测量误差及不确定度
- 格式:ppt
- 大小:349.50 KB
- 文档页数:48
误差与不确定度的概念比较实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。
1误差和不确定度的定义1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。
即真值就是被测量量所具有的、客观的真实数值。
然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。
由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。
测量结果与真值的差为测量值的误差,即测量值(x)-真值(a)=误差(ε)在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。
对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12--=∑=n x x s n i i------------------------------(1)式中n 为测量值的个数。
对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2)二者的统计意义是,标准偏差小的测量值,其可靠性较高。
对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。
例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。
1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。
设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。
不确定度和误差的关系一、引言在科学研究和实验中,我们经常会遇到测量和计算的结果与真实值之间存在差异的情况。
这种差异通常被称为误差。
而对于测量结果的可信程度,则可以通过不确定度来衡量。
不确定度和误差之间存在一定的关系,在本文中我们将探讨这一关系。
二、误差的定义和分类误差可以被定义为测量结果与真实值之间的差异。
在实际测量中,误差可以分为系统误差和随机误差两类。
1. 系统误差系统误差是由于测量仪器或方法本身的固有缺陷而产生的误差。
例如,仪器的刻度不准确、环境条件的影响等都可以引起系统误差。
系统误差通常是可预测和可纠正的,因此在实验设计和数据处理中应该尽量避免系统误差的产生。
2. 随机误差随机误差是由于测量过程中的各种偶然因素导致的误差。
例如,人的视觉判断误差、仪器读数的波动等都属于随机误差。
随机误差是不可避免的,但可以通过多次重复测量来减小其影响。
三、不确定度的定义和计算不确定度是对测量结果的可信程度的度量。
在实际测量中,不确定度可以通过多种方法来计算,例如重复测量法、类比法、标准差法等。
1. 重复测量法重复测量法是指对同一物理量进行多次独立测量,然后计算这些测量结果的标准差作为不确定度的估计值。
重复测量法适用于随机误差主导的情况,并且要求测量结果符合正态分布。
2. 类比法类比法是指通过与已知精度的标准样品进行比较,来估计待测物理量的不确定度。
例如,通过与已知质量的标准物体进行比较,来估计待测物体的质量不确定度。
3. 标准差法标准差法是指通过对测量结果进行统计分析,计算其标准差来估计不确定度。
标准差法适用于随机误差主导的情况,并且要求测量结果符合正态分布。
四、不确定度和误差的关系不确定度和误差之间存在一定的关系。
一方面,误差是指测量结果与真实值之间的差异,而不确定度则是对测量结果的可信程度的度量。
因此,误差越大,不确定度也就越大。
另一方面,误差可以分为系统误差和随机误差两类,而不确定度则可以通过重复测量法等方法来估计。
误差与不确定度的14个差别1、区分误差和不确定度很重要,误差定义为被测量的单个结果和真值之差,所以,误差是一个单个数值。
原则上已知误差的数值可以用来修正结果。
注意:误差是一个理想的概念,不可能被确切地知道。
2、不确定度是以一个区间的形式表示,如果是为一个分析过程和所规定样品类型做评估时,可适用于其所描述的所有测量值,一般不能用不确定度数值来修正测量结果。
3、误差和不确定度的差别还表现在:修正后的分析结果可能非常接近于被测量的数值,因此误差可以忽略。
但是,不确定度可能还是很大,因为分析人员对于测量结果的接近程度没有把握。
4、测量结果的不确定度并不可以解释为代表了误差本身或经修正后的残余误差。
5、通常认为误差含有两个分量,分别称为随机分量和系统分量;6、随机误差通常产生于影响量的不可预测的变化。
这些随机效应使得被测量的重复观察的结果产生变化。
分析结果的随机误差不可消除,但是通常可以通过增加观察的次数加以减少。
实际上算术平均值或一系列观察值的平均值的实验标准差不是平均值的随机误差。
它是由一些随机效应产生的平均值不确定度的度量。
由这些随机效应产生的平均值的随机误差的准确值是不可知的。
7、系统误差定义为在对于同一被测量的大量分析过程中保持不变或以可以预测的方式变化的误差分量。
它是独立于测量次数的,因此不能在相同的测量条件下通过增加分析次数的办法使之减小。
8、恒定的系统误差,例如定量分析中没有考虑到试剂空白,或多点设备校准中的不准确性,在给定的测量值水平上是恒定的,但是也可能随着不同测量值的水平而发生变化。
9、在一系列分析中,影响因素在量上发生了系统的变化,例如由于试验条件控制得不充分所引起的,会产生不恒定的系统误差。
例1、在进行化学分析时,一组样品的温度在逐渐升高,可能会导致结果的渐变。
例2:在整个试验的过程中,传感器和探针可能存在老化影响,也可能引入不恒定的系统误差。
10、测量结果的所有已识别的显著的系统影响都应修正。
测量误差及不确定度分析的基础知识物理实验是以测量为基础的。
测量可分为直接测量与间接测量,直接测量指无需对被测的量与其它实测的量进行函数关系的辅助计算而可直接得到被测量值的测量,间接测量指利用直接测量的量与被测量之间的已知函数关系经过计算从而得到被测量值的测量。
根据测量条件的不同,测量分为等精度测量和非等精度测量。
测量四要素是测量对象,测量方法,测量单位,测量不确定度。
由于测量仪器、测量方法、测量环境、人员的观察力等种种因素的局限,测量是不能无限精确的,测量结果与客观存在的真值之间总是存在一定的差异,即存在测量误差。
因此分析测量中产生的各种误差,尽量消除或减小其影响,并对测量结果中未能消除的误差作出估计,给出测量结果的不确定度就是物理实验和科学实验中必不可少的工作。
为此我们必须了解误差的概念、特性、产生的原因及测量结果的不确定度的概念与估算方法等的有关知识。
误差的定义、分类及其处理方法一.误差的定义:测量结果与被测量的真值(或约定真值)之差叫做误差,记为:被测值的真值是一个理想的概念,一般说来真值是不知道的。
在实际测量中常用准确度高的实际值来作为约定真值,才能计算误差。
二.误差的分类及其处理方法:误差主要分为系统误差和随机误差。
系统误差:(1)定义:在同一被测量的多次测量过程中,绝对值和符号保持恒定或以可预知的方式变化的测量误差的分量。
(2)产生原因:① 仪器本身的缺陷或没按规定条件使用仪器而引起的误差(又称作仪器误差)例:电表的刻度不均匀---示值误差等臂天平的两臂实际不等---机构误差指针式电表使用前没调零---零位误差大气压强计未在标定条件下使用引起的系统误差等②测量所依据的理论公式本身的近似性、或实验条件不能达到理论公式的要求、或测量方法所带来的系统误差(又称作理论误差或方法误差)。
例:单摆运动方程小角度近似解引起的误差、伏安法测电阻时电表内阻引起的测量误差。
(3)分类及处理方法:根据误差的符号、绝对值确定与否分类如下:① 已定系统误差---绝对值和符号已经确定的系统误差分量,如零位误差、大气压强计室温下使用引起的误差、伏安法测电阻时电流表内接或外接引起的误差等;这类误差分量一般都要修正。
如何评估实验技术中的测量误差和不确定度在科学实验中,准确的数据是非常重要的,因为只有准确的数据才能得出可靠的结论和推论。
然而,在实验过程中,测量误差和不确定度是无法避免的问题。
所以,如何评估实验技术中的测量误差和不确定度,是科学家们一直在探索和研究的课题。
首先,我们需要了解什么是测量误差和不确定度。
测量误差指的是测量结果与真值之间的差异,可以由系统误差和随机误差构成。
系统误差是由于实验仪器的不准确或操作方法的不当引起的,而随机误差是由于各种随机因素造成的。
不确定度是对测量结果的不精确程度的量度,它是对测量结果的置信程度的度量。
为了评估实验技术中的测量误差和不确定度,我们可以采用以下方法:1. 重复实验法:通过进行多次实验,然后计算结果的平均值和标准差来评估测量误差和不确定度。
重复实验可以降低随机误差的影响,并提高测量结果的准确性。
在进行重复实验时,要注意控制实验条件的一致性,以减小系统误差的影响。
2. 不确定度分析法:通过分析实验技术本身的不确定度来评估整个实验结果的不确定度。
不确定度分析法主要包括以下几个步骤:确定实验技术的不确定度来源、计算各不确定度的贡献、组合不确定度以获得最终结果的不确定度。
通过这种方法,我们可以更全面地评估实验技术中的测量误差和不确定度。
3. 校准仪器:实验仪器是产生测量误差的重要原因之一,因此,定期对实验仪器进行校准是评估测量误差和不确定度的重要手段。
校准可以通过与已知准确度的标准进行对比来进行,以确定实验仪器的偏差和误差。
除了上述方法,还有一些其他的技术和方法可以用于评估实验技术中的测量误差和不确定度,例如数据处理和统计分析等。
数据处理包括数据筛选、数据平滑和数据插值等,可以减小随机误差和系统误差的影响。
统计分析可以通过假设检验、相关性分析和回归分析等方法对测量结果进行评估和解释。
总之,评估实验技术中的测量误差和不确定度是科学实验中非常重要的一环。
只有通过科学的方法和技术对测量误差和不确定度进行评估,才能得出准确可靠的实验结果,从而推动科学研究的进展。
测量不确定度与测量误差的区别
1定义:测量误差表明测量结果偏离真值,是一个差值
测量不确定度表明测量之值的分散性,是一个区间。
用标准偏差、标准偏差的倍数、或说明了置信水平的区间半宽度来表示。
2分类:测量误差按出现于测量结果中的规律,分为随机误差和系统误差两类,它们都是无限多次测量的理想概念
测量不确定度按是否用统计方法求得,分为A类评定和B类评定两种评定方法。
它
们都以标准不确定度表示
3可操作性:测量误差由于真值末知,往往不能得到测量误差的值。
当用约定真值代替真值时,可以得到测量误差的估计值。
测量不确定度可以由人们根据实验、资料、经验等信息进行评定,从而可以定量
确定测量不确定度的值。
4数值符号:测量误差:非正即负,不能用正负号表示。
测量不确定度:是一个无符号的参数,当由方差求得时,取其正平方根。
5合成方法:测量误差:各误差分量的代数和。
测量不确定度:当各分量彼此独立时用方和根法进行合成,否则应考虑加入相
关项。
6结果修正:测量误差:已知系统误差的估计值时,可以对测量结果进行修正,得到已修正的测量结果。
测量不确定度:不能用测量不确定度以测量结果进行修正。
对已修正测量结果
进行不确定度评定时,应考虑修正不完善引入的不确定度分量。
7结果说明:测量误差:客观存在的,不以人的认识程度而转移。
误差属于给定的测量结果,相同测量结果具有相同的误差,而与得到该测量结果的测量仪器和测量方法无
关。
测量不确定度:与人们对被测量、影响量、以及测量过程的认识有关。
合理赋予
被测量的任一个值,均具有相同的测量不确定度。
(二) 测量不确定度、误差与最佳测量能力1 测量和测量不确定度的含义测量给出关于某物的属性,它可以告诉我们某物体有多重、或多长、或多热,即告诉我们量值有多大。
测量总是通过某种仪器或设备来实现的,尺子、秒表、衡器、温度计等都是测量仪器。
被测量的测量结果通常由两部分组成(一个数和一个测量单位),他们构成了量值。
例如:人体温度37.2℃是量值,人体温度是被测量,37.2是数,℃是单位。
对于比较复杂的测量,通过实际测量获得被测量的测量数据后,通常需要对这些数据进行计算、分析、整理,有时还要将数据归纳成相应的表示式或绘制成表格、曲线等等,亦即要进行数据处理,然后给出测量结果。
检测/校准工作的核心是测量。
在给出测量结果的同时,必须给出其测量不确定度。
测量不确定度表明了测量结果的质量:质量愈高,不确定度愈小,测量结果的使用价值愈高;质量愈差,不确定度愈大,使用价值愈低。
在检测/校准工作中,不知道不确定度的测量结果,实际上不具备完整的使用价值。
测量不确定度是对测量结果存有怀疑的程度。
测量不确定度亦需要用两个数来表示:一个是测量不确定度的大小,即置信区间的半宽;另一个是对其相信的程度,即置信概率(或称置信水准、置信水平、包含概率),表明测量结果落在该区间有多大把握。
例如:上述测量人体温度为37.2℃,或加或减0.1℃,置信水准为95%。
则该结果可以表示为37.2℃±0.1℃,置信概率为95%。
这个表述是说,我们测量的人体温度处在37.1℃到37.3℃之间,有95%的把握。
当然,还有一些其他不确定度的方式。
这里表述的是最终的扩展不确定度,它是确定测量结果区间的量,合理赋予被测量之值分布的大部分可望包含于此区间。
2 测量结果及其误差和准确度2.1 测量结果测量结果被定义为“由测量所得到的赋予被测量的值。
”它是被测量的最佳估计值,而不是真值。
完整表述测量结果时,必须同时给出其测量不确定度。
必要时还应说明测量所处的条件,或影响量的取值范围。
测量误差与测量不确定度摘要:测量误差与不确定度是计量学中的2个重要基本概念,两者之间既有区别又有联系,通过对两者的比较,指出了使用测量不确定度评价测量结果的意义。
关键词:测量;误差;不确定度;随机1引言测量是人们认识自然、改造自然的基本手段之一,其目的在于获得被测对象的准确的量值。
然而由于各种因素的影响,任何测量过程都不可能获得被测量的真值,而只能是在一定程度上使测量结果逼近真值。
因此,一个完整的测量结果应包含被测量的量值(数值×计量单位)和对测得值可疑程度的说明。
量值体现被测量的大小,而测得值的可疑程度反映了测量结果的准确性。
如何更科学合理地表示测量结果的准确性,是测量工作的重要议题。
早期的误差理论以统计学为基础,以静态测量时误差服从正态分布为主的随机误差估计和数据处理的理论为特征,成为经典误差理论。
多年来,误差和误差分析已成为评价测量结果质量的重要方法,但大多数测量结果的误差是未知的,因此用误差来定量表示测量结果的质量存在许多争论。
从20世纪70年代开始,人们开始逐步引入测量不确定度的概念来评定测量结果。
不确定度概念的提出和应用受到了国际社会的普遍重视。
鉴于国际间表示不确定度的不一致,世界计量界最高权力机构国际计量委员会(CIPM)于1978年要求国际计量局(BIPM)向各国标准计量研究院征询意见,并提出建议。
1993年,由国际标准化组织(ISO)等7个国际组织联名共同发表了《测量不确定度表示指南》(简称《指南》),尔后ISO的各成员国广泛执行和应用了该指南,依据现代误差理论测量不确定度来评价测量结果的质量。
我国国家质量技术监督局也于1999年1月11日发布并于同年5月1日实施《中华人民共和国国家计量技术规范-测量不确定度评定与表示》(JJF1059-1999)。
2 测量误差的概念测量误差简称误差。
按照传统误差理论,其定义为:测量结果与被测量真值的差。
按照传统误差理论的定义,误差的符号可正可负。