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.(4分)若3827x =-,则x = . 12.(4分)已知点(2,1)A m +与(2,3)B --关于y 轴对称,则m = . 13.(422(3)0a b -+=,则2()a b -= .14.(4分)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(121[3]27()|2392--++-(2)解方程组:236210x y x y -=⎧⎨+=⎩.16.(6分)已知:如图,180BAP APD ∠+∠=︒,12∠=∠.求证:E F ∠=∠.17.(8分)ABC ∆在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上. (1)作出ABC ∆关于x 轴对称的△111A B C ,并写出点1A 的坐标; (2)在y 轴上作点D ,使得AD BD +最小,并求出最小值.18.(8分)天府新区某校在暑假期间开展了“趣自然阅当夏”活动,王华调查了本校50名学生本学期购买课外书的费用情况,数据如下表: 费用(元) 20 30 50 80 100 人数61014128(1)这50名学生本学期购买课外书的费用的众数是 ,中位数是 ; (2)求这50名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?19.(10分)在疫情防控期间,某中学为保障广大师生生命健康安全,预从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元. (1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?20.(10分)如图,平面直角坐标系中,(0,)A a ,(,0)B b ,OC OA =,且a ,b 满足|8|60a b -++=.(1)求直线AB 的表达式;(2)现有一动点P 从点B 出发,以1米/秒的速度沿x 轴正方向运动到点C 停止,设P 的运动时间为t ,连接AP ,过点C 作AP 的垂线交射线AP 于点M ,交y 轴于点N ,请用含t 的式子表示线段ON 的长度;(3)在(2)的条件下,连接BM ,当:3:7ABM ACM S S ∆∆=时,求此时P 点的坐标.四.填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上). 21.(4分)如图,AB AC =,则数轴上点C 所表示的数为 .22.(4分)若点4(3A ,)m 和点3(,)2B n -在同一个正比例函数图象上,则2mn -的值是 .23.(4分)若21x =,则3232035x x x +-+的值为 .24.(4分)当m ,n 是正实数,且满足m n mn +=时,就称点(,)mP m n 为“美好点”.已知点(1,8)A 与点B 的坐标满足y x b =-+,且点B 是“美好点”,则OAB ∆的面积为 . 25.(4分)如图,已知30MON ∠=︒,B 为OM 上一点,BA ON ⊥于A ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90︒得CE ,连结BE ,若3AB =BE 的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.(1)A ,B 两城相距 千米,乙车比甲车早到 小时; (2)甲车出发多长时间与乙车相遇?(3)若两车相距不超过30千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?27.(10分)如图,ABC ∆和CEF ∆中,90BAC CEF ∠=∠=︒,AB AC =,EC EF =,点E 在AC 边上.(1)如图1,连接BE ,若3AE =,58BE =,求FC 的长度;(2)如图2,将CEF ∆绕点C 逆时针旋转,旋转角为(0180)αα︒<<︒,旋转过程中,直线EF 分别与直线AC ,BC 交于点M ,N ,当CMN ∆是等腰三角形时,求旋转角α的度数; (3)如图3,将CEF ∆绕点C 顺时针旋转,使得点B ,E ,F 在同一条直线上,点P 为BF 的中点,连接AE ,猜想AE ,CF 和BP 之间的数量关系并说明理由.28.(12分)如图1,已知直线1:l y x b =+与直线24:3l y x =交于点M ,直线1l 与坐标轴分别交于A ,C 两点,且点A 坐标为(0,7),点C 坐标为(7,0). (1)求直线1l 的函数表达式;(2)在直线2l 上是否存在点D ,使ADM ∆的面积等于AOM ∆面积的2倍,若存在,请求出点D 的坐标,若不存在,请说明理由;(3)若点P 是线段OM 上的一动点(不与端点重合),过点P 作//PB x 轴交CM 于点B ,设点P 的纵坐标为m ,以点P 为直角顶点作等腰直角PBF ∆(点F 在直线PB 下方),设PBF ∆与MOC ∆重叠部分的面积为S ,求S 与m 之间的函数关系式,并写出相应m 的取值范围.2020-2021学年四川省成都市天府新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.(3分)能与数轴上的点一一对应的是( ) A .整数B .有理数C .无理数D .实数【解答】解:根据实数与数轴上的点是一一对应关系. 故选:D .2.(3分)下列各点在正比例函数2y x =图象上的是( ) A .(1,2)--B .(1,2)-C .(1,2)-D .(2,1)【解答】解:A 、当1x =-时,22y x ==-, ∴点(1,2)--在正比例函数2y x =的图象上.故A 正确,B 错误;∴点(2,0)-不在正比例函数2y x =的图象上;C 、当1x =时,22y x ==,∴点(1,2)-不在正比例函数2y x =的图象上;D 、当2x =时,24y x ==,∴点(2,1)不在正比例函数2y x =的图象上;故选:A .3.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A .8,10,12B .3,4,5C .5,12,13D .7,24,25【解答】解:A 、22281012+≠,∴三条线段不能组成直角三角形,故A 选项符合题意;B 、222345+=,∴三条线段能组成直角三角形,故B 选项不符合题意;C 、22251213+=,∴三条线段能组成直角三角形,故A 选项不符合题意;D 、22272425+=,∴三条线段能组成直角三角形,故D 选项不符合题意;故选:A .4.(3分)已知关于x ,y 的二元一次方程组32129x y x y +=+⎧⎨-=⎩的解为33x y =⎧⎨=-⎩,则的值是() A .3B .2C .1D .0【解答】解:把3x =,3y =-代入方程321x y +=+,得961-=+, 解得2=. 故选:B .5.(3分)八年级(1)班甲、乙、丙、丁四名同学几次数学测试成绩的平均数x (分)及方差2S 如表,老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选( )甲 乙 丙 丁 平均数(分)95 97 95 97 方差 0.5 0.50.20.2A .甲B .乙C .丙D .丁【解答】解:从平均数看,成绩最好的是乙和丁, 从方差看,丁方差小,发挥最稳定,所以老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选丁; 故选:D .6.(3分)如图,在下列条件中,能判断//AB CD 的是( )A .12∠=∠B .BAD BCD ∠=∠C .180BAD ADC ∠+∠=︒D .34∠=∠【解答】解:A .由12∠=∠可判断//AD BC ,不符合题意;B .BAD BCD ∠=∠不能判定图中直线平行,不符合题意;C .由180BAD ADC ∠+∠=︒可判定//AB DC ,符合题意;D .由34∠=∠可判定//AD BC ,不符合题意;故选:C .7.(3分)下列各数中,介于6和7之间的数是( )A 2B C 2-D 【解答】解:A 、273<<,425∴<<,∴2介于4和5之间;B 、6457<<,∴6和7之间;C 、6477<,425∴<<,∴2介于4和5之间;D 、5356<<,∴5和6之间,则介于6和7 故选:B .8.(3分)为说明命题“若m n >,则22m n >”是假命题,所列举反例正确的是( ) A .6m =,3n =B .0.2m =,0.01n =C .1m =,6n =-D .0.5m =,0.3n =【解答】解:A .当6m =、3n =时,m n >,此时236m =,29n =,满足22m n >,不能说明原命题是假命题,不符合题意;B .当0.2m =、0.01n =时,m n >,此时20.04m =,20.0001n =,满足22m n >,不能说明原命题是假命题,不符合题意;C .当1m =、6n =-时,m n >,此时21m =,236n =,不满足22m n >,可以说明原命题是假命题,符合题意;D .当0.5m =、0.3n =时,m n >,此时20.25m =,20.09n =,满足22m n >,不能说明原命题是假命题,不符合题意; 故选:C .9.(3分)若一次函数(2)1y x =-+的函数值y 随x 的增大而增大,则( ) A .2<B .2>C .0>D .0<【解答】解:由题意,得20->,解得2>, 故选:B .10.(3分)如图,两直线1y x b =+和2y bx =+在同一坐标系内图象的位置可能是( )A .B .C .D .【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,1y x b =+中,0<,0b >,2y bx =+中,0b >,0<,符合;B 、由图可得,1y x b =+中,0>,0b >,2y bx =+中,0b <,0>,不符合;C 、由图可得,1y x b =+中,0>,0b <,2y bx =+中,0b <,0<,不符合;D 、由图可得,1y x b =+中,0>,0b >,2y bx =+中,0b <,0<,不符合;故选:A .二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.(4分)若3827x =-,则x = 23- .【解答】解:3827x =-, 23x ∴=-.故答案为:23-.12.(4分)已知点(2,1)A m +与(2,3)B --关于y 轴对称,则m = 4- .【解答】解:点(2,1)A m +与(2,3)B --关于y 轴对称,13m ∴+=-,解得4m =-,故答案为:4-.13.(42(3)0b +=,则2()a b -= 25 .【解答】解:2(3)0b +=,20a ∴-=,30b +=,解得2a =,3b =-.22()(23)25a b ∴-=+=.故答案为:25.14.(4分)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 5210258x y x y +=⎧⎨+=⎩. 【解答】解:设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩, 故答案为:5210258x y x y +=⎧⎨+=⎩. 三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(12127()|22--++ (2)解方程组:236210x y x y -=⎧⎨+=⎩.【解答】解:(12127()|22-++3423=-++3=-;(2)236210x y x y -=⎧⎨+=⎩①②, ①2⨯+②3⨯,得742x =,解得6x =,将6x =代入①,得2y =,故原方程组的解是62x y =⎧⎨=⎩. 16.(6分)已知:如图,180BAP APD ∠+∠=︒,12∠=∠.求证:E F ∠=∠.【解答】证明:BAP ∠与APD ∠互补,//AB CD ∴.(同旁内角互补两直线平行), BAP APC ∴∠=∠(两直线平行,内错角相等), 12∠=∠(已知)由等式的性质得:12BAP APC ∴∠-∠=∠-∠,即EAP FPA ∠=∠,//AE FP ∴(内错角相等,两直线平行), E F ∴∠=∠(由两直线平行,内错角相等). 17.(8分)ABC ∆在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上.(1)作出ABC ∆关于x 轴对称的△111A B C ,并写出点1A 的坐标;(2)在y 轴上作点D ,使得AD BD +最小,并求出最小值.【解答】解:(1)如右图所示,点1A 的坐标是(2,4)-;(2)作点B 关于y 轴的对称点B ',连接AB '与y 轴交于点D ,则此时AD BD +最小, 223332AB '=+=,AD BD ∴+最小值是32.18.(8分)天府新区某校在暑假期间开展了“趣自然阅当夏”活动,王华调查了本校50名学生本学期购买课外书的费用情况,数据如下表: 费用(元)20 30 50 80 100 人数 6 10 14 12 8(1)这50名学生本学期购买课外书的费用的众数是 50元 ,中位数是 ;(2)求这50名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?【解答】解:(1)由表格可得,这50名学生本学期购买课外书的费用的众数是50元,中位数是50元,故答案为:50元,50元;(2)206301050148012100857.650⨯+⨯+⨯+⨯+⨯=(元), 即这50名学生本学期购买课外书的平均费用是57.6元;(3)14128100068050++⨯=(名), 答:估计该校本学期购买课外书费用在50元以上(含50元)的学生有680名.19.(10分)在疫情防控期间,某中学为保障广大师生生命健康安全,预从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?【解答】解:(1)设每瓶免洗手消毒液和每瓶84消毒液的价格分别是a 元、b 元, 40901320601201860a b a b +=⎧⎨+=⎩, 解得158a b =⎧⎨=⎩, 即每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)方案一的花费为:(15100860)0.91782⨯+⨯⨯=(元),方案二的化为为:151008(6010052)1660⨯+⨯-÷⨯=(元),178********-=(元),17821660>,答:学校选用方案二更节约钱,节约122元.20.(10分)如图,平面直角坐标系中,(0,)A a ,(,0)B b ,OC OA =,且a ,b 满足|8|0a -.(1)求直线AB 的表达式;(2)现有一动点P 从点B 出发,以1米/秒的速度沿x 轴正方向运动到点C 停止,设P 的运动时间为t ,连接AP ,过点C 作AP 的垂线交射线AP 于点M ,交y 轴于点N ,请用含t 的式子表示线段ON 的长度;(3)在(2)的条件下,连接BM ,当:3:7ABM ACM S S ∆∆=时,求此时P 点的坐标.【解答】解:(1)|8|60a b -++=,80a ∴-=,60b +=,8a ∴=,6b =,(0,8)A ∴,(6,0)B -,设直线AB 的表达式为:y x m =+,则860m m =⎧⎨-+=⎩,解得:438m ⎧=⎪⎨⎪=⎩, ∴直线AB 的表达式为:483y x =+;(2)由(1)知,(0,8)A ,(6,0)B -,6OB ∴=,8OA =,OC OA =,8OC ∴=,(8,0)C ∴,①当点P 在x 轴负半轴时,即06t 时,如图1,由运动知,BP t =,6OP t ∴=-,CM AP ⊥,90CMA AOP AOC ∴∠=︒=∠=∠,ANM CNO ∠=∠,OAP OCN ∴∠=∠,OA OC =,()AOP CON ASA ∴∆≅∆,6ON OP t ∴==-;②当点P 在x 轴正半轴时,即614t <,如图2,由运动知,BP t =,6OP t ∴=-,同①的方法得,()AOP CON ASA ∆≅∆,6ON OP t ∴==-;(3)如图3,过点B 作BH AP ⊥于H ,则12ABM S AM BH ∆=⋅,12ACM S AM CM ∆=⋅, :3:7ABM ACM S S ∆∆=,∴11:3:722AM BH AM CM ⋅⋅=, ∴37BH CM =, 12ABP S AP BH ∆=⋅,12ACP S AP CM ∆=⋅, :3:7ABP ACP S S ∆∆∴=,12ABP S BP OA ∆=⋅,12ACP S CP OA ∆=⋅, :3:7BP CP ∴=,:3:10BP BC ∴=,(6,0)B -,(8,0)C ,14BC ∴=,4.2BP ∴=,6 4.2 1.8OP ∴=-=,( 1.8,0)P ∴-.四.填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上).21.(4分)如图,AB AC =,则数轴上点C 所表示的数为 51- .【解答】解:由勾股定理得,22215AB =+=AC ∴=点A 表示的数是1-,∴点C 1.1.22.(4分)若点4(3A ,)m 和点3(,)2B n -在同一个正比例函数图象上,则2mn-的值是 1 . 【解答】解:设正比例函数解析式为y x =, 点4(3A ,)m 和点3(,)2B n -在同一个正比例函数图象上, 43m ∴=,32n -=, 32n ∴=-, 43()232mn ∴=⋅-=-, 2212mn ∴-=-=-, 故答案为:1.23.(4分)若1x =,则3232035x x x +-+的值为 2034 .【解答】解:3232035x x x +-+2(1)32035x x x =+-+,21x =-,∴原式21)11)1)2035=+-+(332035=-+432035=-+2034=.故答案为:2034.24.(4分)当m ,n 是正实数,且满足m n mn +=时,就称点(,)m P m n为“美好点”.已知点(1,8)A 与点B 的坐标满足y x b =-+,且点B 是“美好点”,则OAB ∆的面积为 18 .【解答】解:将点(1,8)A 代入y x b =-+,得9b=,则直线解析式为:9y x=-+,设点B坐标为(,)x y,点B满足直线9y x=-+,(,9)B x x∴-+,点B是“完美点”,∴&9& m xmxn=⎧⎪⎨=-+⎪⎩①,m n mn+=,m,n是正实数,∴1mmn+=②,将②代入①得:19m xm x=⎧⎨-=-+⎩,解得5x=,∴点B坐标为(5,4),OAB∴∆的面积1115818445418222=⨯-⨯⨯-⨯⨯-⨯⨯=.答:OAB∆的面积为18.25.(4分)如图,已知30MON∠=︒,B为OM上一点,BA ON⊥于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90︒得CE,连结BE,若3AB=,则BE的最小值为33+.【解答】解法1:如图所示,将BC绕着点C顺时针旋转90︒得FC,作直线FE交OM于H,则90BCF∠=︒,BC FC=,将CP绕点C按顺时针方向旋转90︒得CE,90PCE∴∠=︒,PC EC=,BCP FCE∴∠=∠,在BCP∆和FCE∆中,BC FC BCP FCE PC EC =⎧⎪∠=∠⎨⎪=⎩,()BCP FCE SAS ∴∆≅∆,CBP CFE ∴∠=∠,又90BCF ∠=︒,90BHF ∴∠=︒,∴点E 在直线FH 上,即点E 的轨迹为射线, BH EF ⊥,∴当点E 与点H 重合时,BE BH =最短, 当CP OM ⊥时,Rt BCP ∆中,30CBP ∠=︒,12CP BC ∴==,32BP ==, 又90PCE CPH PHE ∠=∠=∠=︒,CP CE =, ∴正方形CPHE中,PH CP ==BH BP PH ∴=+=, 即BE,. 解法2:如图,连接PD ,由题意可得,PC EC =,90PCE DCB ∠=︒=∠,BC DC =, DCP BCE ∴∠=∠,在DCP ∆和BCE ∆中,DC BC DCP BCE CP CE =⎧⎪∠=∠⎨⎪=⎩,()DCP BCE SAS ∴∆≅∆,PD BE ∴=,当DP OM ⊥时,DP 最短,此时BE 最短,30AOB ∠=︒,3AB AD ==,33OD OA AD ∴=+=+,∴当DP OM ⊥时,1332DP OD +==, BE ∴的最小值为33+. 故答案为:33+.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.(1)A ,B 两城相距 300 千米,乙车比甲车早到 小时;(2)甲车出发多长时间与乙车相遇?(3)若两车相距不超过30千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?【解答】解:(1)由图象可得,A ,B 两城相距300千米,乙车比甲车早到541-=(小时), 故答案为:300,1;(2)由图象可得,甲车的速度为300560÷=(千米/时),乙车的速度为300(41)100÷-=(千米/时), 设甲车出发a 小时与乙车相遇,60100(1)a a =-,解得 2.5a =,即甲车出发2.5小时与乙车相遇;(3)设甲车出发b 小时时,两车相距30千米,由题意可得,|60100(1)|30b b --=, 解得74b =或134b =, 1373442-=(小时), 即两车都在行驶过程中可以通过无线电通话的时间有32小时. 27.(10分)如图,ABC ∆和CEF ∆中,90BAC CEF ∠=∠=︒,AB AC =,EC EF =,点E 在AC 边上.(1)如图1,连接BE ,若3AE =,58BE =FC 的长度;(2)如图2,将CEF ∆绕点C 逆时针旋转,旋转角为(0180)αα︒<<︒,旋转过程中,直线EF 分别与直线AC ,BC 交于点M ,N ,当CMN ∆是等腰三角形时,求旋转角α的度数;(3)如图3,将CEF ∆绕点C 顺时针旋转,使得点B ,E ,F 在同一条直线上,点P 为BF 的中点,连接AE ,猜想AE ,CF 和BP 之间的数量关系并说明理由.【解答】解:(1)如图1中,在Rt ABE ∆中,2222(58)3497AB BE AE =-=-==,7AC AB ∴==,734EF EC AC AE ∴==-=-=,90CEF ∠=︒,3EC EF ==,22224442CF EF CE ∴=+=+=;(2)①如图21-中,当CM CN =时,122.52MCE ECN ACB α=∠=∠=∠=︒.如图22-中,当NM NC =时,45MCN α=∠=︒.如图23-中,当CN CM =时,167.52NCE BCM ∠=∠=︒,4567.5112.5ACE α=∠=︒+︒=︒.综上所述,满足条件的α的值为22.5︒或45︒或112.5︒.(3)结论:2CF AE BP +=.理由:如图3中,过点A 作AD AE ⊥,90DAE BAC ∴∠=∠=︒,BAD CAE ∴∠=∠,90BAC BEC ∠=∠=︒,ABP ACE ∴∠=∠,AB AC =,()ABD ACE ASA ∴∆≅∆,BD EC EF ∴==,AD AE =,ADE ∴∆是等腰直角三角形,2DE AE ∴=, P 是BF 的中点,12BP BF ∴=, 11(2)22BP BF EF DE ==+,2CF EF =,2DE AE =, 1(22)2BP CF AE ∴=+, 2CF AE BP ∴+=.28.(12分)如图1,已知直线1:l y x b =+与直线24:3l y x =交于点M ,直线1l 与坐标轴分别交于A ,C 两点,且点A 坐标为(0,7),点C 坐标为(7,0).(1)求直线1l 的函数表达式;(2)在直线2l 上是否存在点D ,使ADM ∆的面积等于AOM ∆面积的2倍,若存在,请求出点D 的坐标,若不存在,请说明理由;(3)若点P 是线段OM 上的一动点(不与端点重合),过点P 作//PB x 轴交CM 于点B ,设点P 的纵坐标为m ,以点P 为直角顶点作等腰直角PBF ∆(点F 在直线PB 下方),设PBF ∆与MOC ∆重叠部分的面积为S ,求S 与m 之间的函数关系式,并写出相应m 的取值范围.【解答】解:(1)直线1:l y x b =+与坐标轴分别交于(0,7)A ,(7,0)C ,∴770b b =⎧⎨+=⎩, ∴71b =⎧⎨=-⎩, ∴直线1l 的函数表达式为:7y x =-+;(2)联立1:7l y x =-+和24:3l y x =,解得,34x y =⎧⎨=⎩, (3,4)M ∴, 如图1,过点M 作ME x ⊥轴于E , 3OE ∴=,4ME =,根据勾股定理得,5OM =, 设(3,4)D n n ,①当点D 在射线OM 上时,ADM ∆的面积等于AOM ∆面积的2倍,且边AM 和OM 上的高相同,210DM OM ∴==,15OD ∴=,222(3)(4)15n n ∴+=,3n ∴=或3n =-,由于点D 在第一象限内,3n ∴=,(9,12)D ∴;②当点D 在射线MO 上时,ADM ∆的面积等于AOM ∆面积的2倍,且边AM 和OM 上高相同,2DM OM ∴=,5OM OD ∴==,222(3)(4)5n n ∴+=,1n ∴=或1n =-,由于点D 在第三象限内,1n ∴=-,(3,4)D ∴--,即点(9,12)D 或(3,4)--;(3)点P 的纵坐标为m ,3(4P m ∴,)m , //PB x 轴,(7,)B m m ∴-,377744PB m m m ∴=--=-, 以点P 为直角顶点作等腰直角PBF ∆,774PF PB m ∴==-, 当774m m -=时,2811m =; ①当28011m <<时,如图2,记PF 与x 轴相交于G ,BF 与x 轴相交于H , PG m ∴=,7117744FG PF PG m m m =-=--=-, PBF ∆是等腰直角三角形,45F PBF ∴∠=∠=︒,//PB x 轴,45GHF F ∴∠=︒=∠,FG HG ∴=,221122PBF FGH S S S PB FG ∆∆∴=-=- 221711[(7)(7)]244m m =--- 2974m m =-+; ②当28411m <时,如图3, 222117494949(7)2243242PBF S S PB m m m ∆===-=-+。
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( ) A .301050 B .103020 C .305010 D .501030 2.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .123.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭4.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4B .4C .﹣6D .65.已知A 为多项式,且2221241A x y x y =--+++,则A 有( ) A .最大值23B .最小值23C .最大值23-D .最小值23-6.将11n n x x +--因式分解,结果正确的是( ) A .()121n x x--B .()11nx x --C .()1nxx x --D .()()111n xx x -+-7.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯8.下列运算正确是( ) A .b 5÷b 3=b 2 B .(b 5)3=b 8 C .b 3b 4=b 12 D .a (a ﹣2b )=a 2+2ab9.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>10.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y =D .623x x x ÷=11.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3212.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x二、填空题13.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.14.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .17.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____ 18.若a - b = 1, ab = 2 ,则a + b =______.19.若210x x --=,则3225x x -+的值为________.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图: (a +b )0=1 (a +b )1=a +b (a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.三、解答题21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8, 解:原式=a 2+6a +8+1-1=a 2+6a +9-1 =(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2) ②M =a 2-2a -1,利用配方法求M 的最小值. 解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2. 请根据上述材料解决下列问题: (1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值. 22.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式); (2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题: ①10.39.7⨯②(2)(2)m n p m n p +--+ 23.已知2,3x y a a ==,求23x y a +的值 24.因式分解:(1)2ax 2-4axy +2ay 2 (2)x 2-2x -825.已知将32()(34)x mx n x x ++-+化简的结果不含3x 和2x 项. (1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求22242m mn n -+的值. 26.化简:(1)()34322223x y x y z x y -÷; (2)2(4)3(1)(3)x x x x -+-+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码. 【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ), 当x =30,y =20时,x =30,x +y =50,x−y =10, 组成密码的数字应包括30,50,10, 所以组成的密码不可能是103020. 故选:B . 【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.2.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.5.A解析:A 【分析】利用分组分解法,变为完全平方式解答即可. 【详解】2221241A x y x y =--+++=2221218441184x x y y -+--+-+++ =()()222694423x x y y --+--++=()()2223223x y ----+ ∵()2230x --≤,()220y --≤,∴()()2223223x y ----+≤23,∴多项式的最大值是23, 故选A . 【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.6.D解析:D 【分析】先提公因式x n-1,再用平方差公式进行分解即可. 【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1), 故选:D 【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.7.D解析:D 【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案. 【详解】 解:()2003200455-+=(-5)2003+(-5)2004 =(-5)2003(1-5) =4×52003, 故选:D . 【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.8.A解析:A 【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可. 【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A . 【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.9.B解析:B 【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可. 【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>, 故选B . 【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.10.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.11.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.12.D解析:D 【分析】根据整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式分别计算进行判断. 【详解】A 、2222x x x +=,故该项错误;B 、222()2x y x xy y -=-+,故该项错误;C 、2363()x y x y =,故该项错误;D 、235x x x ,故该项正确;故选:D . 【点睛】此题考查整式的计算,正确掌握整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式是解题的关键.二、填空题13.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a 小正方形的边长为b 故阴影部分的面积是:AE•BC+AE•BD =AE (BC+BD )=(AB ﹣解析:30 【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案. 【详解】解:设大正方形的边长为a ,小正方形的边长为b , 故阴影部分的面积是:12AE •BC +12AE •BD =12AE (BC +BD ) =12(AB ﹣BE )(BC +BD ) =12(a ﹣b )(a +b )=12(a2﹣b2)=12×60=30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.14.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.﹣25【分析】将3x+3y﹣4xy变形为3(x+y)﹣4xy再整体代入求值即可【详解】解:∵x+y=﹣3xy=4∴3x+3y﹣4xy=3(x+y)﹣4xy=3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x+3y﹣4xy变形为3(x+y)﹣4xy,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25, 故答案为:﹣25. 【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键.16.【分析】可以将草坪拼成一块完整的长方形分别表示出它的长和宽即可求出面积【详解】解:可以将草坪拼成一块完整的长方形这个长方形的长是:米宽是:米∴草坪的面积是:(平方米)故答案是:【点睛】本题考查多项式 解析:22ab a b --+【分析】可以将草坪拼成一块完整的长方形,分别表示出它的长和宽即可求出面积. 【详解】解:可以将草坪拼成一块完整的长方形,这个长方形的长是:112a a --=-米,宽是:1b -米, ∴草坪的面积是:()()2122a b ab a b --=--+(平方米). 故答案是:22ab a b --+. 【点睛】本题考查多项式的乘法和图形的平移,解题的关键是通过平移的方法将不规则的图形拼成规则图形进行求解.17.120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120 【分析】令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值. 【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①, 当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②, ①+②,得 2a 4+2a 2+2a=242, ∴a 2+a 4=120. 故答案为:120. 【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.18.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 19.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键. 20.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.22.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯-22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观. 23.108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=.【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.24.(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.25.(1)m=-4,n=-12;(2)128【分析】(1)利用多项式乘以多项式法则计算得到结果,根据展开式中不含x 2和x 3项即可得到m 与n 的值;(2)根据题意,将(1)中所求m 、n 的值代入计算即可.【详解】解:(1)32()(34)x mx n x x ++-+54323(4)(3)(43)4x x m x n m x m n x n =-+++-+-+;∵化简的结果不含3x 和2x 项,∴40m +=,30n m -=,∴4m =-,12n =-;(2)22222422()2(412)264128m mn n m n -+=-=⨯-+=⨯=;【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.26.(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。
一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ).A .2B .3C .4D .62.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .83.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭4.代数式2346x x -+的值为3,则2463x x -+的值为( )A .7B .18C .5D .95.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个6.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 27.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子()A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+8.下列计算一定正确的是( )A .235a b ab +=B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+9.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 10.下列运算正确的是( ) A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1 11.已知51x =+,51y =-,则代数式222x xy y ++的值为( ). A .20 B .10 C .45 D .2512.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽 二、填空题13.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____. 14.若294x kx ++是一个完全平方式,则k 的值为_____. 15.若()2340x y -++=,则x y -=______.16.已知2m n +=,2mn =-,则(1)(1)m n --=________.17.已知23x y -=,则432x y --=________.18.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.19.因式分解:24ay a -=_______.20.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.三、解答题21.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值;(3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.22.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.23.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-.24.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________;(2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值. 25.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF ,CF ,AC .(1)用含a 、b 的代数式表示GC =______;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长; (3)若8a =,AFC △的面积为S ,求S 的值.26.已知29a =,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于本身的数,求a b c d +--的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 2.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 5.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.6.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.7.B解析:B【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.8.B解析:B【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意.故选B .【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.9.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.10.D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.11.A解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.12.C解析:C【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:我爱昭通,故选:C .【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.二、填空题13.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()xy=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.14.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 15.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()230x -=,且()230x -≥≥, ∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.16.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n 与mn 的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3故答案为:-3【解析:-3【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值.【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.17.3【分析】把看成一个整体原式可化为2()-3整体代入即可【详解】解:原式=2()-3=2×3-3=3故答案为:3【点睛】本题考查了求代数式的值把看成一个整体是解题的关键解析:3【分析】把2x y -看成一个整体,原式可化为2(2x y -)-3,整体代入即可.【详解】解:原式=2(2x y -)-3=2×3-3=3,故答案为:3.【点睛】本题考查了求代数式的值,把2x y -看成一个整体是解题的关键.18.8【分析】先解求出将代入代数式即可得解【详解】∵∴式子展开得:化简得:∴将代入代数式故答案为:8【点睛】此题考查整式的化简求值掌握整式的去括号法则和合并同类项法则是解题的关键解析:8【分析】先解()()223232x x y ---=-,求出0y =,将0y =代入代数式()3()4(2)x y x y x y ++---- 即可得解.【详解】∵()()223232x x y ---=-,∴式子展开得:223232x x y --+=-,化简得:0y =,∴将0y =代入代数式()3()4(2)x y x y x y ++---- 34(2)x x x =+--448x x =-+8=.故答案为:8.【点睛】此题考查整式的化简求值,掌握整式的去括号法则和合并同类项法则是解题的关键. 19.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.20.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.三、解答题21.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦ ∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-= ∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.23.2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷ ()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 24.(1)(-1,1);(2)3;(3)-1【分析】(1)根据公式列式计算即可判断;(2)根据公式列方程解答即可;(3)根据公式列方程求出221m m -=,再代入代数式计算即可.【详解】(1)∵221(2)13-⨯+≠--,211(1)13-⨯+≠--,∴数对()()2,1,1,1--中是“海山有理数对”的是(-1,1);故答案为:(-1,1);(2)由题意得:2333n n =+-,解得n=3,故答案为:3;(3)由题意得:2223m m =+-,∴221m m -=,∴原式=22(342)m m m --+=22342m m m -+-=23(2)2m m --+=312-⨯+=-1.【点睛】此题考查新定义,有理数的混合运算,整式的混合运算,求代数式的值正确理解题意中的计算公式正确列式是解题的关键.25.(1)a+b ;(2)10;(3)32【分析】(1)可由图形直观的得出结论;(2)利用完全平方公式通过展开推导,再将数值代入计算可得;(3)通过面积计算可得,△AFC 的面积为12a 2即为32. 【详解】解:(1)∵GC =GB+BC ,∴GC =a+b ,故答案为:a+b ;(2)∵(a+b )2=a 2+b 2+2ab =60+20×2=100,∴a+b =10,∴GC =10;(3)S △AFC =S △AFE +S ▱FGBE +S △ABC -S △FGC22111()()222b a b b a b b a =-++-+ 22221111122222ab b b a b ab =-++-- 212a = 2182=⨯ 32=故答案为:32.【点睛】本题主要考查了完全平方公式运用,解题的关键是完全平方公式展开与合并.运用几何直观理解、通过几何图形之间的数量关系对完全平方公式做出几何解释的知识点. 26.a+b-c-|d|的值为1或-5.【分析】先确定a ,b ,c ,d 的值,分类代入代数式计算即可.【详解】∵a 2=9 ∴a =±3,∵b 是最大的负整数 ,∴b=-1,∵c 是绝对值最小的数,∴c=0,∵d 的倒数是他本身,∴d=±1,|d|=1,①当a =3,b=-1,c=0,|d|=1,原式=3+(-1)-0-1=1,②当a =-3,b=-1,c=0,|d|=1,原式=-3+(-1)-0-1=-5,综上a +b-c-|d|的值为1或-5.【点睛】本题考查代数式求值问题,掌握代数式求值的方法,关键是根据条件确定a ,b ,c ,d 的值是解题关键.。
2023-2024学年成都市石室天府中学八年级(上)10月月考数学试卷一、选择题(每小题4分,共32分)1.(4分)在下列实数中,属于无理数的是()A.0B.C.D.2.(4分)点A(﹣5,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)下列二次根式中,属于最简二次根式的是()A.B.C.D.4.(4分)估计无理数的值应在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间5.(4分)下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个6.(4分)有理数a和b在数轴上的位置如图所示,则﹣|a﹣b|等于()A.a B.﹣a C.2b+a D.2b﹣a7.(4分)如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m8.(4分)如图,在长方体盒子上有一只蚂蚁从顶点A出发,要爬行到顶点B去找食物,已知长方体的长、宽、高分别为4、1、2,则蚂蚁走的最短路径长为()A.B.5C.D.7二、填空题(每小题4分,共20分)9.(4分)36的平方根是,的立方根是.10.(4分)将点A(﹣2,5)向右平移3个单位得到点B.则点B的坐标是.11.(4分)函数y=的自变量x的取值范围是.12.(4分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为.13.(4分)如图,在△ABC中,∠ABC=90°,AB=2BC=4,在AC上截取CD=CB.在AB上截取AP=AD,则AP=.三、解答题(共48分)14.(10分)计算:(1);(2).15.(10分)解方程:(1)2(x+1)2=8;(2).16.(8分)如图,△ABC在平面直角坐标系内,小正方形边长为1.(1)请直接写出A、B、C的坐标;(2)求△ABC的面积;(3)在△ABC中,求AC边上的高.17.(10分)定义:如图,点M,N把线段AB分割成AM、MN、NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割.(1)已知M、N把线段AB分割成AM,MN,NB,若AM=2.5,MN=6.5,BN=6,则点M、N是线段AB的勾股分割点吗?请说明理由;(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=30,AM=5,求BN的长.18.(10分)如图,在等腰直角△ABC中,∠BAC=90°,,直线EF交BC于点C,∠BCE =75°.M是射线CE一点,连接AM和BM,其中AM交BC于点D.(1)如图1,当BM=BC时.①求∠CBM的度数;②求CM2的值;(2)如图2,若BM⊥CM,求的值.一、填空题(每小题4分,共20分)19.(4分)若m=,则m2﹣2m+2=.20.(4分)已知,,则2y﹣3x的平方根为.21.(4分)已知点E(a﹣3,2a+1)到两坐标轴的距离相等,则点E的坐标为.22.(4分)如图,已知正方形ABCD中,点E,F分别在边CD,BC上,且DE=BF,连接AE,DF,若,则AE+DF的最小值为.23.(4分)在△ABC中,AB=AC=2,在BC边上有2023个不同的点Q1,Q2,⋯,Q2023,记m i=+BQ i ×Q i C(i=1,2,3⋯,2023),则m1+m2+⋯+m2023的值是.二、解答题(共30分)24.(8分)如图,A城气象台测得台风中心在A城正西方向240km的O处,以每小时30km的速度向南偏东60°的OB方向移动,距台风中心150km的范围内是受台风影响的区域(1)求A城与台风中心之间的最小距离;(2)求A城受台风影响的时间有多长?25.(10分)①如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1;②已知a、b是有理数,并且满足等式5﹣a=2b+﹣a,求a、b的值.∵5﹣a=2b+﹣a,∴5﹣a=(2b﹣a)+(有理数部分和无理数部分对应相等).∵,解得,请解答:(1)如果,其中a是整数,且0<b<1,那么a=,b=.(2)如果的小数部分为的整数部分为n,求的值.(3)已知x,y是有理数,并且满足等式,求x+y的值.26.(12分)在△ABC中,AC=2AB,点D为直线BC上一点,AD=AE,∠BAC=∠DAE,连接DE交AC 于F.(1)如图1,∠BAC=90°,F为AC中点,若,DF=2,求BD的长;(2)如图2,延长CB至点G使得BG=DB,过点G作GH⊥DA延长线于点H,若ED⊥BC,CD=AH,求证:ED=GH;(3)如图3,∠BAC=120°,,作点E关于直线BC的对称点E',连接BE',AE',CE',当BE'最小时,求△ACE'的面。
2020-2021四川省成都市石室中学初二数学上期中模拟试卷(带答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7 2.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为( ) A .6B .8C .10D .8或10 3.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124° 4.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点5.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形6.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .117.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°9.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( ) A .6±B .12C .6D .12± 10.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9) 11.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.14.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.15.使分式的值为0,这时x=_____.16.七边形的内角和为_____度,外角和为_____度.17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.计算:0113()22-⨯+-=______. 20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.解方程21212339x x x -=+-- 22.解方程:(1)2102x x -=- (2)2133193x x x +=-- 23.如图,AB =AC ,MB =MC .直线AM 是线段BC 的垂直平分线吗?24.如图,BO 平分∠CBA ,CO 平分∠ACB ,且MN ∥BC ,若AB=12,△AMN 的周长为29,求AC 的长.25.先化简,再求值:22144(1)11x x x x -+-÷--,从1-,1,2,3中选择一个合适的数代入并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.2.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.4.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.5.C解析:C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10. 故选C .考点:多边形内角与外角.6.C解析:C【解析】【分析】由ED 是AB 的垂直平分线,可得AD=BD ,又由△BDC 的周长=DB+BC+CD ,即可得△BDC 的周长=AD+BC+CD=AC+BC .【详解】解:∵ED 是AB 的垂直平分线,∴AD=BD ,∵△BDC 的周长=DB+BC+CD ,∴△BDC 的周长=AD+BC+CD=AC+BC=6+4=10.故选C .【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.7.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 8.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .9.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 10.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.11.A解析:A【解析】【分析】根据∠B =60°,AB =AC ,即可判定△ABC 为等边三角形,由BC =3,即可求出△ABC 的周长.【详解】在△ABC 中,∵∠B =60°,AB =AC ,∴∠B =∠C =60°,∴∠A =180°﹣60°﹣60°=60°,∴△ABC 为等边三角形,∵BC =3,∴△ABC 的周长为:3BC =9,故选A .【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.12.D解析:D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.二、填空题13.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=214.145°【解析】【分析】根据直角三角形两锐角互余求出∠3再根据邻补角定义求出∠4然后根据两直线平行同位角相等解答即可【详解】∵∠1=55°∴∠3=90°-∠1=90°-55°=35°∴∠4=180°解析:145°.【解析】【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】∵∠1=55°,∴∠3=90°-∠1=90°-55°=35°,∴∠4=180°-35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为145.15.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16.360【解析】【分析】n边形的内角和是(n﹣2)•180°把多边形的边数代入公式就得到多边形的内角和任何多边形的外角和是360度【详解】(7﹣2)•180=900度外角和为360度【点睛】已知多边形解析:360【解析】【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.任何多边形的外角和是360度.【详解】(7﹣2)•180=900度,外角和为360度.【点睛】已知多边形的内角和求边数,可以转化为方程的问题来解决.外角和是一个定植,不随着边数的变化而变化.17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD 周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD ,∵△ABC 的周长为27cm ,AC =9cm ,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4. 故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.20.【解析】【分析】根据0指数幂和负指数幂定义求解【详解】=1+2=3故答案为3【点睛】考核知识点:0指数幂和负指数幂解析:【解析】【分析】根据0指数幂和负指数幂定义求解.【详解】101(3)2π-⎛⎫-+ ⎪⎝⎭=1+2=3 故答案为3【点睛】 考核知识点:0指数幂和负指数幂.三、解答题21.无解【解析】分析:分式方程去分母转化为整式方程,求出整式方程的计算得出到x 的值,经检验即可得到分式方程的解.本题解析:对方程进行变形可以得到21212339x x x +=+--去分母可得到整式方程 ()32312x x -++=解得x =3,将检验当x =3时最简公分母290x -=,所以x =3是分式方程的增根,方程无解点睛:解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时不要漏乘不含未知数的项﹣1.22.(1)x =﹣2;(2)无解【解析】【分析】(1)方程两边乘最简公分母x (x−2),可以把分式方程转化为整式方程求解; (2)方程两边乘最简公分母3(3x−1),可以把分式方程转化为整式方程求解.【详解】(1)2102x x-=- 解:去分母得:2x ﹣x +2=0,解得:x =﹣2,经检验,x =﹣2是原方程的解.(2)2133193x x x +=-- 最简公分母为3(3x ﹣1),去分母得:6x ﹣2+3x =1,即9x =3,解得:x =13, 经检验:x =13是增根,原方程无解. 【点睛】此题考查了分式方程的解法和因式分解.此题比较简单,注意掌握转化思想的应用,注意解分式方程一定要验根.23.是,见解析.【解析】【分析】根据线段的垂直平分线的定义,分别证明A 、M 在线段BC 的垂直平分线上即可解决问题.【详解】是,证明:∵AB=AC ,∴点A 在线段BC 的垂直平分线上,∵MB=MC ,∴点M 在线段BC 的垂直平分线上,∴直线AM 是线段BC 的垂直平分线.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的判定方法,属于中考常考题型.24.【解析】【分析】首先根据角平分线以及平行线的性质得出BM=OM ,CN=ON ,然后根据三角形的周长得出AB+AC=29,最后根据AB 的长度求出AC 的长度.【详解】解:∵BO 平分∠CBA ,CO 平分∠ACB ,MN ∥BC ,∴BM=MO ,CN=NO ,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.25.12x x +-,4. 【解析】【分析】 根据分式的运算法则和乘法公式将原式化简,根据分式存在有意义的条件选取合适的数代入代数式计算即可.【详解】 原式()()()2211=1111x x x x x x --⎛⎫-÷ ⎪---+⎝⎭ ()()()21121212x x x x x x x -+-⎛⎫=⨯ ⎪-⎝⎭-+=-.∵x 2﹣1≠0,x ﹣2≠0,∴取x =3,原式=3132+-=4. 【点睛】 本题考查的是分式的运算和分式存在有意义的条件,根据分式有意义的条件挑选出合适的值代入是解题的关键.。
2020~2021学年四川成都青羊区成都市石室联合中学初二上学期期末数学试卷(详解)一、单项选择题(本大题共10小题,每小题3分,共30分)1.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】在下列实数中,无理数是( ).B 是有理数,故错误.是无理数,故正确.是有理数,故错误.是有理数,故错误.故选 B .2.A.,,B.,,C.,,D.,,【答案】A 选项:B 选项:C 选项:D 选项:【解析】下列各组数据中不能作为直角三角形的三边长的是( ).D ,可以构成直角三角形;,可以构成直角三角形;,可以构成直角三角形;,不可以构成直角三角形.故选 D .3.A.B.C.D.【答案】的立方根是( ).C【解析】的立方根是.故选.4.A.第一象限B.第二象限C.第三象限D.第四象限【答案】【解析】已知直线不经过( ).C 如图,直线不经过第三象限.故选.5.A.B.C.D.【答案】【解析】已知点与点关于轴对称,则的值为( ).A ∵点与点关于轴对称,∴.故选.6.A.B.C.D.【答案】【解析】已知关于、的二元一次方程有一组解是,则的值是( ).B ∵的一组解是,∴,,∴的值是.故选.7.A.B.C.D.【答案】【解析】若点在第四象限,则的取值范围是( ).C ∵点在第四象限,∴,解得,∴,∴的取值范围为.故选.8.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】下列命题中是真命题的是( ).内错角相等三边长为,,的三角形是直角三角形等腰三角形的高,中线,角平分线互相重合三角形三边垂直平分线的交点到三角形三个顶点的距离相等D两直线平行,内错角相等,此项错误;,故三边长为,,的三角形不是直角三角形,此项错误;等腰三角形底边上的高,底边上的中线,顶角角平分线互相重合,此项错误;三角形三边垂直平分线的交点到三角形三个顶点的距离相等,此项正确.故选 D .9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时分钟,他骑自行车的速度是米/分钟,步行的速度是米/分钟.他家离学校的距离是米.若他骑车和步行的时间分别为分钟和分钟,则列出的方程组是( ).A. B.C.D.【答案】【解析】A∵骑车时间为分钟,步行时间为分钟,共用分钟,∴,又∵骑自行车的速度是米/分钟,步行速度是米/分钟.他家离学校的距离是米,∴,∴方程组为,故选.10.A.B.C. D.【答案】【解析】已知一次函数和(且),这两个函数的图象可能是( ).D ①,时,图象为:②,时,图象为:③,时,图象为:④,时,图象为:故选.二、填空题(本大题共4小题,每小题4分,共16分)11.【答案】【解析】【踩分点】比较大小: .∵,,,∴.12.【答案】【解析】已知,满足,则 .∵,,,∴,【踩分点】解得,∴.13.【答案】【解析】【踩分点】已知如图,在中,,于,,则的长为 .∵,,于,∴,,在中,,解得,∴的长为.故答案为:.14.【答案】【解析】如图,直线,的顶点在直线上,边与直线相交于点.若是等边三角形,,则.∵是等边三角形,【踩分点】∴,又∵,∴ ,∴ ,∵直线,∴.三、解答题(本大题共6小题,共54分)15.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】计算下列各题.....原式.原式.16.解方程(不等式)组:(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】.解不等式组,并在数轴上表示出它的解集..,画图见解析,,由①得:③由③②得:,将代入①得:,∴.,由①得:,由②得:,,∴.①②①②17.在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为个单位长度.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】【踩分点】关于轴对称图形为,画出的图形.将向右平移个单位,再向下平移个单位,得到图形为,画出的图形.求的面积.画图见解析.画图见解析...18.疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了名学生进行比赛(百分制),测试成绩整理、描述和分析如下:成绩得分用表示,共分成四组:.,.,.,.).七年级名学生的成绩是:,,,,,,,,,.八年级名学生的成绩在组中的数据是:,,.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】【踩分点】七、八年级抽取的学生成绩统计表八年级抽取的学生成绩扇形统计图年级平均数中位数众数方差七年级八年级根据以上信息,解答下列问题:这次比赛中 年级成绩更平衡,更稳定.直接写出上述、、的值: ,, .我校八年级共人参加了此次调查活动,估计参加此次调查活动成绩优秀()的学生人数是多少?八;;人.∵,,,∴八年级成绩更平衡,更稳定.七年级名学生成绩由低到高排列为:,,,,,,,,,,第个和第个是和,故中位数为:,众数为:,∴,,八年级学生成绩在组的有个,占比为:,,∴.(人),∴估计参加此次调查活动成绩优秀的学生人数是人.七年级八年级19.如图,一次函数的图象经过点,与轴交于点,与正比例函数的图象交于点,点的横坐标为.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】yO x求的函数表达式.若点在轴负半轴,且满足,求点的坐标.若,请直接写出的取值范围....当时,代入,,∴,将,代入得:,解之得:,∴直线的函数表达式为:.中,令,则,∴,设点,,,∵,∴,解得:,∴.,【踩分点】∵,∴,∴的取值范围为:.20.(1)(2)(3)(1)(2)(3)【答案】(1)【解析】在中,,,点、是线段上两点,连结,过作于点,过点作于点.如图,若点是的中点,求的大小.图如图,若点是线段的中点,求证:.图如图,若点是线段的中点,,,求的值.图.证明见解析..∵,,∴.(2)(3)∴.∴.∴.过点作交的延长线于点,∴.∵,∴.∴.∵,∴.∴.在和中,,∴.∴.∵,,∴.∵点是线段的中点,∴.在和中,,∴.∴.∴.在线段上取点,使得,连接,,,【踩分点】∵,,,∴,.∵,,∴.在和中,,∴.∴,.∴.∴和是等腰直角三角形.∴,.∵,,∴.∵是等腰直角三角形,∴.∴.在等腰中,,∴,.∴.四、填空题(本大题共5小题,每小题4分,共20分)21.【答案】已知,则.【解析】【踩分点】∵,∴,,∴,,∴.22.【答案】【解析】【踩分点】平面直角坐标系中,点坐标为,将点沿轴向左平移个单位后恰好落在正比例函数的图象上,则的值为 .点沿轴向左平移个单位后得到,∵点在正比例函数的图象上,∴.∴的值为.23.【答案】【解析】已知关于的不等式组的整数解有且只有个,则的取值范围是 .由①得,由②得,∴,∵不等式组的整数解有且只有个,∴整数解为:和,∴.①②【踩分点】24.【答案】【解析】【踩分点】对于平面直角坐标系中的点,若点的坐标为 (其中为常数,且),则称点为点的“属派生点”.例如:的“属派生点”为,即.则点的“属派生点” 的坐标为 ,若点在轴的正半轴上,点的“属派生点”为点,且线段的长度为线段长度的倍,则的值为 .;①∵的“属派生点”为,∴的“属派生点”为,∴的坐标为.②∵点在轴的正半轴上,∴设点坐标为,,∴点的“属派生点” 为,∴,∵且线段的长度为线段长度的倍,∴,即,∴.25.【答案】在长方形中, ,,,平分,则 .【解析】【踩分点】∵平方,,∴,∵,∴,∴,∴,∵,,∴,∵,,∴.故答案为:.五、解答题(本大题共3小题,共30分)26.(1)(2)(1)(2)【答案】(1)【解析】解答.已知:,,求代数式的值.已知关于、方程组的解满足,,求的取值范围...,,∵,∴,,原式,将,代入:原式.(2)【踩分点】,解之得:,∵,,∴,解得:.27.(1)(2)(3)(1)(2)(3)【答案】(1)(2)【解析】某电器经销计划同时购进一批甲、乙两种型号的微波炉,若购进台甲型微波炉和台乙型微波炉,共需要资金元;若购进台甲型微波炉和台乙型微波炉,共需要资金元.求甲、乙型号的微波炉每台进价为多少元?该店计划购进甲、乙两种型号的微波炉销售,预计用不多于万元且不少于万元的资金购进这两种型号的微波炉共台,请问有几种进货方案?请写出进货方案.甲型微波炉的售价为元,售出一台乙型微波炉的利润为.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金元,要使()中所有方案获利相同,则的值应为多少?甲型号为元,乙型号为元.有四种方案,甲(台)乙(台)方案一方案二方案三方案四.设甲型号的微波炉每台进价为元,乙型号的微波炉每台进价为元,,解得:.设购进甲型号的微波炉台,则购进乙型号的微波炉台,(3)【踩分点】,解得:,∴共有四种方案,方案如下:甲(台)乙(台)方案一方案二方案三方案四,,∵要使()中所有方案获利相同,∴的取值与无关,∴,.答:的取值为.28.(1)12(2)如图,已知直线分别与轴,轴交于,两点,直线交于点.求,两点的坐标.如图,点是线段的中点,连接,点是射线上一点,当,且时,图求的长.在轴上找一点,使的值最小,求出点坐标.(3)(1)12(2)(3)【答案】(1)1(2)【解析】如图,若,过点,交轴于点,此时在轴上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.图,...存在,,.∵直线分别与轴,轴交于,两点,∴令,则,∴.令,则,∴,.∵,,∴,∵点是线段的中点,∴.过作轴于,∴,∵,∴,2(3)∴,∵,在和中,,∴(),∴,,∵,∴点与点重合,∴.∴.∵,∴,∴,∴.存在,∵,∴直线:(),∵,∴设直线的解析式为,当时,即,∴,∴.如图,当点在点的左侧,∵,,∴,∵,,在和中,,∴(),∴,∴;当点在点的右侧时,∵,,∴,∵,∴,设,∴,∵,∴,解得:,∴.综上所述,点的坐标为,.【踩分点】。
一、选择题1.下列命题的逆命题是真命题的是( ).A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等 2.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4 3.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 4.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 5.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =6.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组 7.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .10 8.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等9.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 10.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等11.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104° 12.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 13.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 14.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.17.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________18.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.19.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____20.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.21.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.22.如图,△ABC ≌△A'B'C',其中∠A =35°,∠C =25°,则∠B'=_____.23.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.24.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.25.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).26.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题27.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.28.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.(问题2)小明发现只利用直角三角板也可以作AOB ∠的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM ON =. ②分别过点M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为AOB ∠的平分线.请根据小明的作法,求证OP 为AOB ∠的平分线.29.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .30.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.。
2020-2021成都石室外语学校八年级数学上期末试题附答案一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣1 2.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 3.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 4.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。
A .9B .7C .5D .3 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC7.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 8.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 9.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 10.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度11.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A .3B .4C .6D .12 12.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4 二、填空题13.3(5)2(5)x x x -+-分解因式的结果为__________.14.已知等腰三角形的两边长分别为4和6,则它的周长等于_______15.因式分解:3x 3﹣12x=_____.16.若m 为实数,分式()22x x x m ++不是最简分式,则m =______. 17.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为18.一个正多边形的内角和为540︒,则这个正多边形的每个外角的度数为______.19.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E , AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是____ ___20.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD=_______.三、解答题21.解分式方程:33122x x x-+=--.22.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF∥AB,(2)求∠DFC的度数.23.先化简再求值:(a+2﹣52a-)•243aa--,其中a=12-.24.先化简,再求值:22141121aa a a-⎛⎫-÷⎪--+⎝⎭,其中3a=.25.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg,甲型机器人分类800kg垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等。
2020-2021学年四川省成都市石室天府中学八年级(上)入学数学试卷一、选择题(每小题3分,共30分)1.(3分)用科学记数法表示0.000000108,得()A.1.08×10﹣6B.1.08×10﹣7C.10.8×10﹣6D.10.8×10﹣7 2.(3分)计算:(﹣a)5•(a2)3÷(﹣a)4的结果,正确的是()A.a7B.﹣a6C.﹣a7D.a63.(3分)如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD4.(3分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°5.(3分)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短6.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根7.(3分)下列说法正确的是()A.在地球上,上抛的篮球一定会下落,是必然事件B.买一张福利彩票一定中奖,是不可能事件C.抛掷一个正方体骰子,点数为奇数的概率是D.从一个装有5个黑球和1个红球的口袋中,摸出一个球是黑球是必然事件8.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A 为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°9.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米10.(3分)如图,△ABC中,AB=AC,∠A、∠B的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.80°B.50°C.40°D.20°二、填空题(每小题4分,共16分)11.(4分)如果9x2﹣mx+4是完全平方式,则m=.12.(4分)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,△ABC 的周长为20cm,边AB的长为7cm,则△BCD的周长为.13.(4分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.14.(4分)已知a,b在数轴上的位置如图,化简:=.三、解答题(共54分)15.(10分)计算:(1)﹣+;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×.16.(10分)若+|y+3|+(z﹣2)2=0,求x y﹣z的平方根.17.(8分)如图,AB∥CD∥EF,CD交AF于G,(1)如图1,若CF平分∠AFE,∠A=70°,求∠C;(2)如图2,请写出∠A,∠C和∠AFC的数量关系并说明理由.18.(8分)在2020年83岁的钟南山奋战在抗击疫情的最前线,成为全国人民最敬佩的硬核男神,他有强健的身体,这都是得益于几十年如一日的坚持锻炼.在本次疫情中打败新冠肺炎还需要自身免疫力,同学们都应该加强身体锻炼,为了了解同学们在线上教学中体育锻炼的情况,在返校后某初中对600名初一学生进行了体育测试,其中对仰卧起坐成绩进行了整理,绘制成如图所示不完整的统计图:根据统计图,回答下列问题.(1)请将条形统计图补充完整;(2)扇形统计图中,b=,得8分所对应扇形的圆心角度数为;(3)在本次调查的学生中,随机抽取1名女生,她的成绩不低于9分的概率为多少?(直接写出结果不得分)19.(8分)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.着AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.20.(10分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点(1)如图1,当点D在BC边上时,连接AD、BE,求证:AD=BE;(2)如图2,F是线段AD上的一点,连接CF,若AF=CF,试判断BE与CF的数量关系和位置关系,并说明理由;(3)如图3,把△DEC绕点C顺时针旋转α角(0°<α<90°)将(2)问的条件AF =CF换成AF=FD,其他条件不变,(2)问中的关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出相应的正确的结论.一、填空题(每小题4分,共20分)21.(4分)已知3a=5,9b=10,则3a﹣2b=.22.(4分)若=n.则m+n的值为.23.(4分)已知x是的整数部分,y是的小数部分,则(y﹣)x﹣1的算术平方根为.24.(4分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为.25.(4分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.26.(4分)计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.二、解答题(30分)27.(4分)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28.(10分)成都和西安两地之间的铁路交通设有高铁列车和普快列车两种车次,某天一辆普快从西安出发匀速驶向成都,同时另一辆高铁从成都出发匀速驶向西安,两车与成都的距离S1,S2(千米)与行驶时间t(时)之间的关系如图所示.(1)西安与成都的距离为千米,普通快车到达成都所用时间为小时;(2)求高铁从成都到西安的距离S2与t之间的关系式;(3)在成都、西安两地之间有一条隧道,高铁经过这条隧道时,两车相距74千米,求西安与这条隧道之间的距离.t0124…S1666546426186…29.(12分)问题:如图1,在等边△ABC内部有一点P,已知P A=3,PB=4,PC=5,求∠APB的度数?(1)请写出常见四组勾股数:、、、.(2)解决方法:通过观察发现P A,PB,PC的长度符合勾股数,但由于P A,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB=.请写出解题过程.(3)应用:请你利用(2)题的思路,解答下面的问题:如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).30.在Rt△ABC中,∠C=90°,若c=10cm,a:b=3:4,求△ABC的周长.2020-2021学年四川省成都市石室天府中学八年级(上)入学数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)用科学记数法表示0.000000108,得()A.1.08×10﹣6B.1.08×10﹣7C.10.8×10﹣6D.10.8×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000108=1.08×10﹣7,故选:B.2.(3分)计算:(﹣a)5•(a2)3÷(﹣a)4的结果,正确的是()A.a7B.﹣a6C.﹣a7D.a6【分析】根据积的乘方先去括号得到原式=﹣a5•a6÷a4,然后根据同底数的幂相乘和同底数的幂相除的运算方法即可得到结论.【解答】解:原式=﹣a5•a6÷a4=﹣a5+6﹣4=﹣a7.故选:C.3.(3分)如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD【分析】添加AF=CD,根据等式的性质可得AC=FD,然后利用ASA判定△ABC≌△DEF.【解答】解:添加AF=CD,∵AF=CD,∴AF+FC=CD+FC,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故选:D.4.(3分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.5.(3分)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【分析】根据垂线段最短、直线和线段的性质即可得到结论.【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.6.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根【分析】根据无理数、立方根、平方根的定义解答即可.【解答】解:A、无限循环小数是有理数,故不符合题意;B、﹣有立方根是﹣,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.7.(3分)下列说法正确的是()A.在地球上,上抛的篮球一定会下落,是必然事件B.买一张福利彩票一定中奖,是不可能事件C.抛掷一个正方体骰子,点数为奇数的概率是D.从一个装有5个黑球和1个红球的口袋中,摸出一个球是黑球是必然事件【分析】根据必然事件、随机事件以及不可能事件的定义即可作出判断.【解答】解:A、在地球上,上抛的篮球一定会下落,是必然事件,故选项正确;B、买一张福利彩票一定中奖,是随机事件,选项错误;C、抛掷一个正方体骰子,点数为奇数的概率是,选项错误;D、从一个装有5个黑球和1个红球的口袋中,摸出一个球是黑球是随机事件,选项错误.故选:A.8.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A 为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°【分析】由作图可知,AD平分∠BAC,由∠ADC=90°﹣∠DAC计算机可解决问题;【解答】解:由作图可知,AD平分∠BAC,∵∠C=90°,∠B=26°,∴∠BAC=64°,∴∠DAC=∠BAC=32°,∴∠ADC=90°﹣32°=58°,故选:C.9.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米【分析】根据函数图象得到小强跑64米用了8秒,小敏跑了(64﹣12)米用了8秒,再利用速度公式分别求出两人的速度,然后求他们得速度差即可.【解答】解:根据图象得小强跑64米用了8秒,所以小强的速度==8米/秒,小敏跑了(64﹣12)米用了8秒,所以小敏的速度==6.5米/秒,所以强的速度比小敏的速度每秒快8米/秒﹣6.5米/秒=1.5米/秒.故选:C.10.(3分)如图,△ABC中,AB=AC,∠A、∠B的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.80°B.50°C.40°D.20°【分析】设∠BAC=x,根据已知可以分别表示出∠ABD和∠BAD,再根据三角形内角和定理即可求得∠BAC的度数.【解答】解:设∠BAC=x,∵在△ABC中,AB=AC,∴∠ABC=∠C=(180°﹣x),∵BD是∠ABC的角平分线,AD是∠BAC的角平分线,∴∠ABD=(180°﹣x),∠DAB=x,∵∠ABD+∠DAB+∠ADB=180°,∴(180°﹣x)+x+130°=180°,∴x=20°.故选:BD.二、填空题(每小题4分,共16分)11.(4分)如果9x2﹣mx+4是完全平方式,则m=±12.【分析】这里首末两项是3x和2这两个数的平方,那么中间一项为加上或减去3x和2积的2倍.【解答】解:∵9x2﹣mx+4是完全平方式,∴9x2﹣mx+4=(3x±2)2=9x2±12x+4,∴m=±12,故答案为:±12.12.(4分)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,△ABC 的周长为20cm,边AB的长为7cm,则△BCD的周长为13cm.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算,得到答案.【解答】解:∵线段AB的垂直平分线与AC相交于点D,∴DA=DB,∵△ABC的周长为20,∴AB+AC+BC=20,∴AC+BC=20﹣AB=13,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=13(cm),故答案为:13cm.13.(4分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:如图(1)所示:AB==;如图(2)所示:AB==10.由于>10,所以最短路径为10.故答案为:10.14.(4分)已知a,b在数轴上的位置如图,化简:=1﹣a﹣b.【分析】本题利用实数与数轴的关系,判断a+1、2﹣b的符号,利用=|a|进行计算.【解答】解:由a,b在数轴上的位置可知:﹣2<a<﹣1,2<b<3,∴=﹣(a+1)+2﹣b=1﹣a﹣b.三、解答题(共54分)15.(10分)计算:(1)﹣+;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×.【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:(1)﹣+=2﹣3+5=4;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×=4﹣1+2﹣+3=5+2.16.(10分)若+|y+3|+(z﹣2)2=0,求x y﹣z的平方根.【分析】根据非负数的性质列式求解即可得到x、y、z的值,然后利用平方根的定义解答.【解答】解:∵+|y+3|+(z﹣2)2=0,∴2x﹣1=0,y+3=0,z﹣2=0,解得:x=,y=﹣3,z=2,∴x y﹣z=,∴x y﹣z的平方根为.17.(8分)如图,AB∥CD∥EF,CD交AF于G,(1)如图1,若CF平分∠AFE,∠A=70°,求∠C;(2)如图2,请写出∠A,∠C和∠AFC的数量关系并说明理由.【分析】(1)根据平行线的性质得到∠AFE的度数,再根据角平分线的定义和平行线的性质*9即可求解;(2)根据平行线的性质得到∠DGF=∠A,再根据三角形外角的性质即可求解.【解答】解:(1)∵AB∥EF,∠A=70°,∴∠AFE=70°,∵CF平分∠AFE,∴∠CFE=35°,∵CD∥EF,∴∠C=35°;(2)∵AB∥CD,∴∠DGF=∠A,∵∠DGF=∠C+∠AFC,∴∠A=∠C+∠AFC.18.(8分)在2020年83岁的钟南山奋战在抗击疫情的最前线,成为全国人民最敬佩的硬核男神,他有强健的身体,这都是得益于几十年如一日的坚持锻炼.在本次疫情中打败新冠肺炎还需要自身免疫力,同学们都应该加强身体锻炼,为了了解同学们在线上教学中体育锻炼的情况,在返校后某初中对600名初一学生进行了体育测试,其中对仰卧起坐成绩进行了整理,绘制成如图所示不完整的统计图:根据统计图,回答下列问题.(1)请将条形统计图补充完整;(2)扇形统计图中,b=60,得8分所对应扇形的圆心角度数为36°;(3)在本次调查的学生中,随机抽取1名女生,她的成绩不低于9分的概率为多少?(直接写出结果不得分)【分析】(1)用总人数减去其它的人数求出10分的女生人数,从而补全统计图;(2)用10分的人数除以总人数求出b的值;用得8分的人数所占的百分比乘以360°即可得出答案;(3)用成绩不低于9分的女生人数除以总的女生数,即可得出成绩不低于9分的概率.【解答】解:(1)10分的人数有600﹣20﹣10﹣40﹣20﹣80﹣70﹣180=180(人),补图如下:(2)10分所占的百分比是:×100%=60%,则b=60,得8分所对应扇形的圆心角度数为360°×=36°.故答案为:60,36°;(3)=.答:她的成绩不低于9分的概率为.19.(8分)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.着AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为(b ﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×ab=13﹣3=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.20.(10分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点(1)如图1,当点D在BC边上时,连接AD、BE,求证:AD=BE;(2)如图2,F是线段AD上的一点,连接CF,若AF=CF,试判断BE与CF的数量关系和位置关系,并说明理由;(3)如图3,把△DEC绕点C顺时针旋转α角(0°<α<90°)将(2)问的条件AF =CF换成AF=FD,其他条件不变,(2)问中的关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出相应的正确的结论.【分析】(1)要想证明AD=BE,只要证明△ACD≌△BCE即可;(2)先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;(3)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°﹣∠ACD,所以CD =CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【解答】解:(1)∵△ABC和△DEC都是等腰直角三角形,∴BC=AC,DC=EC,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),(2)BE=2CF,BE⊥CF.如图2:理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠2,∴BE=2CF,而∠2+∠3=90°,∴∠CBE+∠3=90°,∴CF⊥BE;(2)仍然有BE=2CF,BE⊥CF.理由如下:延长CF到G使FG=CF,连结AG、DG,如图3,∵AF=DF,FG=FC,∴四边形ACDG为平行四边形,∴AG=CD,AG∥CD,∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,∴CD=CE=AG,∵△DEC绕点C顺时针旋转α角(0<α<90°),∴∠BCD=α,∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,∴∠GAC=∠ECB,在△AGC和△CEB中,∴△AGC≌△CEB,∴CG=BE,∠2=∠1,∴BE=2CF,而∠2+∠BCF=90°,∴∠BCF+∠1=90°,∴CF⊥BE.一、填空题(每小题4分,共20分)21.(4分)已知3a=5,9b=10,则3a﹣2b=.【分析】先求出32b=10,再根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵9b=32b=10,3a=5,∴3a﹣2b=3a÷32b=5÷10=,故答案为:.22.(4分)若=n.则m+n的值为﹣.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式求出m,根据题意求出n,计算即可.【解答】解:由题意得,9﹣m2≥0,m2﹣9≥0,m﹣3≠0,解得,m=﹣3,则n=﹣,∴m+n=﹣3+(﹣)=﹣,故答案为:﹣.23.(4分)已知x是的整数部分,y是的小数部分,则(y﹣)x﹣1的算术平方根为3.【分析】根据3=<,可得出x的值,继而得出y的值,x、y的值代入计算即可得出答案.【解答】解:由题意可得:3=<,∴x=3,y=﹣3,则(y﹣)x﹣1=32=9,而9的算术平方根为3.故答案为:3.24.(4分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为.【分析】先判定三角形BDE是等腰三角形,再根据勾股定理及三角形相似的性质计算.【解答】解:连接BD,交EF于点G,由折叠的性质知,BE=ED,∠BEG=∠DEG,则△BDE是等腰三角形,由等腰三角形的性质:顶角的平分线是底边上的高,是底边上的中线,∴BG=GD,BD⊥EF,则点G是矩形ABCD的中心,所以点G也是EF的中点,由勾股定理得,BD=3,BG=,∵BD⊥EF,∴∠BGF=∠C=90°,∵∠DBC=∠DBC,∴△BGF∽△BCD,则有GF:CD=BG:CB,求得GF=,∴EF=.25.(4分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为108°或72°.【分析】分为三种情况:①当AD=AE时,∠ADE=∠AED=36°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=72°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【解答】解:∵AB=AC,∴∠B=∠C=36°,①当AD=AE时,∠ADE=∠AED=36°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=×(180°﹣36°)=72°,∵∠BAC=180°﹣36°﹣36°=108°,∴∠BAD=108°﹣72°=36°;∴∠BDA=180°﹣36°﹣36°=108°;③当EA=ED时,∠ADE=∠DAE=36°,∴∠BAD=108°﹣36°=72°,∴∠BDA=180°﹣72°﹣36°=72°;∴当△ADE是等腰三角形时,∠BDA的度数是108°或72°.故答案为:108°或72°.26.(4分)计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=﹣6b2﹣11c2+16bc+16.【分析】把前两项整理成4与2b﹣3c的和与差的相乘的形式,利用平方差公式计算,(b ﹣c)2利用完全平方公式计算,然后再利用合并同类项的法则计算即可.【解答】解:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2,=[(2b﹣3c)+4][﹣(2b﹣3c)+4]﹣2(b﹣c)2,=16﹣(2b﹣3c)2﹣2(b﹣c)2,=16﹣4b2+12bc﹣9c2﹣2b2+4bc﹣2c2,=﹣6b2﹣11c2+16bc+16.二、解答题(30分)27.(4分)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【分析】根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.28.(10分)成都和西安两地之间的铁路交通设有高铁列车和普快列车两种车次,某天一辆普快从西安出发匀速驶向成都,同时另一辆高铁从成都出发匀速驶向西安,两车与成都的距离S1,S2(千米)与行驶时间t(时)之间的关系如图所示.(1)西安与成都的距离为666千米,普通快车到达成都所用时间为 5.55小时;(2)求高铁从成都到西安的距离S2与t之间的关系式;(3)在成都、西安两地之间有一条隧道,高铁经过这条隧道时,两车相距74千米,求西安与这条隧道之间的距离.t0124…S1666546426186…【分析】(1)根据题意和表格中的数据可以解答本题;(2)根据函数图象中的数据可以求得S2与t之间的关系式;(3)根据题意和分类讨论的数学方法可以解答本题.【解答】解:(1)由表格中的数据可得,西安与成都的距离为666千米,普通快车到达成都所用时间为:666÷(666﹣546)=5.55小时,故答案为:666,5.55;(2)设高铁从成都到西安的距离S2与t之间的关系式为:S2=kt,300=1.2k,得k=250,即高铁从成都到西安的距离S2与t之间的关系式为S2=250t;(3)当普快在隧道和西安之间时,设此时为t1,[300÷1.2+(666﹣546)]×t1=666﹣74,解得,t1=1.6,则西安与这条隧道之间的距离是(666﹣546)×1.6+74=266(千米);当普快在成都和隧道之间时,设此时为t2,[300÷1.2+(666﹣546)]×t2=666+74,解得,t2=2,则西安与这条隧道之间的距离是(666﹣546)×2﹣74=166(千米);由上可得,西安与这条隧道之间的距离是266千米或166千米.29.(12分)问题:如图1,在等边△ABC内部有一点P,已知P A=3,PB=4,PC=5,求∠APB的度数?(1)请写出常见四组勾股数:3,4,5、5,12,13、7,24,25、6,8,10.(2)解决方法:通过观察发现P A,PB,PC的长度符合勾股数,但由于P A,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB=150°.请写出解题过程.(3)应用:请你利用(2)题的思路,解答下面的问题:如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).【分析】(1)根据勾股数的定义解决问题即可.(2)根据等边三角形的性质得出AB=AC,∠BAC=60°,根据旋转得出△ACP′≌△ABP,求出P A=P′A=3,PB=P′C=4,∠BAP=∠CAP′,求出∠P′AP=∠BAC=60°,推出△P AP′是等边三角形,求出PP′=P′A=3,根据勾股定理的逆定理求出∠PP′C=90°,即可得出答案;(3)根据旋转得出△ACE′≌△ABE,根据全等得出AE=AE′,BE=CE′,∠E′AC =′BAE,求出∠F AE′=∠EAF,根据全等三角形的判定推出△AEF≌△AE′F,推出FE=FE′,根据勾股定理求出E′F即可.【解答】解:(1)勾股数:3,4,5;5,12,13,7,24,25;6,8,10;故答案为:3,4,5;5,12,13,7,24,25;6,8,10;(2)如图1,将△ABP绕顶点A逆时针旋转60°到△ACP′处,则△ACP′≌△ABP,∵三角形ABC是等边三角形,∴AB=AC,∠BAC=60°,∴P A=P′A=3,PB=P′C=4,∠BAP=∠CAP′,∴∠P′AP=∠P AC+∠CAP′=∠P AC+∠BAP=∠BAC=60°,∴△P AP′是等边三角形,∴PP′=P′A=3,在△PP′C中,PP'2+P′C2=9+15=25=PC2,∴△PP′C是直角三角形,∴∠PP′C=90°,∴∠APB=∠AP′C=60°+90°=150°.故答案为150°.(3)如图2中,将△ABE绕顶点A逆时针旋转90°到△ACE′处,则△ACE′≌△ABE,∴AE=AE′,BE=CE′,∠E′AC=′BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=45°,∠F AE′=∠E′AC+∠F AC=∠BAE+∠F AC=45°=∠EAF,在△AEF和△AE′F中,,∴△AEF≌△AE′F(SAS),∴FE=FE′,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CA=∠B=45°,∴∠E′CF=45°+45°=90°,在Rt△E′FC中,E′C2+FC2=E′F2,∴EF2=BE2+CF2=m2+n2,∴EF=.30.在Rt△ABC中,∠C=90°,若c=10cm,a:b=3:4,求△ABC的周长.【分析】设a=3xcm,b=4xcm,由勾股定理得出方程,解方程求出x,得出a和b,即可得出结果.【解答】解:设a=3xcm,b=4xcm,∵∠C=90°,∴(3x)2+(4x)2=102,解得:x=2,∴a=6,b=8,∴△ABC的周长=a+b+c=6+8+10=24(cm).。
一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .5 2.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能 3.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 4.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =5.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 6.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .17.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°8.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF9.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 10.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .311.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 12.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC二、填空题13.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.14.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.15.如图,ABC 的面积为215cm ,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .16.如图,在Rt ABC 中,90C ∠=︒,AD AC =,DE AB ⊥,交BC 于点E .若26B ∠=︒,则AEC ∠=______︒.17.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.18.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.20.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.三、解答题21.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.22.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.23.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.24.已知ABC 为等腰直角三角形,AB AC =,ADE 为等腰直角三角形,AD AE =,点D 在直线BC 上,连接CE .(1)若点D 在线段BC 上,如图1,求证:CE BC CD =-;(2)若D 在CB 延长线上,如图2,若D 在BC 延长线上,如图3,其他条件不变,又有怎样的结论?请分别写出你发现的结论,不需要证明;(3)若10CE =,4CD =,则BC 的长为________.25.作图:已知ABC 和线段r ,请在ABC 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)26.在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点H ,已知3EH EB ==,4AE =,求CH 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是2.B解析:B 【分析】根据角平分线的定义可得∠AOP=12∠AOC,∠AOM=∠MOB=12∠AOB,∠CON=∠BON=12∠BOC,进而可得∠MON=12∠AOB+12∠BOC=12∠AOC,从而可得∠AOP=∠MON.【详解】解:∵OP平分∠AOC,∴∠AOP=12∠AOC,∵OM、ON分别是∠AOB、∠BOC的平分线,∴∠AOM=∠MOB=12∠AOB,∠CON=∠BON=12∠BOC,∴∠MON=12∠AOB+12∠BOC=12∠AOC,∴∠AOP=∠MON.故选B.【点睛】此题主要考查了角平分线的定义,关键是掌握角平分线把角分成相等的两部分.3.C解析:C【分析】根据全等三角形的判定与性质综合分析即可;【详解】在ABC和DCB中,A DABC DCBBC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,故ABC DCB△△≌,A不符合题意;在ABC和DCB中,AB DCABC DCBBC CB=⎧⎪∠=∠⎨⎪=⎩,故ABC DCB△△≌,B不符合题意;只有AC=BD,BC=CB,ABC DCB∠=∠,不符合全等三角形的判定,故C符合题意;在ABC和DCB中,ACB DBCCB BCABC DCB∠=∠⎧⎪=⎨⎪∠=∠⎩,故ABC DCB△△≌,D不符合题意;故答案选C.本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.4.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.5.D解析:D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C 在∠AOB 的平分线上,∴m=-n .故选:D .【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键. 6.D解析:D【分析】根据三角形的高线、角平分线的性质及全等三角形的判定分析各个选项即可.【详解】解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误;②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS或ASA,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个,此选项错误;⑤两边及第三边上的高对应相等的两个三角形不一定全等,此选项错误.正确的有一个③,故选:D.【点睛】本题考查了全等三角形的判定方法及三角形的角平分线,垂心等概念,熟练掌握概念和性质是解题的关键.7.B解析:B【分析】根据正方形的性质得到AB=AD,∠BAD=90︒,由旋转的性质推出ADE≌ABF,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90︒,由旋转得ADE≌ABF,∴∠FAB=∠EAD,∴∠FAB+∠∠BAE=∠EAD+∠BAE,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B.【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键.8.A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D ∵∠A=∠C ,∠AFD=∠CEB ,AE=CF ,∴AF=CE ,符合ASA 的判定,该选项符合题意; 故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;9.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.10.A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD=⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥,ABC的面积ABD+的面积,=的面积ACD111∴⨯=⨯+⨯,AC BF AD BD CD AD222AC BF AD BD CD AD∴⨯=⨯+⨯,=⨯+⨯=,即10BF8886112∴=,BF11.2EF BF BE11.210 1.2∴=-=-=,故选:A.【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.11.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.12.B解析:B【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,∠BAD和∠ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;二、填空题13.【分析】过点D作DE⊥BA的延长线于点E利用角平分线的性质可得出DE =DC=8再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD可求出四边形ABCD的面积【详解】解:过点D作DE⊥B解析:120【分析】过点D作DE⊥BA的延长线于点E,利用角平分线的性质可得出DE=DC=8,再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD,可求出四边形ABCD的面积.【详解】解:过点D作DE⊥BA的延长线于点E,如图所示.又∵BD平分∠ABC,∠BCD=90°,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×12×8+12×18×8,=120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.14.33°2【分析】(1)作DG⊥AC的延长线于G然后根据平行线的性质可以推出结论;(2)证明△ADG≌△BAC(AAS)由全等三角形的性质得出DG=AC=AE;AG=BC证明△AEF≌△GDF(AAS解析:33° 2【分析】(1)作DG⊥AC的延长线于G,然后根据平行线的性质可以推出结论;(2)证明△ADG≌△BAC(AAS),由全等三角形的性质得出DG=AC=AE;AG=BC,证明△AEF≌△GDF(AAS),得出11 22AF GF AG BC===,则可得出答案.【详解】解:(1)∵90ACB∠=︒,//AE BC,∴18090CAE ACB∠=︒-∠=︒.∵90DAB CAE∠=∠=︒,∴DAC CAB BAE CAB∠+∠=∠+∠,∴33DAC BAE∠=∠=︒.故答案为:33.(2)如图,过点D作DG AC⊥,交AC的延长线于点G,∴90AGD ACB∠=∠=︒.∵//AE CB,∴DAG BAE B∠=∠=∠.在ADG和BAC中,,,,AGO BCADAG BAD BA∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AASADG BAC≅△△,∴DG AC AE==,AG BC=.在AEF和GDF中,,,,EFA DFGEAF DGFAE DG∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AASAEF GDF≅△△,∴1122AF GF AG BC===,∴22BC AF==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.15.【分析】如图延长CD交AB于E由题意得AP平分∠CAB证明△ADC≌△ADE得到CD=DE由此得到推出即可得到答案【详解】如图延长CD交AB于E由题意得AP平分∠CAB∴∠CAD=∠EAD∵CD⊥A解析:152 【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴CD=DE ,∴,ACD ADE BCD BED SS S S ==, ∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .【点睛】此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.16.58【分析】根据∠C=90°AD=AC 证明Rt △CAE ≌Rt △DAE ∠CAE=∠DAE=∠CAB 再由∠C=90°∠B=26°求出∠CAB 的度数然后即可求出∠AEC 的度数【详解】解:∵在△ABC 中∠C解析:58【分析】根据∠C=90°,AD=AC 证明Rt △CAE ≌Rt △DAE ,∠CAE=∠DAE=12∠CAB ,再由∠C=90°,∠B=26°,求出∠CAB 的度数,然后即可求出∠AEC 的度数.【详解】解:∵在△ABC中,∠C=90°,DE⊥AB交BC于点E,∴∠ADE=∠C=90°,在Rt△ACE和Rt△ADE中,∵AC AD AE AE⎧⎨⎩==,∴Rt△CAE≌Rt△DAE,∴∠CAE=∠DAE=12∠CAB,∵∠B+∠CAB=90°,∠B=26°,∴∠CAB=90°-26°=64°,∵∠AEC=90°-12∠CAB=90°-32°=58°.故答案为:58.【点睛】此题主要考查学生对直角三角形全等的判定和三角形内角和定理的理解和掌握,解答此题的关键是求证Rt△CAE≌Rt△DAE.17.22【分析】由三角形全等性质可得mn中有一边为5pq中有一边为3mn与pq中剩余两边相等再由三角形三边关系可知mn与pq中剩余两边最大为7如此即可得到m+n+p+q的最大值【详解】∵△ABC≌△DE解析:22【分析】由三角形全等性质可得m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,再由三角形三边关系可知m、n与p、q中剩余两边最大为7,如此即可得到m+n+p+q的最大值.【详解】∵△ABC≌△DEF,∴m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键.18.2或【分析】分点Q在BC上和点Q在AC上根据全等三角形的性质分情况列式计算【详解】由题意得AP=3tBQ=2tAC=8cmBC=6cmCP=8﹣3tCQ=6﹣2t①如图当与全等时PC=QC解得;②如解析:2或145. 【分析】 分点Q 在BC 上和点Q 在AC 上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP =3t ,BQ =2t ,AC =8cm ,BC =6cm ,∴ CP =8﹣3t ,CQ =6﹣2t ,①如图,当PMC △与QNC 全等时,PC=QC ,6283t t -=-,解得2t =;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键. 19.AD=BD 【分析】要判定△BCD ≌△ACD 已知∠1=∠2CD 是公共边具备了一边一角对应相等注意SAS 的条件;两边及夹角对相等只能选AD=BD 【详解】解:由图可知只能是AD=BD 才能组成SAS 故答案为解析:AD=BD【分析】要判定△BCD ≌△ACD ,已知∠1=∠2,CD 是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD ,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.20.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.三、解答题21.(1)45°;(2)()5,8D ;(3)见解析.【分析】(1)根据点A,点B 的坐标,得OA=OB,从而得到等腰直角三角形OAB 依此计算即可;(2) 过点D 作DE y ⊥轴,垂足为E ,证明DEC COA △△≌即可;(3)通过证明CDB CAB ∠=∠,实现DCN ACM △△≌的目标,问题得证.【详解】(1)∵()3,0A ,()0,3B ,∴OA=OB ,∴△AOB 是等腰直角三角形,∴∠OBA=45°,故填45°.(2)∵()0,5C ,∴5OC =.如图,过点D 作DE y ⊥轴,垂足为E ,∴90DEC AOC ∠=∠=︒.∵90DCA ∠=︒,AC CD =,∴90ECD BCA ECD EDC ∠+∠=∠+∠=︒,∴BCA EDC ∠=∠,∴()AAS DEC COA ≌△△, ∴5DE OC ==,3EC OA ==,∴8OE OC EC =+=,∴()5,8D .(3)证明:∵835BE OE OB =-=-=,∴BE DE =,∴DBE 是等腰直角三角形,∴45DBE ∠=︒.∵45OBA ∠=︒,∴90DBA ∠=︒,∴90BAN ANB ∠+∠=︒.∵90DCA ∠=︒,∴90CDN DNC ∠+∠=︒.∵DNC ANB ∠=∠,∴CDB CAB ∠=∠.∵90DCA ∠=︒,∴90ACM DCN ∠=∠=︒.∵AC CD =,∴()ASA DCN ACM ≌△△, ∴AM DN =.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关键.22.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.23.(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解. 【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE =⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.24.(1)见解析;(2)图2:CE CD BC =-;图3:CE BC CD =+;(3)14或6【分析】(1)根据等腰直角三角形的性质得到∠ABC=∠BCA=45°,得到∠BAD=∠CAE ,利用SAS 定理证明ABD ACE △≌△,根据全等三角形的性质得到BD=CE ,结合图形证明; (2)同(1)的方法判断出ABD ACE △≌△,得出BD=CE ,即可解决问题; (3)根据(1)(2)得到的结论代入计算即可.【详解】证明:(1)ABC 、ADE 均是等腰直角三角形,AB AC ∴=,AD AE =,BAC DAE ∠=∠.BAC DAC DAE DAC ∴∠-∠=∠-∠.BAD CAE ∴∠=∠,在ABD △和CAE 中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABD ACE ∴≌,BD CE ∴=.BD BC CD =-,CE BC CD ∴=-.(2)如图2中,CE CD BC =-,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠BAE=∠DAE-∠BAE ,即∠BAD=∠EAC ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴BD=CE ,∴CD=BC+BD=BC+CE即:CE CD BC =-.如图3中,CE=BC+CD .理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE ,∴在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴BD=CE ,∴BD=BC+CD ,即CE=BC+CD .综上所述,若D 在CB 延长线上,如图2中,得到结论:CE CD BC =-,如图3,得到结论:CE BC CD =+.(3)∵在图1、图2中:CE CD BC =-(已证),10CE =,4CD =∴=+=10+4=14BC CE CD∵在图3中:CE=BC+CD (已证),10CE =,4CD =∴=-=10-4=6BC CE CD即:14或6.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.图见解析.【分析】根据题意点P 到AC 和BC 的距离相等,可知点P 在ACB ∠的角平分线上,点A 到点P 的距离等于定长r ,可知点P 在以点A 为圆心,以定长r 为半径的圆上,由此作图即可.【详解】如图,先作ACB ∠的角平分线,再以点A 为圆心,以定长r 为半径作圆弧,圆弧与ACB ∠角平分线的交点即为点P .【点睛】本题主要考查角平分线的画法,属于基础题,需要有一定的画图能力,熟练掌握角平分线的画法是解题的关键.26.CH=1【分析】根据AD ⊥BC ,CE ⊥AB ,可得出∠EAH+∠B=90°∠EAH+∠AHE=90°,则∠B=∠AHE ,则可证△AEH ≌△CEB ,从而得出CE=AE ,再根据已知条件得出CH 的长.【详解】解:∵AD ⊥BC ,∴∠EAH+∠B=90°,∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∴∠B=∠AHE ,∵EH=EB ,在△AEH 和△CEB 中,AHE B EH BEAEH BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEH ≌△CEB (ASA ),∴CE=AE=4,∵EH=EB=3,∴CH=CE-EH=4-3=1.【点睛】本题考查了全等三角形的判定和性质,根据同角的余角相等得出∠B=∠AHE ,是解此题的关键.。
2020-2021学年四川省成都市武侯区石室天府中学八年级(上)月考数学试卷(10月份)1.下列四组线段中,可以构成直角三角形的是()A. 6,7,8B. 1,2,5C. 5,12,13D. 3,4,62.下列各数:−0.9,π,22,√5,0,1.2020020002…(每两个2之间多一个0),中是7无理数的有()A. 1个B. 2个C. 3个D. 4个3.已知√x−3+(2x−y)2=0,则x+y的值是()A. 3B. ±3C. 9D. ±94.下列说法中正确的有()3=2.①±2都是8的立方根,②√(−2)2=−2,③√81的平方根是3,④−√−8A. 1个B. 2个C. 3个D. 4个5.如图,数轴上的A,B,C,D四点中,与表示数√17的点数接近的点是()A. 点AB. 点BC. 点CD. 点D6.若二次根式√2+x有意义,则x的取值范围是()x−1A. x≥−2B. x≠1C. x>1D. x≥−2且x≠17.如图,矩形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则BE的长为()A. 3B. 4C. 5D. 2√38.实数a、b在数轴上的位置如图所示,那么化简|a−b|−√a2的结果是()A. 2a−bB. bC. −bD. −2a+b9.如图所示,数轴上A、B两点所表示的数是−2,0,BC与数轴垂直,且BC=1,连结AC,以A为圆心,AC为半径画弧,交数轴于点D,则点D所表示的数为()A. √5+1B. √5−1C. √5−2D. 2−√510.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是()A. √102B. √104C. √105D. √511.|2−√3|=______ ,√−273的相反数是______ .12.若一个正数的平方根是2a−1和−a+2,则这个正数是______.13.如图,在一个长方形草坪ABCD上,放着一根长方体的木块,已知AD=6米,AB=5米,该木块的较长边与AD平行,横截面是边长为1米的正方形,一只蚂蚁从点A 爬过木块到达C处需要走的最短路程是______米.14.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则xy=______ .15.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为4,则△ABC的面积是______.16.计算:(1)√252+√99−√18;(2)(2−√5)2−√2×√102+(23)−1;(3)(3√12−2√13+√48)÷2√3.17.求x的值(x−2)2=1;(1)19(2)−27(x−1)3−125=0.18.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求b−2a+1的立方根.19.如图,在△BDC中,DC=6,BC=10,BD=8,以BD为边向外作等边△ABD,求四边形ABCD的面积.20.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.21.如图,△ABC和△EFC均为等腰直角三角形,∠ACB=∠FCE=90°,且A、F、E三点在同一条直线上.(1)求证:AF=BE,并求∠AEB的度数;(2)若AC=√17,BE=3,求CE的长.22.当x=2+√3时,x2−4x+2020=______.23.已知|2019−a|+√a−2020=a,求a−20192的值是______.24.如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕FG的两端点分别在AB、BC上(含端点),且AB=6,BC=10.则AE的最大值是______,最小值是______.25.如图,在△ABC中,AB=AC=20,BC=32,点D在线段BC上以每秒2个单位的速度从B向C移动,连接AD,当点D移动______ 秒时,AD与△ABC的边垂直.26.如图,在△ABC中,AB=AC=6√3,∠BAC=120°,点M,N分别在边AB,AC上,AN=13AC,将△AMN沿MN翻折,点A落在A′处,则线段BA′长度的最小值为______ .27.已知实数x,y满足y=√x−2+√2−x+3,(1)求√6xy的平方根;(2)求2x+√y −2x−√y的值.28.请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小明的思路是:如图2所示,先作点A关于直线l的对称点A′,使点A′,B分别位于直线l的两侧,再连接A′B,根据“两点之间线段最短”可知A′B与直线l的交点P即为所求.请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设AA′与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,AC=1,PD=2,直接写出AP+BP的值;(2)将(1)中的条件“AC=1”去掉,换成“BD=4−AC”,其它条件不变,直接写出此时AP+BP的值;(3)请结合图形,求√(m−3)2+1+√(9−m)2+4的最小值.29.联想我们曾经学习过的三角形外心的概念,我们可引入准外心的定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.请回答下面的三个问题:(1)如图1,若PB=PC,则点P为△ABC的准外心,而且我们知道满足此条件的准外心有无数多个,你能否用尺规作出另外一个准外心Q呢?请尝试完成;(2)如图2,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长;(3)如图3,点B既是△EDC又是△ADC的准外心,BD=BA=BC=2AD,BD//AC,CD=4√5,求AD的值.3答案和解析1.【答案】C【解析】解:A、∵62+72≠82,∴该三角形不符合勾股定理的逆定理,故不能作为直角三角形;B、∵12+22≠52,∴该三角形不符合勾股定理的逆定理,故不能作为直角三角形;C、∵52+122=132,∴该三角形符合勾股定理的逆定理,故能作为直角三角形;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不能作为直角三角形.故选:C.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.【答案】C【解析】解:π,√5,1.2020020002…(每两个2之间多一个0)是无理数,共有3个,故选:C.根据无理数是无限不循环小数,可得答案.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.3.【答案】C【解析】解:由√x−3+(2x−y)2=0,得x−3=0,2x−y=0,解得x=3,y=6,所以x+y=3+6=9.故选:C.根据非负数的和为零,可得每个非负数同时为零,根据有理数的加法,可得答案.本题考查了非负数的性质.能够利用据非负数的和为零得出每个非负数同时为零是解题4.【答案】A【解析】解:①2是8的立方根,错误;②√(−2)2=|−2|=2,错误;③√81=9,93=−2,正确.的平方根是±3,错误;④−√−8则正确的有1个.故选A各项计算得到结果,即可做出判断.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.5.【答案】C【解析】解:∵√16<√17<√25,∴4<√17<5,∴数轴上与表示数√17的点数接近的点是C,故选:C.先估算出与√17比较接近的两个整数,再根据数轴即可得到哪个点与√17最接近,本题得以解决.本题考查实数与数轴,解题的关键是明确数轴的特点,可以估算出√17与哪两个整数最接近.6.【答案】D【解析】解:由题意得:2+x≥0,且x−1≠0,解得:x≥−2,且x≠1,故选:D.利用二次根式有意义的条件可得2+x≥0,再利用分式有意义的条件可得x−1≠0,进而可得答案.此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.【解析】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DBC=∠BDA,由折叠的性质得:∠C′BD=∠DBC,∴∠C′BD=∠BDA,∴DE=BE,设BE=DE=x,则AE=8−x.在△ABE中,由勾股定理得:x2=42+(8−x)2.解得:x=5,∴BE=5.故选:C.由矩形的性质和折叠的性质得出∠C′BD=∠DBC=∠BDA,可得DE=BE,设BE=DE=x,则AE=8−x.根据勾股定理得出方程,解方程即可.此题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、勾股定理;熟练掌握矩形和翻折变换的性质,由勾股定理得出方程是解决问题的关键.8.【答案】C【解析】解:∵a>0,b<0,|a|<|b|,∴原式=a−b−|a|=a−b−a=−b.故选C.由数轴可得到a>0,b<0,|a|<|b|,根据√a2=|a|和绝对值的性质即可得到答案.本题考查了二次根式的性质与化简:√a2=|a|.也考查了绝对值的性质.9.【答案】C【解析】解:∵BC⊥AB,∴∠ABC=90°,∴AC=√AB2+BC2=√5,∵以A为圆心,AC为半径画弧,交数轴于点D,∴AD=AC=√5,∴点D表示的数是:√5−2.故选:C.首先根据勾股定理求出AC的长,再根据同圆的半径相等可知AD=AC,再根据条件:点A对应的数是−2,可求出D点坐标.此题主要考查了实数与数轴,勾股定理,关键是求出AC的长.10.【答案】A【解析】解:根据图形可得:AB=AC=√12+22=√5,BC=√12+32=√10,因为AB2+AC2=BC2,所以∠BAC=90°,设△ABC中BC边上的高是x,则AC⋅AB=BC⋅x,√5×√5=√10⋅x,x=√10.2故选:A.根据所给出的图形求出AB、AC、BC的长以及∠BAC的度数,再根据三角形的面积公式列出方程进行计算即可.此题考查了勾股定理,勾股定理的逆定理,三角形的面积公式,关键是根据三角形的面积公式列出关于x的方程.11.【答案】2−√3 3【解析】解:|2−√3|=2−√3,3=−3的相反数是:3.√−27故答案为:2−√3,3.直接利用绝对值的性质、相反数的定义和立方根的性质化简得出答案.此题主要考查了实数的性质,正确掌握相关定义是解题关键.12.【答案】9【解析】解:由题意得:2a−1−a+2=0,解得:a=−1,2a−1=−3,−a+2=3,则这个正数为9,故答案为:9.首先根据整数有两个平方根,它们互为相反数可得2a−1−a+2=0,解方程可得a,然后再求出这个正数即可.此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.13.【答案】√85【解析】解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为5+2×1=7米;宽为6米.于是最短路径为:√72+62=√85米.故答案为:√85解答此题要将木块展开,然后根据两点之间线段最短解答.本题主要考查两点之间线段最短,有一定的难度,要注意培养空间想象能力.14.【答案】22.5【解析】解:根据勾股定理可得:x2+y2=49,(x−y)2=4,可得:49−2xy=4,解得:xy=22.5,故答案为:22.5.根据勾股定理列出方程,进而利用各图形面积的关系列式解答即可.本题考查勾股定理,二元二次方程等知识,解题的关键学会利用方程的思想解决问题,学会整体恒等变形的思想,属于中考常考题型.15.【答案】26【解析】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,在△ABD与△BCE中,{∠BAD=∠CBE AB=BC∠ADB=∠BEC,∴△ABD≌△BCE(ASA)∴BE=AD=4在Rt△BCE中,根据勾股定理,得BC=√36+16=2√13,所以△ABC的面积=12×2√13×2√13=26,故答案为:26.过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用三角形面积即可求出.考查了全等三角形的判定与性质,等腰直角三角形的性质.此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.16.【答案】解:(1)原式=5√22+3√11−3√2=3√11−√22;(2)原式=4−4√5+5−√2×102+32=9−4√5−√5+32=212−5√5;(3)原式=(6√3−2√33+4√3)÷2√3=28√33÷2√3=143.【解析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式、二次根式的乘法法则、负整数指数幂的意义计算即可;(3)先把二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【答案】解:(1)19(x−2)2=1,∴(x−2)2=9,∴x−2=±3.解得:x=5或x=−1.(2)−27(x−1)3−125=0∴−27(x−1)3=125,∴(x−1)3=−12527,∴x−1=−53,解得:x=−23.【解析】(1)先求得x−1的值,然后再解关于x的方程即可;(2)先求得(x−1)3的值,然后,再依据立方根的性质得到关于x的方程,最后,解方程即可.本题主要考查了平方根和立方根.熟练掌握平方根和立方根的等于是解题的关键.18.【答案】解:∵2a−1的平方根是±3,∴2a−1=(±3)2,解得a=5;∵3a+b−1的算术平方根是4,∴3a+b−1=16,把a=5代入得,3×5+b−1=16,解得b=2,∴b−2a+1=2−10+1=−7,∴b−2a+1的立方根为√−73.【解析】分别根据2a−1的平方根是±3,3a+b−1的算术平方根是4,求出a、b的值,再求出b−2a+1的值,求出其立方根即可.本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.19.【答案】解:过D作DF⊥AB于F,∵DC2+BD2=62+82=102=CB2,∴△BDC是直角三角形,∴S△BCD=12×6×8=24,∵△ABD是等边三角形,∴AB=BD=8,∵DF⊥AB,∴FB=4,∴DF=√82−42=4√3,∴S△ABD=12⋅AB⋅DF=12×8×4√3=16√3,∴四边形ABCD的面积是:24+16√3.【解析】过D作DF⊥AB于F,利用勾股定理逆定理证明△BDC是直角三角形,利用勾股定理计算出DF的长,然后可得四边形ABCD的面积.此题主要考查了勾股定理逆定理,以及勾股定理,关键是掌握勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.20.【答案】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,{AG=AGAB=AF,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6−x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6−x)2=(3+x)2,解得x=2,∴BG=2.【解析】此题主要考查了轴对称的性质、全等三角形的判定及性质、勾股定理,根据翻折变换的性质得出对应线段相等是解题关键.(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;21.【答案】(1)证明:∵∠ACB=∠FCE=90°,∴∠ACF=∠BCE,在△ACF和△BCE中,{CA=CB∠ACF=∠BCE CF=CE,∴△ACF≌△BCE(SAS),∴AF=BE,∴∠AFC=∠CEB,∵∠CFE=∠CEF=45°,∴∠AFC=∠CEB=135°,∴∠AEB=90°,(2)解:∵AC=BC=√17,∴AB=√2AC=√34,在Rt△AEB中,AE=√AB2−BE2=√34−9=5.∵AF=BE=3,∴EF=2,∴CE=√2EF=√2.2故答案为:√2.【解析】(1)根据SAS即可证明△ACF≌△BCE,可得∠AFC=∠CEB,由∠CFE=∠CEF= 45°,推出∠AFC=∠CEB=135°,推出∠AEB=90°;(2)由△ACF≌△BCE,可得AF=BE,由AC=BC,推出BC,在Rt△AEB中,根据勾股定理可得AE=5,进而可得EF,再由△EFC为等腰直角三角形即可解决问题.此题考查等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是综合运用以上知识.22.【答案】2019【解析】解:由已知得:x−2=√3,∴x2−4x+2020=(x−2)2+2016=3+2016=2019.故答案为:2019.根据x=2+√3得出x−2=√3,再把x2−4x+2020化成(x−2)2+2016,然后代入计算即可.此题考查了二次根式的化简求值,注意:此题要先利用完全平方公式把x2−4x+2020变成完全平方公式的形式,可使运算简便.属于整体代入的思想.23.【答案】2020【解析】解:由题意可知:a≥2020,∴2019−a<0,∴a−2019+√a−2020=a,∴√a−2020=2019,∴a−2020=20192,∴a−20192=2020,故答案为:2020根据二次根式有意义的条件以及绝对值的性质即可求出答案.本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件以及绝对值的性质,本题属于中等题型.24.【答案】6 2【解析】解:如图,当点F与点C重合时,根据翻折对称性可得EC=BC=10,在Rt△CDE中,CE2=CD2+ED2,即102=(10−AE)2+62,解得AE=2,即x=2.如图,当点G与点A重合时,根据翻折对称性可得AE=AB=6,即x=6;所以AE的最大值是6,最小值为2.故答案是:6,2.根据折痕为GF,点G在AB边上,点F在BC边上.分别利用当点G与点A重合时,以及当点F与点C重合时,求出AE的极值,进而得出答案.本题考查的是翻折变换(折叠问题)、勾股定理.注意利用翻折变换的性质得出对应线段之间的关系是解题关键.25.【答案】3.5或8或12.5【解析】解:作AE⊥BC于E,∵AB=AC=20,BC=32,∴BE=CE=16,∴cos∠B=cos∠C=BEAB =1620=45,①当AD⊥BC时,即D与E重合时,BD=16,则16÷2=8(秒);②当AD⊥AC时,∵cos∠C=ACCD,∴20CD =45,∴CD=25,∴BD=BC−CD=32−25=7,则7÷2=3.5(秒);③当AD⊥AB时,∵cos∠B=ABBD,∴20BD =45,∴BD=25,则25÷2=12.5(秒);综上,当点D移动3.5或8或12.5秒时,AD与△ABC的边垂直.故答案为3.5或8或12.5.作AE⊥BC于E,根据等腰三角形的三线合一的性质得到BE=CE=16,即可求得cos∠B=cos∠C=45,然后分三种情况讨论求得BD的长,进而即可求得结论.本题考查了等腰三角形的性质,解直角三角形等,分类讨论是解题的关键.26.【答案】2√39−2√3【解析】解:如图,过点N作NH⊥BC于H,过点A作AD⊥BC于D,∵AN=13AC,AB=AC=6√3,∠BAC=120°,∴AN=2√3,∠C=30°,BD=CD,∴CN=4√3,∴NH=12NC=2√3,HC=√3NH=6,AD=12AC=3√3,CD=√3AD=9,∴BC=2CD=18,BH=12,∴BN=√NH2+BH2=√144+12=2√39,∵将△AMN沿MN翻折,点A落在A′处,∴AN=A′N=2√3,在△A′BN中,A′B≤BN−A′N,∴当点A′在BN上时,A′B有最小值为2√39−2√3,故答案为:2√39−2√3.过点N作NH⊥BC于H,过点A作AD⊥BC于D,由等腰三角形的性质和直角三角形的性质以及勾股定理可求BC=18,CH=6,NH=2√3,进而可求BN的长,由旋转的性质可得AN=A′N=2√3,由三角形的三边关系可求解.本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.27.【答案】解:由题意得,x−2≥0且2−x≥0,所以,x≥2且x≤2,所以,x=2,y=3,(1)√6xy=√6×2×3=6,√6xy的平方根是±√6;x+√y x−√y,=2+√3−2−√3,=√3)−2(2+√3)(2+√3)(2−√3),=−4√3.【解析】根据被开方数大于等于0列不等式求出x的值,再求出y的值,①代入代数式求出√6xy的值,再根据平方根的定义解答;②代入代数式进行计算即可得解.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.28.【答案】解:(1)如图2,∵AA′⊥l,AC=1,PC=1,∴PA=√2,∴PA′=PA=√2,∵AA′//BD,∴∠A′=∠B,∵∠A′PC=∠BPD,∴△A′PC∽△BPD,∴PBPA′=PDPC,∴PB√2=21,∴PB=2√2,∴AP+PB=√2+2√2=3√2;故答案为3√2;(2)作AE//l,交BD的延长线于E,如图3,则四边形A′EDC是矩形,∴AE=DC=PC+PD=3,DE=A′C=AC,∵BD=4−AC,∴BD+AC=BD+DE=4,即BE=4,在Rt△A′BE中,A′B=√32+42=5,∴AP+BP=5,故答案为5;(3)设AC=1,CP=m−3,∵A A′⊥L于点C,∴AP=√(m−3)2+1,设BD=2,DP=9−m,∵BD⊥L于点D,∴BP=√(9−m)2+4,∴√(m−3)2+1+√(9−m)2+4的最小值即为A′B的长.即:A′B=√(m−3)2+1+√(9−m)2+4的最小值.如图,过A′作A′E⊥BD的延长线于点E.∵A′E=CD=CP+PD=m−3+9−m=6,BE=BD+DE=2+1=3,∴A′B=√(m−3)2+1+√(9−m)2+4的最小值=√BE2+A′E2=√9+36=3√5,∴√(m−3)2+1+√(9−m)2+4的最小值为3√5.【解析】(1)利用勾股定理求得PA,根据三角形相似对应边成比例求得PB,从而求得PA+PB;(2)作AE//l,交BD的延长线于E,根据已知条件求得BE、A′E,然后根据勾股定理即可求得A′B,从而求得AP+BP的值;(3)设AC=1,CP=m−3,得到AP=√(m−3)2+1,设BD=2,DP=9−m,得到BP=√(9−m)2+4,于是得到√(m−3)2+1+√(9−m)2+4的最小值即为A′B的长,如图,过A′作A′E⊥BD的延长线于点E.根据勾股定理即可得到结论.本题考查了轴对称−最短路线问题,熟练掌握轴对称的性质和勾股定理的应用是解题的关键.29.【答案】解:(1)能用尺规作出另外一个准外心Q,作AB的垂直平分线MN,在MN上取点Q,如图1所示:则QA=QB,点Q为△ABC的准外心;(2)连接BP,如图2所示:∵△ABC为直角三角形,斜边BC=5,AB=3,∴AC=√BC2−AB2=√52−32=4,∵准外心P在AC边上,①当PB=PC时,设PB=PC=x,则PA=4−x,在Rt△ABP中,由勾股定理得:32+(4−x)2=x2,解得:x=258,∴PA=4−258=78;②当PA=PC时,PA=12AC=2;③当PA=PB时,∵△ABC是直角三角形,此情况不存在;综上所述,准外心P在AC边上,PA的长为78或2;(3)∵BD=BA=BC,∴∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,如图3所示:则∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,则DE=CE=12CD=2√53,DF=AF=12AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,∵BD//AC,∴∠ABD=∠BAC=∠BCA=2∠ACD=2∠DBF=2∠BCE,∴∠DBF=∠BCE,在△BDF和△CBE中,{∠DBF=∠BCE ∠DFB=∠BEC BD=BC,∴△BDF≌△CBE(AAS),∴DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得:x2+(2√53)2=(4x)2,解得:x=2√39,∴AD=2x=4√39.【解析】本题是圆的综合题目,考查了新定义“准外心”、圆周角定理、垂径定理、勾股定理、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握新定义和圆周角定理是解题的关键.(1)作AB的垂直平分线MN,在MN上取点Q即可;(2)连接BP,由勾股定理得出AC=4,分情况讨论,由直角三角形的性质即可得出答案;(3)由BD=BA=BC,得出∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,由圆周角定理得出∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,由垂径定理得出DE=CE=12CD=2√53,DF=AF=12AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,证明△BDF≌△CBE(AAS),得出DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得出方程,解方程即可.。
2020-2021四川省成都市石室中学八年级数学上期末试卷(含答案)一、选择题1.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 3.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( ) A .3B .4C .5D .6 4.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫5.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .66.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .107.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙9.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°10.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°11.已知x+1x=6,则x2+21x=()A.38B.36C.34D.3212.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°二、填空题13.把0.0036这个数用科学记数法表示,应该记作_____.14.若实数,满足,则______.15.如图,在△ABC中,AB = AC,BC = 10,AD是∠BAC平分线,则BD = ________.16.正六边形的每个内角等于______________°.17.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为18.计算:2422a a a a -=++____________. 19.计算:(x -1)(x +3)=____.20.若n 边形内角和为900°,则边数n= .三、解答题21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE . (2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.22.解分式方程2212323x x x +=-+. 23.先化简再求值:(a +2﹣52a -)•243a a --,其中a =12-. 24.化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.25.已知3a b -=,求2(2)a a b b -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.2.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.3.C解析:C【解析】【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.4.B解析:B【解析】【分析】利用全等直角三角形的判定定理HL证得Rt△ACD≌Rt△AED,则对应角∠ADC=∠ADE;然后根据已知条件“DE平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED,在Rt △ACD 和Rt △AED 中,{AD AD CD ED== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.5.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE ;最后根据三角形的面积公式求解即可.【详解】:∵CD 平分∠ACB ,DE ⊥AC ,DF ⊥BC ,∴DF=DE=2, ∴1•124242BCD S BC DF =⨯=⨯⨯=; 故答案为:A .【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.6.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm ,则8﹣2<x <2+8,6<x <10,故选:C .【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.7.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF ≌△ADE ,即可判断①②;利用SSS 即可证明△BDE ≅△ADF ,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.【详解】∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF =∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中, BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.8.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC 全等,甲与△ABC 不全等. 详解:乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;故选B .点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.B解析:B【解析】试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B .10.D解析:D【解析】试题解析::(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形. 故它的顶角是100°.故选D .11.C解析:C【解析】【分析】把x+1x =6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x )2=x 2+21x +2=36, 则x 2+21x =34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.12.C解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.二、填空题13.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】14.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.15.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.16.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.17.【解析】【分析】【详解】因为大正方形边长为小正方形边长为m所以剩余的两个直角梯形的上底为m下底为所以矩形的另一边为梯形上下底的和:+m=解析:24m【解析】【分析】【详解】因为大正方形边长为4m +,小正方形边长为m ,所以剩余的两个直角梯形的上底为m ,下底为4m +,所以矩形的另一边为梯形上、下底的和:4m ++m=24m +.18.【解析】【分析】根据分式的加减运算的法则先因式分解复杂的因式找到最简公分母通分然后按同分母的分式相加减的性质计算在约分化为最简二次根式【详解】解:=====故答案为:【点睛】本题考查分式的加减运算 解析:2a a- 【解析】【分析】根据分式的加减运算的法则,先因式分解复杂的因式,找到最简公分母,通分,然后按同分母的分式相加减的性质计算,在约分,化为最简二次根式.【详解】 解:2422a a a a -++ =42(2)a a a a -++ =24(2)(2)a a a a a -++ =24(2)a a a -+ =(2)(2)(2)a a a a +-+ =2a a-. 故答案为:2a a-. 【点睛】 本题考查分式的加减运算.19.x2+2x-3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘先用一个多项式的每一项乘另外一个多项式的每一项再把所得的积相加依此计算即可求解【详解】(x-1)(x+3)=x2+3x-x-解析:x 2+2x -3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【详解】(x-1)(x+3)=x 2+3x-x-3 =x 2+2x-3.故答案为x 2+2x-3.本题考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.20.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n ﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n ﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.三、解答题21.(1)见解析; (2)60BAD ∠=° ,40CAD ∠=°【解析】【分析】(1)延长BC ,作AD ⊥BC 于D ;根据角平分线的做法作出角平分线AE 即可;(2)可根据三角形的内角和定理解答即可.【详解】解:(1)如图所示:AD,AE 即为所求;(2)在△ABD 中,AD ⊥BD ,即∠ADB=90°,∵∠B=30°,∴∠BAD=180°-90°-30°=60°;在△ABC 中,∠B+∠ACB+∠BAC=180°∴∠BAC=180°-30°-130°=20°∴∠CAD=60°-20°=40°.【点睛】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.【解析】【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x ﹣3)(2x +3),得4x +6+4x 2﹣6x =4x 2﹣9,解得:x =7.5,经检验x =7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.23.﹣2a ﹣6,-5【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a 的值代入计算即可.【详解】解:(a +2﹣52a -)•243a a -- =(2)(2)52(2)×223-a a a a a a +--⎡⎤-⎢⎥--⎣⎦ =(3)(3)2(2)×23-a a a a a +--⎡⎤⎢⎥-⎣⎦=﹣2a ﹣6,当a =12-时,原式=﹣2a ﹣6=﹣5. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.24.x+2;当x=1时,原式=3.【解析】【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可.【详解】 解:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ 22(2)33[](2)24x x x x x x --=-÷---233224x x x x x -⎛⎫=-÷ ⎪---⎝⎭ 3(2)(2)23x x x x x -+-=⨯-- =x+2,∵x 2-4≠0,x-3≠0,∴x≠2且x≠-2且x≠3,∴可取x=1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.25.【解析】【分析】将原式因式分解,然后代入求解即可.【详解】∵3a b -=,∴2(2)a a b b -+ 222a ab b =-+()2a b =-23==9.【点睛】本题考查了整式的化简求值,将原式进行适当的变形是解题的关键.。
2020-2021成都石室天府中学八年级数学上期中模拟试题附答案一、选择题1.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =12.下列分式中,最简分式是( )A .B .C .D .3.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 4.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠ 5.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C6.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角平分线上的点到这个角两边的距离相等B .角的内部到角的两边的距离相等的点在角的平分线上C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确7.已知x 2+mx+25是完全平方式,则m 的值为( )A .10B .±10C .20D .±20 8.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠9.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-10.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯ B .113.410-⨯ C .103.410-⨯ D .93.410-⨯11.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 12.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 14.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△BDE 的周长为6,则AC=_________________.15.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。
2020-2021学年四川省成都市石室天府中学八年级(上)入学数学试卷一、选择题(每小题3分,共30分)1.(3分)用科学记数法表示0.000000108,得()A.1.08×10﹣6B.1.08×10﹣7C.10.8×10﹣6D.10.8×10﹣7 2.(3分)计算:(﹣a)5•(a2)3÷(﹣a)4的结果,正确的是()A.a7B.﹣a6C.﹣a7D.a63.(3分)如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD4.(3分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°5.(3分)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短6.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根7.(3分)下列说法正确的是()A.在地球上,上抛的篮球一定会下落,是必然事件B.买一张福利彩票一定中奖,是不可能事件C.抛掷一个正方体骰子,点数为奇数的概率是D.从一个装有5个黑球和1个红球的口袋中,摸出一个球是黑球是必然事件8.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A 为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°9.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米10.(3分)如图,△ABC中,AB=AC,∠A、∠B的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.80°B.50°C.40°D.20°二、填空题(每小题4分,共16分)11.(4分)如果9x2﹣mx+4是完全平方式,则m=.12.(4分)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,△ABC 的周长为20cm,边AB的长为7cm,则△BCD的周长为.13.(4分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.14.(4分)已知a,b在数轴上的位置如图,化简:=.三、解答题(共54分)15.(10分)计算:(1)﹣+;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×.16.(10分)若+|y+3|+(z﹣2)2=0,求x y﹣z的平方根.17.(8分)如图,AB∥CD∥EF,CD交AF于G,(1)如图1,若CF平分∠AFE,∠A=70°,求∠C;(2)如图2,请写出∠A,∠C和∠AFC的数量关系并说明理由.18.(8分)在2020年83岁的钟南山奋战在抗击疫情的最前线,成为全国人民最敬佩的硬核男神,他有强健的身体,这都是得益于几十年如一日的坚持锻炼.在本次疫情中打败新冠肺炎还需要自身免疫力,同学们都应该加强身体锻炼,为了了解同学们在线上教学中体育锻炼的情况,在返校后某初中对600名初一学生进行了体育测试,其中对仰卧起坐成绩进行了整理,绘制成如图所示不完整的统计图:根据统计图,回答下列问题.(1)请将条形统计图补充完整;(2)扇形统计图中,b=,得8分所对应扇形的圆心角度数为;(3)在本次调查的学生中,随机抽取1名女生,她的成绩不低于9分的概率为多少?(直接写出结果不得分)19.(8分)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.着AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.20.(10分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点(1)如图1,当点D在BC边上时,连接AD、BE,求证:AD=BE;(2)如图2,F是线段AD上的一点,连接CF,若AF=CF,试判断BE与CF的数量关系和位置关系,并说明理由;(3)如图3,把△DEC绕点C顺时针旋转α角(0°<α<90°)将(2)问的条件AF =CF换成AF=FD,其他条件不变,(2)问中的关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出相应的正确的结论.一、填空题(每小题4分,共20分)21.(4分)已知3a=5,9b=10,则3a﹣2b=.22.(4分)若=n.则m+n的值为.23.(4分)已知x是的整数部分,y是的小数部分,则(y﹣)x﹣1的算术平方根为.24.(4分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为.25.(4分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.26.(4分)计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.二、解答题(30分)27.(4分)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28.(10分)成都和西安两地之间的铁路交通设有高铁列车和普快列车两种车次,某天一辆普快从西安出发匀速驶向成都,同时另一辆高铁从成都出发匀速驶向西安,两车与成都的距离S1,S2(千米)与行驶时间t(时)之间的关系如图所示.(1)西安与成都的距离为千米,普通快车到达成都所用时间为小时;(2)求高铁从成都到西安的距离S2与t之间的关系式;(3)在成都、西安两地之间有一条隧道,高铁经过这条隧道时,两车相距74千米,求西安与这条隧道之间的距离.t0124…S1666546426186…29.(12分)问题:如图1,在等边△ABC内部有一点P,已知P A=3,PB=4,PC=5,求∠APB的度数?(1)请写出常见四组勾股数:、、、.(2)解决方法:通过观察发现P A,PB,PC的长度符合勾股数,但由于P A,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB=.请写出解题过程.(3)应用:请你利用(2)题的思路,解答下面的问题:如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).30.在Rt△ABC中,∠C=90°,若c=10cm,a:b=3:4,求△ABC的周长.2020-2021学年四川省成都市石室天府中学八年级(上)入学数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)用科学记数法表示0.000000108,得()A.1.08×10﹣6B.1.08×10﹣7C.10.8×10﹣6D.10.8×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000108=1.08×10﹣7,故选:B.2.(3分)计算:(﹣a)5•(a2)3÷(﹣a)4的结果,正确的是()A.a7B.﹣a6C.﹣a7D.a6【分析】根据积的乘方先去括号得到原式=﹣a5•a6÷a4,然后根据同底数的幂相乘和同底数的幂相除的运算方法即可得到结论.【解答】解:原式=﹣a5•a6÷a4=﹣a5+6﹣4=﹣a7.故选:C.3.(3分)如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD【分析】添加AF=CD,根据等式的性质可得AC=FD,然后利用ASA判定△ABC≌△DEF.【解答】解:添加AF=CD,∵AF=CD,∴AF+FC=CD+FC,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故选:D.4.(3分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.5.(3分)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【分析】根据垂线段最短、直线和线段的性质即可得到结论.【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.6.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根【分析】根据无理数、立方根、平方根的定义解答即可.【解答】解:A、无限循环小数是有理数,故不符合题意;B、﹣有立方根是﹣,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.7.(3分)下列说法正确的是()A.在地球上,上抛的篮球一定会下落,是必然事件B.买一张福利彩票一定中奖,是不可能事件C.抛掷一个正方体骰子,点数为奇数的概率是D.从一个装有5个黑球和1个红球的口袋中,摸出一个球是黑球是必然事件【分析】根据必然事件、随机事件以及不可能事件的定义即可作出判断.【解答】解:A、在地球上,上抛的篮球一定会下落,是必然事件,故选项正确;B、买一张福利彩票一定中奖,是随机事件,选项错误;C、抛掷一个正方体骰子,点数为奇数的概率是,选项错误;D、从一个装有5个黑球和1个红球的口袋中,摸出一个球是黑球是随机事件,选项错误.故选:A.8.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A 为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°【分析】由作图可知,AD平分∠BAC,由∠ADC=90°﹣∠DAC计算机可解决问题;【解答】解:由作图可知,AD平分∠BAC,∵∠C=90°,∠B=26°,∴∠BAC=64°,∴∠DAC=∠BAC=32°,∴∠ADC=90°﹣32°=58°,故选:C.9.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米【分析】根据函数图象得到小强跑64米用了8秒,小敏跑了(64﹣12)米用了8秒,再利用速度公式分别求出两人的速度,然后求他们得速度差即可.【解答】解:根据图象得小强跑64米用了8秒,所以小强的速度==8米/秒,小敏跑了(64﹣12)米用了8秒,所以小敏的速度==6.5米/秒,所以强的速度比小敏的速度每秒快8米/秒﹣6.5米/秒=1.5米/秒.故选:C.10.(3分)如图,△ABC中,AB=AC,∠A、∠B的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.80°B.50°C.40°D.20°【分析】设∠BAC=x,根据已知可以分别表示出∠ABD和∠BAD,再根据三角形内角和定理即可求得∠BAC的度数.【解答】解:设∠BAC=x,∵在△ABC中,AB=AC,∴∠ABC=∠C=(180°﹣x),∵BD是∠ABC的角平分线,AD是∠BAC的角平分线,∴∠ABD=(180°﹣x),∠DAB=x,∵∠ABD+∠DAB+∠ADB=180°,∴(180°﹣x)+x+130°=180°,∴x=20°.故选:BD.二、填空题(每小题4分,共16分)11.(4分)如果9x2﹣mx+4是完全平方式,则m=±12.【分析】这里首末两项是3x和2这两个数的平方,那么中间一项为加上或减去3x和2积的2倍.【解答】解:∵9x2﹣mx+4是完全平方式,∴9x2﹣mx+4=(3x±2)2=9x2±12x+4,∴m=±12,故答案为:±12.12.(4分)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,△ABC 的周长为20cm,边AB的长为7cm,则△BCD的周长为13cm.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算,得到答案.【解答】解:∵线段AB的垂直平分线与AC相交于点D,∴DA=DB,∵△ABC的周长为20,∴AB+AC+BC=20,∴AC+BC=20﹣AB=13,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=13(cm),故答案为:13cm.13.(4分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:如图(1)所示:AB==;如图(2)所示:AB==10.由于>10,所以最短路径为10.故答案为:10.14.(4分)已知a,b在数轴上的位置如图,化简:=1﹣a﹣b.【分析】本题利用实数与数轴的关系,判断a+1、2﹣b的符号,利用=|a|进行计算.【解答】解:由a,b在数轴上的位置可知:﹣2<a<﹣1,2<b<3,∴=﹣(a+1)+2﹣b=1﹣a﹣b.三、解答题(共54分)15.(10分)计算:(1)﹣+;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×.【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:(1)﹣+=2﹣3+5=4;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×=4﹣1+2﹣+3=5+2.16.(10分)若+|y+3|+(z﹣2)2=0,求x y﹣z的平方根.【分析】根据非负数的性质列式求解即可得到x、y、z的值,然后利用平方根的定义解答.【解答】解:∵+|y+3|+(z﹣2)2=0,∴2x﹣1=0,y+3=0,z﹣2=0,解得:x=,y=﹣3,z=2,∴x y﹣z=,∴x y﹣z的平方根为.17.(8分)如图,AB∥CD∥EF,CD交AF于G,(1)如图1,若CF平分∠AFE,∠A=70°,求∠C;(2)如图2,请写出∠A,∠C和∠AFC的数量关系并说明理由.【分析】(1)根据平行线的性质得到∠AFE的度数,再根据角平分线的定义和平行线的性质*9即可求解;(2)根据平行线的性质得到∠DGF=∠A,再根据三角形外角的性质即可求解.【解答】解:(1)∵AB∥EF,∠A=70°,∴∠AFE=70°,∵CF平分∠AFE,∴∠CFE=35°,∵CD∥EF,∴∠C=35°;(2)∵AB∥CD,∴∠DGF=∠A,∵∠DGF=∠C+∠AFC,∴∠A=∠C+∠AFC.18.(8分)在2020年83岁的钟南山奋战在抗击疫情的最前线,成为全国人民最敬佩的硬核男神,他有强健的身体,这都是得益于几十年如一日的坚持锻炼.在本次疫情中打败新冠肺炎还需要自身免疫力,同学们都应该加强身体锻炼,为了了解同学们在线上教学中体育锻炼的情况,在返校后某初中对600名初一学生进行了体育测试,其中对仰卧起坐成绩进行了整理,绘制成如图所示不完整的统计图:根据统计图,回答下列问题.(1)请将条形统计图补充完整;(2)扇形统计图中,b=60,得8分所对应扇形的圆心角度数为36°;(3)在本次调查的学生中,随机抽取1名女生,她的成绩不低于9分的概率为多少?(直接写出结果不得分)【分析】(1)用总人数减去其它的人数求出10分的女生人数,从而补全统计图;(2)用10分的人数除以总人数求出b的值;用得8分的人数所占的百分比乘以360°即可得出答案;(3)用成绩不低于9分的女生人数除以总的女生数,即可得出成绩不低于9分的概率.【解答】解:(1)10分的人数有600﹣20﹣10﹣40﹣20﹣80﹣70﹣180=180(人),补图如下:(2)10分所占的百分比是:×100%=60%,则b=60,得8分所对应扇形的圆心角度数为360°×=36°.故答案为:60,36°;(3)=.答:她的成绩不低于9分的概率为.19.(8分)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.着AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为(b ﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×ab=13﹣3=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.20.(10分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点(1)如图1,当点D在BC边上时,连接AD、BE,求证:AD=BE;(2)如图2,F是线段AD上的一点,连接CF,若AF=CF,试判断BE与CF的数量关系和位置关系,并说明理由;(3)如图3,把△DEC绕点C顺时针旋转α角(0°<α<90°)将(2)问的条件AF =CF换成AF=FD,其他条件不变,(2)问中的关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出相应的正确的结论.【分析】(1)要想证明AD=BE,只要证明△ACD≌△BCE即可;(2)先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;(3)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°﹣∠ACD,所以CD =CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【解答】解:(1)∵△ABC和△DEC都是等腰直角三角形,∴BC=AC,DC=EC,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),(2)BE=2CF,BE⊥CF.如图2:理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠2,∴BE=2CF,而∠2+∠3=90°,∴∠CBE+∠3=90°,∴CF⊥BE;(2)仍然有BE=2CF,BE⊥CF.理由如下:延长CF到G使FG=CF,连结AG、DG,如图3,∵AF=DF,FG=FC,∴四边形ACDG为平行四边形,∴AG=CD,AG∥CD,∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,∴CD=CE=AG,∵△DEC绕点C顺时针旋转α角(0<α<90°),∴∠BCD=α,∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,∴∠GAC=∠ECB,在△AGC和△CEB中,∴△AGC≌△CEB,∴CG=BE,∠2=∠1,∴BE=2CF,而∠2+∠BCF=90°,∴∠BCF+∠1=90°,∴CF⊥BE.一、填空题(每小题4分,共20分)21.(4分)已知3a=5,9b=10,则3a﹣2b=.【分析】先求出32b=10,再根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵9b=32b=10,3a=5,∴3a﹣2b=3a÷32b=5÷10=,故答案为:.22.(4分)若=n.则m+n的值为﹣.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式求出m,根据题意求出n,计算即可.【解答】解:由题意得,9﹣m2≥0,m2﹣9≥0,m﹣3≠0,解得,m=﹣3,则n=﹣,∴m+n=﹣3+(﹣)=﹣,故答案为:﹣.23.(4分)已知x是的整数部分,y是的小数部分,则(y﹣)x﹣1的算术平方根为3.【分析】根据3=<,可得出x的值,继而得出y的值,x、y的值代入计算即可得出答案.【解答】解:由题意可得:3=<,∴x=3,y=﹣3,则(y﹣)x﹣1=32=9,而9的算术平方根为3.故答案为:3.24.(4分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为.【分析】先判定三角形BDE是等腰三角形,再根据勾股定理及三角形相似的性质计算.【解答】解:连接BD,交EF于点G,由折叠的性质知,BE=ED,∠BEG=∠DEG,则△BDE是等腰三角形,由等腰三角形的性质:顶角的平分线是底边上的高,是底边上的中线,∴BG=GD,BD⊥EF,则点G是矩形ABCD的中心,所以点G也是EF的中点,由勾股定理得,BD=3,BG=,∵BD⊥EF,∴∠BGF=∠C=90°,∵∠DBC=∠DBC,∴△BGF∽△BCD,则有GF:CD=BG:CB,求得GF=,∴EF=.25.(4分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为108°或72°.【分析】分为三种情况:①当AD=AE时,∠ADE=∠AED=36°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=72°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【解答】解:∵AB=AC,∴∠B=∠C=36°,①当AD=AE时,∠ADE=∠AED=36°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=×(180°﹣36°)=72°,∵∠BAC=180°﹣36°﹣36°=108°,∴∠BAD=108°﹣72°=36°;∴∠BDA=180°﹣36°﹣36°=108°;③当EA=ED时,∠ADE=∠DAE=36°,∴∠BAD=108°﹣36°=72°,∴∠BDA=180°﹣72°﹣36°=72°;∴当△ADE是等腰三角形时,∠BDA的度数是108°或72°.故答案为:108°或72°.26.(4分)计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=﹣6b2﹣11c2+16bc+16.【分析】把前两项整理成4与2b﹣3c的和与差的相乘的形式,利用平方差公式计算,(b ﹣c)2利用完全平方公式计算,然后再利用合并同类项的法则计算即可.【解答】解:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2,=[(2b﹣3c)+4][﹣(2b﹣3c)+4]﹣2(b﹣c)2,=16﹣(2b﹣3c)2﹣2(b﹣c)2,=16﹣4b2+12bc﹣9c2﹣2b2+4bc﹣2c2,=﹣6b2﹣11c2+16bc+16.二、解答题(30分)27.(4分)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【分析】根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.28.(10分)成都和西安两地之间的铁路交通设有高铁列车和普快列车两种车次,某天一辆普快从西安出发匀速驶向成都,同时另一辆高铁从成都出发匀速驶向西安,两车与成都的距离S1,S2(千米)与行驶时间t(时)之间的关系如图所示.(1)西安与成都的距离为666千米,普通快车到达成都所用时间为 5.55小时;(2)求高铁从成都到西安的距离S2与t之间的关系式;(3)在成都、西安两地之间有一条隧道,高铁经过这条隧道时,两车相距74千米,求西安与这条隧道之间的距离.t0124…S1666546426186…【分析】(1)根据题意和表格中的数据可以解答本题;(2)根据函数图象中的数据可以求得S2与t之间的关系式;(3)根据题意和分类讨论的数学方法可以解答本题.【解答】解:(1)由表格中的数据可得,西安与成都的距离为666千米,普通快车到达成都所用时间为:666÷(666﹣546)=5.55小时,故答案为:666,5.55;(2)设高铁从成都到西安的距离S2与t之间的关系式为:S2=kt,300=1.2k,得k=250,即高铁从成都到西安的距离S2与t之间的关系式为S2=250t;(3)当普快在隧道和西安之间时,设此时为t1,[300÷1.2+(666﹣546)]×t1=666﹣74,解得,t1=1.6,则西安与这条隧道之间的距离是(666﹣546)×1.6+74=266(千米);当普快在成都和隧道之间时,设此时为t2,[300÷1.2+(666﹣546)]×t2=666+74,解得,t2=2,则西安与这条隧道之间的距离是(666﹣546)×2﹣74=166(千米);由上可得,西安与这条隧道之间的距离是266千米或166千米.29.(12分)问题:如图1,在等边△ABC内部有一点P,已知P A=3,PB=4,PC=5,求∠APB的度数?(1)请写出常见四组勾股数:3,4,5、5,12,13、7,24,25、6,8,10.(2)解决方法:通过观察发现P A,PB,PC的长度符合勾股数,但由于P A,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB=150°.请写出解题过程.(3)应用:请你利用(2)题的思路,解答下面的问题:如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).【分析】(1)根据勾股数的定义解决问题即可.(2)根据等边三角形的性质得出AB=AC,∠BAC=60°,根据旋转得出△ACP′≌△ABP,求出P A=P′A=3,PB=P′C=4,∠BAP=∠CAP′,求出∠P′AP=∠BAC=60°,推出△P AP′是等边三角形,求出PP′=P′A=3,根据勾股定理的逆定理求出∠PP′C=90°,即可得出答案;(3)根据旋转得出△ACE′≌△ABE,根据全等得出AE=AE′,BE=CE′,∠E′AC =′BAE,求出∠F AE′=∠EAF,根据全等三角形的判定推出△AEF≌△AE′F,推出FE=FE′,根据勾股定理求出E′F即可.【解答】解:(1)勾股数:3,4,5;5,12,13,7,24,25;6,8,10;故答案为:3,4,5;5,12,13,7,24,25;6,8,10;(2)如图1,将△ABP绕顶点A逆时针旋转60°到△ACP′处,则△ACP′≌△ABP,∵三角形ABC是等边三角形,∴AB=AC,∠BAC=60°,∴P A=P′A=3,PB=P′C=4,∠BAP=∠CAP′,∴∠P′AP=∠P AC+∠CAP′=∠P AC+∠BAP=∠BAC=60°,∴△P AP′是等边三角形,∴PP′=P′A=3,在△PP′C中,PP'2+P′C2=9+15=25=PC2,∴△PP′C是直角三角形,∴∠PP′C=90°,∴∠APB=∠AP′C=60°+90°=150°.故答案为150°.(3)如图2中,将△ABE绕顶点A逆时针旋转90°到△ACE′处,则△ACE′≌△ABE,∴AE=AE′,BE=CE′,∠E′AC=′BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=45°,∠F AE′=∠E′AC+∠F AC=∠BAE+∠F AC=45°=∠EAF,在△AEF和△AE′F中,,∴△AEF≌△AE′F(SAS),∴FE=FE′,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CA=∠B=45°,∴∠E′CF=45°+45°=90°,在Rt△E′FC中,E′C2+FC2=E′F2,∴EF2=BE2+CF2=m2+n2,∴EF=.30.在Rt△ABC中,∠C=90°,若c=10cm,a:b=3:4,求△ABC的周长.【分析】设a=3xcm,b=4xcm,由勾股定理得出方程,解方程求出x,得出a和b,即可得出结果.【解答】解:设a=3xcm,b=4xcm,∵∠C=90°,∴(3x)2+(4x)2=102,解得:x=2,∴a=6,b=8,∴△ABC的周长=a+b+c=6+8+10=24(cm).。