§4.2 拉普拉斯变换的基本性质
- 格式:ppt
- 大小:1.02 MB
- 文档页数:23
拉普拉斯变换微分定理三阶一、拉普拉斯变换简介拉普拉斯变换是一种数学变换,它在数学、物理、工程等领域具有广泛的应用。
拉普拉斯变换源于法国数学家拉普拉斯在18世纪末的研究成果,它是一种将复杂数学问题简化求解的方法。
1.拉普拉斯变换的定义拉普拉斯变换是将一个函数f(t)变换为另一个函数F(s)的运算,定义如下:F(s) = ∫(e^(-st) * f(t) * dt),其中s为变换域变量,t为时域变量。
2.拉普拉斯变换的基本性质拉普拉斯变换具有以下基本性质:(1) 线性性质:拉普拉斯变换具有线性性质,即变换后的函数是原函数的线性组合。
(2) 尺度变换:拉普拉斯变换具有尺度变换性质,变换后的函数与变换前的函数在尺度上存在一定的关系。
(3) 移位性质:拉普拉斯变换具有移位性质,变换后的函数通过平移原函数得到。
二、拉普拉斯变换微分定理三阶的推导拉普拉斯变换微分定理是拉普拉斯变换在微分方程求解中的应用。
以下是拉普拉斯变换微分定理三阶的推导过程:1.拉普拉斯变换微分定理一阶设f(t)为t的函数,对其进行一阶导数,得到f"(t)。
将f(t)和f"(t)进行拉普拉斯变换,得到F(s)和F"(s)。
2.拉普拉斯变换微分定理二阶对拉普拉斯变换后的函数F"(s)进行一阶导数,得到F""(s)。
3.拉普拉斯变换微分定理三阶对拉普拉斯变换后的函数F""(s)进行一阶导数,得到F"""(s)。
三、拉普拉斯变换微分定理三阶的应用拉普拉斯变换微分定理三阶在求解微分方程、信号处理与系统分析、工程与应用等领域具有广泛的应用。
1.求解微分方程利用拉普拉斯变换微分定理三阶,可以将复杂微分方程转化为更易于求解的线性微分方程。
2.信号处理与系统分析拉普拉斯变换微分定理三阶在信号处理与系统分析中具有重要意义,可以帮助分析信号的频率特性和系统的稳定性。
拉普拉斯变换的基本性质、变换及反变换t t8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设F(s)是s 的有理真分式A(s)二0有重根设A(s) = 0有r 重根s ,F(s)可写为F s-(s-s ,)r(s-s ri ) (s-s n )B(s)b m 「4 g b0A(s)n ,n 」a n S - a n 」s 山…“y s - a 。
式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。
分以下两种情况讨论。
m,n 是正整数。
按代数定理可①A(s) = 0无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
i C 2C jC nF(s) 121— s — s i s — S 2s — ss_s nC i(F-1)式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。
C i 为待定常数,称为 可按下式计算:F(s)在S i 处的留数,式中,C =lim (s _sJF (s)S Tic _ B(s) iA(s)s zs iA (s)为A(s)对s 的一阶导数。
根据拉氏变换的性质,从式(4 I l j n C i =L !F (S )】=L 巨一—S — Sj 一 f(t)C in -s it=' Ci e ii =1(F-2)(F-3)F-1 )可求得原函数(F-4)B(s)式中, 其中,& r -(S —S i) (s—s)C if ,s〜) CriS —■S r iG •…©S - s S—S nS i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:f(t)为厂c r =lim (s — sj r F(s)T id rC ri =lim [(s -sj F(s)] dss :siC i原函数f (t)二L°〔F(s) I冷冗加(DEi d(7C i _____ . C r i ....(F-5)(s -S i)r 1(s—s i) S —S r*G *…+C nS — S j S —S nt r^ +…+c2t +G e Sit(r-2)! 2 5S i t°e iF-6)欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。