拉氏变换性质的证明
- 格式:doc
- 大小:284.50 KB
- 文档页数:4
控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表 序号 F(s) f(t) 序号 F(s) f(t)11 1121(t) 123t13414511+Ts Tte T-1 156)(1a s s +ate --1167)1(1+Ts sTt e--117)1sin(122ϕξωξωξω----t e n t nn8189191020三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
拉普拉斯变换拉普拉斯变换简称拉氏变换。
它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。
并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。
因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。
在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。
本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。
最后,介绍用拉氏变换解微分方程的方法。
在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。
2.1拉氏变换2.1.1拉氏变换的定义若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作[()]f t L 或)(s F ,并定义为:[()]()()e dL stf t F s f t t +∞-==⎰(2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。
原函数是实变量t 的函数,象函数是复变量s 的函数。
所以拉氏变换是将原来的实变量函数()f t 转化为复变量函数()F s 的一种积分运算。
在本书中,将用大写字母表示相对应的小写字母所代表的函数的拉氏变换。
必e 1[1()]1e d L st stt t ss+∞-+∞-=⋅=-=⎰(2.2) 在自动控制系统中,单位阶跃函数相当于一个实加作用信号,如开关的闭合(或断开),加(减)负载等。
⑵单位脉冲函数单位脉冲函数如图2.2所示。
其定义为()0t t t δ∞=⎧=⎨≠⎩ 同时,()d 1t t δ+∞=⎰,即脉冲面积为1。
而且有如下特性:()()d (0)t f t t f δ+∞-∞⋅=⎰(0)f 为()f t 在0t =时刻的函数值。