井筒气柱压力计算
- 格式:doc
- 大小:455.50 KB
- 文档页数:2
第四部分 井筒流体力学1单相(气体)流体力学-静止气柱1.1 平均温度和平均气体偏差系数计算方法(4--1)03415.0exp(TZ Hp p g ts ws γ=式中 — 按静止气柱公式计算的井底压力。
关井时为地层压力,开井时为井底流动压力,M Pa ;ws p—静止气柱的井口压力。
关井时为井口最大关井压力,开井时为不流动气柱的井口压力,Mts p Pa ;— 气体相对密度;g γ— 井口到气层中部深度,m;H — 井筒内气体平均绝对温度,K ;T=T 2/)(ws ts T T +,— 静止气柱井口,井底绝对温度,K;ts T ws T — 井筒气体平均压力,M Pa;p=p 2/)(ts ws p p +— 井筒气体平均偏差系数,由两种计算方法Z= 或 =Z ),(T p f Z 2/)(ws ts Z Z +,— 静止气柱井口,井底条件下的气体偏差系数。
ts Z ws Z 已知,计算的步骤如下;ts p ws p (1)首先对赋初值,建议ws p12192)(H p p p ts ts o ws+=(2)根据,和,求p T g γZ(3)代入式(4--1)计算。
如与之差符合规定的精度要求,则即为所求。
Z )1(wsp )1(wsp )(o wsp )1(wsp 反之,继续迭代到符合规定的精度。
如用计算机计算,有多种算法: 可取Z=1为初值;或=取为初值;或规定迭代次数,一)(o wsp ts p 般迭代5次即可满足工程要求。
1.2 Cullender 和Smith 计算方法1.2.1 按井深H 计算(一步法)(4--2)⎰=wstsp p g Idp H γ03415.0(4--3)pZTI =由数值积分(一步梯形法)得:(4--4)H g γ03415.02))((ts ws ts ws I I p p +-≈式中ts tsts ts p T Z I =wsws ws ws p T Z I =其余符号同前。
试油气中若干计算问题一.纯气井在已知井口压力时井筒各点压力的计算公式:T ΓT T W M =P i =P 井口。
e 1.251x10-6 Li其中:P 井口: 井口压力P i :任意点压力ρ :天然气密度L i :任意点井深二.套管最大掏空深度根据目前的套管强度和固井情况,如果排液超过一定的深度,提高就可能被压力挤毁,所以需根据油套封固情况,来确定套管许最大掏空深度(如图1所示)ρ当P 外—P ≥S.S 套时套管就会被挤毁油套封固压力主要来自管外泥浆柱,地层压力以及岩石侧压力 ①管外泥浆柱压力水泥封固时由于套管偏心,泥浆性质及顶替效率的影响会使泥浆未顶替出,它会对套管产生挤压力。
②地层压力由于异常高压存在,对于地层压力一般比较难于确定,通常采用钻井时该井段的管外泥浆压力作为地层压力③岩石侧压力两种情况,对于非可塑地层岩侧压力来源上覆岩层压力此时仍可以把管外泥浆柱压力作为套管挤压力,对于可塑性地层(岩盐和钾碱条带分布区)由于岩层的蠕动,套管将承受这些塑性流动的力,需加岩石的侧压系数K注:对于生产井还应考虑注水压力的影响所以计算套管许掏空深度分非可塑地层和可塑地层1非可塑性地层(本计算方法已考虑套管抗挤安全系数)P外=ρ1gh P =ρ2g(h-l)P外-P≤P r/k c——————⑴若采用国际单位P外=ρ1gh=hρ1/101.97mpa(g=9.807)ρ1单位g/cm3h单位 mP=(h-l)ρ2/101.97(同上)其中:P r——抗挤压强度P——抗内压强度代入(1)式可以推出:L≤101.97/ ρ2-h(ρ1-ρ2)取最大值:l=101.97 P r/ k cρ2- h(ρ1-ρ2)/ ρ2其中:h---新确定的套管抗挤薄弱点深度P r---查表可知k c———一般性质1.05-1.10《钻井测试手册》《试油技术规范》取:1.105但是应根据固井,套管磨损程度来确定2可塑性地层将P外=ρ1h/101.97P外= k hρ3/101.97= KG0 h/1000mpa 其中:k—侧压系数一般岩石侧压系数取0.42-0.8之间岩盐层和钾碱层几乎接近于1ρ3——岩石密度G0—上覆岩层压力⒊h值的取值:h一般根据套管下深,异常高压层,岩盐层和钾碱层深度来确定⒋当井内为天然气时,油本部分内容可以算出的最低套压P=Pе 1.251×10-4ρh根据:P外-P h≤P r/ k c可以求出最低套压P=1/е 1.251×10-4ρh(hρ1/101.97-P r/ k c)三.套管最高关井压力由于井筒内流体介质不同,流体压力计算公式不同,故分为两种情况:⒈井内为天然气时,井筒存在两处薄弱环节:①井口裸露段和升高短节②套管抗内压最薄弱段,所以应考虑分别计算取其最小值:①井口部分:P wmax1= P b1/n1②最薄弱段: P wmax2= 1/е 1.251×10-4ρ((根据P外-P h≤P b2/ h2推出)P wmax=min [P wmax1 ×P wmax2]其中:P b1,P b2:分别为井口和套管抗内压强度n1 , n2 : 根据《钻井测试手册》n1=1.5n2=1.05⒉井筒内为液柱(ρ4)时根据:hρ4/101.97+P套-hρ1/101.97≤P b2/n2推出:P套=P b2/n2+h/101.97(ρ1-ρ4)------⑵四.天然气井二项式方程式求无阻流量和计算产量的方法⒈在只知道一个流压P下的气产量Q地层压力P e的情况下可以解决的问题:①根据的推导公式求绝对无阻流量Q ab=②根据无阻流量和二项式方程式求出:P2e-P2=AQ1+BQ21P2e-P2ab=AQ ab+BQ2abB=[(P2e-P2ab)/Q ab-(P2e-P2)/Q1]/(Q ab-Q g)=P2e-P2/Q-BQ1③根据A、B、P e值可以折算压力下的产量,验证某一井口下产量是否对⒉在可知两个流压P P和两个产量Q Q及P的情况下①可以求出 A B值②可以求出无阻流量③根据A B P e可以折算压力下的产量验证某一井口压力下产量是否对。
井下作业常用计算公式井下作业公司试油二十七队张新峰一、注水泥塞施工:1、水泥浆体积计算公式:①、()()001.0k 14h 2d -D 2⨯+=π液V 式中:V ——应配水泥浆的体积;LD ——套管外径:mmd ——套管壁厚:mmh ——设计水泥塞厚度:mk ——附加系数(0.3—1.0)②、()⨯-=210H H V 液V KV ——应配水泥浆的体积;LV 0——每米套管内容积;LH 1——注水泥塞时管柱尾深;mH 2——反洗井深度;mK ——取1.5③V=G )(211ρρρρρ--V ——配水泥浆的体积;LG ——所用干水泥用量;Kg1ρ——干水泥密度; 3.15L g K2ρ—— 水泥浆密度;1.853cm gρ——水的密度;13cm g2、干水泥用量:ρρρρρ--=121V GG ——所用干水泥用量;KgV ——配水泥浆的体积;L1ρ——干水泥密度; 3.15L g K2ρ—— 水泥浆密度;1.853cm gρ——水的密度;13cm g3、清水用量:1GV Q ρ-= Q —— 清水用量:LV ——应配水泥浆的体积;LG ——所用干水泥用量;Kg1ρ——干水泥密度; 3.15L gK4、顶替量:附液V V V V H 0111+⨯⎪⎭⎫⎝⎛-=V液V —— 顶替量;LH 1——注水泥塞时管柱尾深;mV ——应配水泥浆的体积;L11V ——套管容积减去油管体积的每米容积;L0v ——油管每米容积;m L二、 垫圈流量计测气U 型管测气计算公式:HG 1T 293178.0Q d 2⋅⋅⋅=式中:Q —— 天然气产量 m 3d —— 垫圈孔直径 mmT —— 热力学温度 (293-摄氏温度)G —— 天然气相对密度 0.62H —— U 型管液柱压差 mm三、压井液密度: )1(102k H p +⨯=ρ式中:ρ=压井液密度;P=地层中部压力;H=地层中部深度;K=附加系数(15%-30%);四、卡点的计算公式:P ⋅K =λL式中:L ——卡点深度 mλ——油管平均伸长 cmP ——油管平均拉伸拉力,KNK ——计算系数,(Φ73mm 油管2450Φ73mm 钻杆3800 Φ89mm 油管3750)系数的计算:K =2.1 X 1 04 X 4π(D 2—d 2)L :卡点深度(m )、K :系数(Φ73mm 油管2450 Φ73mm 钻杆3800 Φ89mm 油管3750)λ:平均伸长量(cm )、 P :平均拉力(KN )。
钻井常用计算公式•、地层压力计算1、静液柱压力(MPa)=P(粘井液密度)*0.00981*H(垂深m)2、压力梯度值(MPa)=p(钻井液密度)*0.009813、单位内容积(r∩3Λn>=7.854*10-5*内径2(Cm)4、单位环空容积(m3∕m)=7.854*10^5*(井径2cm-管柱外径2cm)5、容积(m?)=单位内容积(m3∕m)*长度(m)管柱单位排音量(mVm)=7.854*10^5*(外径2cm内径2cm)6、地层压力(MPa)=钻具静液柱压力+关井立压7、压井钻井液密度(g∕c11p>=(关井立压Mpa/O.00981/11(m))+当前井液P(gcm3)8、初始循环压力=关井立压+底泵速泵压9、终止循环压力=(压力井液p/当前井液p)*低泵速泵压10、溢流长度m;钻井液增量m3/环空单位容积m3∕m11、溢流密度p(g∕cm3)=当前井液P-[(套压MPa-立压Mpa)/(溢流长度m*0.00981)]12、当量循环密度p(g/cm3)-(环空循环压力损失Mpa/O.00981/垂深m)+当前井液P13、当量钻井液P(g4zm3)-总压力Mpa/O.00981/垂深m14、孔隙压力MPa=9.81*Wf(地瓜水平均密度g∕cmυ*H(垂高m)15、上覆岩层压力(Mpa)=(岩石基质重量+流体重量)/面积[9.81*[(卜-。
岩石孔隙度%)*pm岩石基颓密度Hem3+4>*p岩石孔隙中流体密度g/cnP]16、地层破裂压力梯度(Mpa)=Pf(破裂地层压力Mpa)/H(破裂地层垂直深度m>Pf(破裂地层压力Mpa)=Ph(液柱压力Mpa)+P(破裂实验时的立管压力MPa)二、喷射钻井计算公式1、射流喷射速度计算相同直径喷嘴VOU1.2.73*Q(通过喷嘴液体排量1.∕S)∕n(喷嘴个数)*dc>2(喷嘴直径Cm)不相同直径喷喷Vo=12.73*Q(通过喷嘴液体排量1.∕S)/de?(喷嘴当量直径Cm)试中:de喷喷当量直径(cm)计算等喷嘴直径de-(根号n喷嘴个数)*d。
第一节 气体稳定流动的能量方程一、气体稳定流动方程气体稳定流动是指在所讨论的的管段内(热力体系内),任何断面上气体的一切参数都不随时间变化,流入和流出的质量守衡,功和热的交换也是一个定值。
22222212111122mgH mu V P E W q mgH mu V P E +++=-++++E ——内能,J ;pV ——膨胀功或压缩功,J ;22mu ——动能,J ; mgH ——位能,J ; q ——气体吸收的热量,J ; W ——外界对气体作的功,J 。
其中u 、p 、V 和g 分别表示流速、压力、体积和重力加速度。
气体稳定流动能量方程:0)(sin =++++w L d dW gdL udu dpθρ对于垂直管,θ=90°,θsin =1 对于水平管,θ=0°,θsin =0 假设dW=0,并用dLρ乘式中每一项来简化方程 在生产井中,井内气体向上流动,沿气流方向压力是逐渐递减的,可写为如下表达式dL L d dL udu g dL dp w )(sin ρρθρ++= 或f acc el dL dpdL dp dL dp dL dp )()()(++= el dLdp )(——重力压降梯度 (N/㎡)/macc dLdp )(——加速度压降梯度 f dLdp)(——摩阻梯度二、管内摩阻达西阻力公式是计算管内摩阻的基本公式dL fu L w 22=确定式中的摩阻系数f ,可以借用水力学中介绍的Moody 图1. Colebrook 公式)34.91lg(214.1lg 21fR e de df e +-+= ed——管径与管子绝对粗糙度的比值 e R ——雷诺数;f ——Moody 摩阻系数。
可以覆盖完全粗糙管、光滑管和过渡区三个流态区域,当Re 相当大时转化为完全粗糙管的Nikuradse 公式。
14.1lg 21+=e df2. Jain 公式:)25.21lg(214.119.0e R d e f+-=3. Chen 公式:)lg 0452.57065.3lg(21A R de fe--=其中8981.01098.1)149.7(8257.2)(eR d e A +=上述公式中,雷诺数Re 按照如下公式推导)/()/()/()(3s m kg u m kg s m u m d R g e ⋅⋅⋅=ρ气体相对密度;s a m 气体粘度,u ;m 管径,d ;/m 气体流量,g g 3-⋅---γP d q sc)(10*135.5sc scT P R e =取sc P =0.101MPa ,sc T=293K ,)(10*776.1g2g sc e d q R μγ-=对于de,如果没有相关资料,可以取e=0.00001524m第二节 气体在井筒内流动—井底压力计算一、 气体垂直管流动(1) 从管鞋到井口没有功的输出,也没有功的输入,dW=0(2) 对于气体流动,动能损失相对于总的能量损失可以忽略不计,即udu=0(3) 讨论垂直管流,θ=90°,sin θ=LH=1, dL=dH 考虑以上三点,可以简化为022=++ddHfu gdH dp ρ P ——压力,Pa f ——Moody 摩阻系数;g ——重力加速度,m/s ²; u ——流动状态下的气体流速,m/s ; H ——垂向油管长度,m ; d ——油管内径,m 1)密度在同一状态(p ,T )下的气体密度为ZTpZRT pM g g 008314.097.28γρ==2)速度某一温度、压力下的流速如果采用实用单位p=MPa 、q SC =m ³/d ,其他单位不变,同时标准状态取为P sc =0.101325MPa ,T sc =293K ,则任意流动状态(P 、T )下,气体的流速u 可用流量和油管截面积表示为sc g u B u =)1)(4)(1)(101325.0)(293)(86400(2dZ p Tq u B u scsc g π==二、 静止气柱对于静止气柱sc q=0 可以进一部简化气井井筒流动方程dHt dp PZTHg p pwhts⎰⎰=003415.0γ1. 平均温度和平均压缩系数计算方法 假设T= T =常数,Z=Z =常数,即可将T 和Z 从积分号内提出,积分后得ZT H p p g tswh ⋅=γ03415.0ln或ZT Hts wh g ep p ⋅=γ03415.0式中wh p ——静止气柱法计算的井底压力(地层压力或井底流动压力),MPa ;ts p ——静止气柱的井口压力(井口最大关井压力或静止气柱井口压力),MPag γ——气体相对密度; H ——井口到气层中部深度,m ;T ——井筒内气体平均绝对温度,K ; 通过2whts T T T +=计算Z ——井筒气体平均压缩系数,可通过),(T p f Z = 或2whts Z Z Z +=计算求解方法——迭代法显然,已知井口条件下诸参数,都要对未知赋初值数Pws ,用迭代法试算Pws 。
空气钻井偏心井筒压力及注气量计算
空气钻井技术以其诸多优势已经在国内外得到迅速发展和推广,其理论研究也得到了进一步发展,但是到目前为止,基本上所有的理论公式推导都是建立在同心环空的基础之上,没有考虑到钻柱偏心所造成的影响。
本文在深入调研的基础上,从空气钻井偏心工况循环系统分析入手,分别建立了直井段、造斜井段、稳斜井段井筒压力模型,引入了偏心环空当量直径,对正循环系统井筒压力分布公式进行了推导,并以文献[13]中所提供的数据作为原始计算数据,以直井为例,计算了直井井筒沿程水力摩阻系数、压力、流体密度和流速,并对其规律进行分析。
可知偏心度对井筒压力、密度、流速的影响不可忽略,而且环空中流体流速和气体单位体积动能的最低值出现在“关键点”处,而非井底,此处是环空携屑最困难的地方之一。
分别讨论了气体最小动能标准和岩屑沉降末速度标准,以及偏心度、钻速、井底压力、井深和注气量之间的关系。
气举压力计算公式气举是指通过注入气体来减轻液体的密度,从而减小液体对井壁的压力,提高液体的生产率。
气举压力计算公式是用来计算气举过程中所产生的压力的公式,它可以帮助工程师和研究人员更好地理解气举过程,并进行相关的设计和优化。
气举压力计算公式通常包括以下几个方面的因素,气体注入速度、气体注入量、液体密度、管道尺寸和形状等。
下面我们将详细介绍气举压力计算公式的相关内容。
首先,气举压力计算公式中最重要的参数之一是气体注入速度。
气体注入速度越大,产生的气举压力也越大。
气体注入速度可以通过以下公式进行计算:Qg = A V。
其中,Qg代表气体注入速度,A代表气体注入口的面积,V代表气体的流速。
通过这个公式,我们可以计算出气体注入速度,从而进一步计算气举压力。
其次,气举压力计算公式中还包括气体注入量这一因素。
气体注入量越大,产生的气举压力也越大。
气体注入量可以通过以下公式进行计算:G = ρg Vg。
其中,G代表气体注入量,ρg代表气体的密度,Vg代表气体的体积。
通过这个公式,我们可以计算出气体注入量,从而进一步计算气举压力。
此外,液体密度也是气举压力计算公式中的重要参数之一。
液体密度越大,产生的气举压力越小。
液体密度可以通过以下公式进行计算:ρl = m / V。
其中,ρl代表液体密度,m代表液体的质量,V代表液体的体积。
通过这个公式,我们可以计算出液体的密度,从而进一步计算气举压力。
最后,管道尺寸和形状也是影响气举压力的重要因素之一。
管道尺寸和形状的不同会导致气体流动的阻力不同,进而影响气举压力的大小。
一般来说,管道尺寸越大,形状越圆滑,产生的气举压力也越大。
综上所述,气举压力计算公式是一个综合考虑了气体注入速度、气体注入量、液体密度、管道尺寸和形状等因素的公式。
通过对这些因素的计算和分析,我们可以更好地理解气举过程,并进行相关的设计和优化。
希望本文对您有所帮助,谢谢阅读!。
附录1 油管动气柱流动压力计算公式及过程1、计算公式及参数取值根据《试井手册》下册,采用油管动气柱压力计算公式进行渐近计算。
计算公式见式(1)、(2);有关参数取值见表18。
w fP=式中0.03415gcp cp DsT Z γ= (2)计算参数取值一览表表 182、计算过程(1)求井筒流动气柱的平均温度T cp计算公式T CP=t o+DM/2+273.15 (K) (3)据表14,代入数据,得T CP=315.3K。
(2)求井筒流动气柱平均偏差系数Z cp'对比温度T r=T CP/T C=1.59;对比压力P r'= P wh/P C=7.2。
据T r及P r',查Standing-Katz图版,天然气偏差系数Z CP'=0.957。
(3)初算近似井底流动压力P wf'据式(1)及式(2),代入有关数据得P wf'=38.949MPa。
(4)求井筒流动气柱的近似平均压力P cp ' 计算公式)(322wh wfwhwfcpP P PP p +'+'= (4)代入有关数据,得P cp '=36.151MPa 。
(5)再算对比压力P r " P r "= P cp '/P C =7.84;对比温度T r 同前,为1.59。
据T r 及P r "查Standing-Katz 图版,天然气偏差系数Z cP "=0.989。
(6)再算井底流动压力P wf "据式(1)及式(2),代入有关数据,得P wf "=38.756MPa 。
(7)求井筒流动气柱的近似平均压力P cp ''计算公式)(322wh wfwhwfcpP P PP p +'+'= (4)代入有关数据,得P cp ''=36.049MPa 。