STM8L探索套件学习笔记-TIM定时器(五)
- 格式:docx
- 大小:9.75 KB
- 文档页数:2
STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。
⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采⽤内部时钟。
TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。
这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。
{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。
⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。
如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。
#error directive: "Unsupported Compiler!" STM8编译错误解决方法STM8的库使用很方便,不过初学者下载ST官方的库可能会遇到下面的问题。
原因是因为STM8S的官方库文件发布时,IAR EWSTM8还没有出来,所以在官里面IAR未能被支持,最好是采用IAR自带的头文件,如下图所示:IAR自带的头文件目录,请以你自己的安装目录下查时钟控制STM8的钟控制器功能强大而且灵活易。
现以STM8L101xx单片机的时钟树为例,时钟树如下图所示:HSI 高速接口时钟源LSI 低速接口时钟源从时钟树来看,fCPU 的时钟来源是fMASTER 时钟;fMASTER的时钟源有三个可以选择:fHSI。
fHSI来自于内部的时钟;fHSIDIV来自于内部16MHz RC的时钟源;fLSI来自于内部38KHz RC时钟源。
TIMER2TIM时基单元,如下图所示:计数器使用内部时钟(fMA STER) ,由CK_PSC提供,并经过预分频器分频产生计数器时钟CK_CNT。
计数器时钟频率的计算公式:fCK_CNT = fCK_PSC/2(PSCR[2:0])中断向量表串口uart 学习STM8L101f3p6 有一个串口如图本历程基于库操作不讨论具体寄存器操作有兴趣的同学可以自行参考编程手册下面看一下手册的了解一下特点本人英语是个小白只可意会不可言传了内部结构了由于是基于库函数的所以不做寄存器的分析了库函数的好处就是可以在不了解单片机寄存器的前提下可以快速开发应用下面举个例子波特率 9600 8位字长停止位一位无校验串口模式为收发模式查询发送中断接收在初始化串口之前应该先初始化串口对应的IO口由手册可知串口对应的IO为PC2(USART_RX)和PC3(USART_TX)。
首先宏定义下IO 方便理解和配置#define TXD_GPIO_PORT GPIOC#define RXD_GPIO_PORT GPIOC#define TXD_GPIO_PINS GPIO_Pin_3#define RXD_GPIO_PINS GPIO_Pin_2初始化IOTxD 配置成输出上拉高速模式RxD 配置成输入上拉无中断模式GPIO_Init(TXD_GPIO_PORT, TXD_GPIO_PINS, GPIO_Mode_Out_PP_High_Fast);GPIO_Init(RXD_GPIO_PORT, RXD_GPIO_PINS, GPIO_Mode_In_PU_No_IT);接下来打开串口模块时钟(之前就是忘配置这个功能所以一直不好使)CLK_PeripheralClockConfig(CLK_Peripheral_USART, ENABLE);配置串口详细的功能USART_Init((u32)9600, USART_WordLength_8D, USART_StopBits_1, USART_Parity_No, (USART_Mode_TypeDef)(USART_Mode_Rx | USART_Mode_Tx));开启接收中断USART_ITConfig(USART_IT_RXNE, ENABLE); //开启接收中断打开串口USART_Cmd(ENABLE);最后在开启总中断就可以啦enableInterrupts(); /* 开启总中断 */发个数据UART_SendString("This is a UART Demo \r\n");哈哈好使下面是完整的功能函数/********************************************************************** ********** 名称: Uart_Init* 功能: UART2初始化操作* 形参: 无* 返回: 无* 说明: 无*************************************************************************** ***/void Uart_Init(void){GPIO_Init(TXD_GPIO_PORT, TXD_GPIO_PINS, GPIO_Mode_Out_PP_Low_Fast);GPIO_Init(RXD_GPIO_PORT, RXD_GPIO_PINS, GPIO_Mode_In_PU_No_IT);// GPIO_ExternalPullUpConfig(GPIOC,GPIO_Pin_3|GPIO_Pin_4, ENABLE);CLK_PeripheralClockConfig(CLK_Peripheral_USART, ENABLE);USART_DeInit(); /* 将寄存器的值复位 *//** 将UART2配置为:* 波特率 = 9600* 数据位 = 8* 1位停止位* 无校验位* 使能接收和发送*/USART_Init((u32)9600, USART_WordLength_8D, USART_StopBits_1, \USART_Parity_No, (USART_Mode_TypeDef)(USART_Mode_Rx |USART_Mode_Tx));USART_ITConfig(USART_IT_RXNE, ENABLE); //开启接收中断USART_Cmd(ENABLE);enableInterrupts(); /* 开启总中断 */}11。
29通用同步/异步接收器发射机(USART)本节适用于低密度stm8l05xx / stm8l15xx设备,介质密度stm8l05xx / stm8l15xx设备,介质+密度stm8l05xx / stm8l15xx设备高密度stm8l05xx / stm8l15xx / stm8l16xx设备,除非另有规定。
29.1是介绍USART(通用异步接收发送器)提供了一个灵活的需要一个行业标准的NRZ码的异步串行数据格式的外部设备的全双工数据交换装置。
它提供了一个非常广泛的波特率。
USART支持同步单向通信、半双工单线通信。
智能卡协议和IrDA(红外数据协会)先生ENDEC规格也支持。
USART也可以用于多处理器通信。
高速数据通信是可能的,使用DMA多缓冲区结构。
29.2是主要特点●全双工异步通信,●NRZ格式(标记/空间)●高精度波特率发生器系统常见的可编程发送和接收波特率可达fsysclk / 16●可编程数据字长(8或9位)●配置的停止位为1或2个停止位的支持●发射机时钟输出同步通信●单线半双工通信●IrDA SIR的编码器,解码器-正常模式3 / 16位元时间支持●智能卡仿真能力-智能卡接口支持异步协议的智能卡在ISO 7816-3标准定义1.5停止位的智能卡操作●配置多缓冲区通信使用的DMA(直接存储器存取)-接收/保留的内存使用DMA传输字节缓冲集中●单独使发射机和接收机的位●转移检测标志:接收缓冲区满传输缓冲区空-传输结束标志●奇偶控制:-将奇偶校验位–检查接收数据字节的奇偶性●4误差检测的旗帜:-溢出错误噪声误差帧错误奇偶校验错误●8个中断源的旗帜:发送的数据寄存器空传输完成接收数据寄存器满空闲线接收奇偶校验错误-溢出错误-帧错误噪声误差●2中断向量:发送中断接收中断●降低功耗模式●多处理器通信进入静音模式如果地址不匹配发生●唤醒从静音模式(空闲线检测或地址标记检测)●2接收器唤醒模式:地址位(MSB)空闲线29.3串口功能描述接口是外部连接到另一个设备通过三个引脚(见图152)。
STM32 高级定时器-PWM简单使用高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。
共有4个通道有死区有互补。
先是配置IO脚:GPIO_InitTypeDef GPIO_InitStructure;/* PA8设置为功能脚(PWM) */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);/*PB13 设置为PWM的反极性输出*/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);/*开时钟PWM的与GPIO的*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);/*配置TIM1*/TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;void Tim1_Configuration(void){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;TIM_DeInit(TIM1); //重设为缺省值/*TIM1时钟配置*/TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分频)72M/4000=18KTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置了时钟分割不懂得不管TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; //周期计数器值不懂得不管TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure); //初始化TIMx的时间基数单位/* Channel 1 Configuration in PWM mode 通道一的PWM */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //PWM模式2TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效PA8TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //反向通道也有效PB13 TIM_OCInitStructure.TIM_Pulse = 40; //占空时间144 中有40的时间为高,互补的输出正好相反TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; //互补端的极性TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; //空闲状态下的非工作状态不管TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //先不管TIM_OC1Init(TIM1,&TIM_OCInitStructure); //数初始化外设TIMx通道1这里2.0库为TIM_OCInit/* TIM1 counter enable开定时器*/TIM_Cmd(TIM1,ENABLE);/* TIM1 Main Output Enable 使能TIM1外设的主输出*/TIM_CtrlPWMOutputs(TIM1,ENABLE);}//设置捕获寄存器1void SetT1Pwm1(u16 pulse){TIM1->CCR1=pulse;}/*操作寄存器改变占空时间*//*************************************************************************** **************************************TIM1的定时器通道时间1到4 分别为PB8 PA9 PA10 PA11 而互补输出分别为PB13 PB14 PB15中止PB12 。
STM8教程实验8-定时器TIM1例程⼋ TIM1这⼀节,我们将向⼤家介绍如何使⽤STM8的定时器中的基本定时功能,STM8的定时器功能⼗分强⼤,有TIM1⾼级定时器,也有TIM2、TIM3等通⽤定时器,还有TIM4基本定时器。
在STM8S参考⼿册⾥⾯,定时器的介绍占了1/3的篇幅,⾜见其重要性。
这⼀节,我们分别介绍TIM1的基本定时功能16位⾼级控制定时器(TIM1)简介:TIM1由⼀个16位的⾃动装载计数器组成,它由⼀个可编程的预分频器驱动。
TIM1有4个通道,分别是1到4。
分别对应于四个不同的捕获/⽐较通道。
⾼级控制定时器适⽤于许多不同的⽤途:基本的定时测量输⼊信号的脉冲宽度(输⼊捕获)产⽣输出波形(输出⽐较,PWM和单脉冲模式)对应与不同事件(捕获,⽐较,溢出,刹车,触发)的中断与TIM5/TIM6或者外部信号(外部时钟,复位信号,触发和使能信号)同步⾼级控制定时器⼴泛的适⽤于各种控制应⽤中,包括那些需要中间对齐模式PWM的应⽤,该模式⽀持互补输出和死区时间控制。
⾼级控制定时器的时钟源可以是内部时钟,也可以是外部的信号,可以通过配置寄存器来进⾏选择。
TIM1的时基单元包括,如下图所⽰:● 16位向上/向下计数器● 16位⾃动重载寄存器●重复计数器●预分频器16位计数器,预分频器,⾃动重载寄存器和重复计数器寄存器都可以通过软件进⾏读写操作。
⾃动重载寄存器由预装载寄存器和影⼦寄存器组成。
可在在两种模式下写⾃动重载寄存器:●⾃动预装载已使能(TIM1_CR1寄存器的ARPE位置位)。
在此模式下,写⼊⾃动重载寄存器的数据将被保存在预装载寄存器中,并在下⼀个更新事件(UEV)时传送到影⼦寄存器。
●⾃动预装载已禁⽌(TIM1_CR1寄存器的ARPE位清除)。
在此模式下,写⼊⾃动重载寄存器的数据将⽴即写⼊影⼦寄存器。
更新事件的产⽣条件:●计数器向上或向下溢出。
●软件置位了TIM1_EGR寄存器的UG位。
STM8L中文参考手册(4)-20 16位通用定时器(TIM2、TIM3、tim5)20.1简介本章介绍TIM2、TIM3和tim5是相同的定时器每个定时器包括一个由可编程分频器驱动的16位上下自动重载计数器它可以用于多种目的,包括:●定时产生●测量输入信号的脉冲长度(输入捕获)●产生输出波形(输出比较、脉宽调制和脉冲模式)●各种中断能力事件(捕获、比较、溢出)●与其他定时器或外部信号(外部时钟、复位、触发使能)同步定时器时钟可以来自内部时钟,也可以来自配置寄存器或外部源本章仅介绍通用定时器的主要特性。
它参考了与19:16高级控制定时器(TIM1)相对应的部分中的每个功能的更详细的信息页28320.2 TIMx 主要功能通用TIMx TIM2/TIM3功能包括:●16位向上、向下、向上/向下自动刷新计数器●3位可编程分频器允许将计数器的时钟频率分成1至128的任意2次方两个独立的低电平通道:输入捕获输出比较脉冲宽度调制产生(边沿对齐)-一个脉冲输出模式低电平中断输入,用于复位定时器输出信号,或处于已知状态●输入捕捉2可通过来自comp2比较器:更新的中断和DMA请求产生以下事件:当计数器溢出时,计数器初始化(软件)输入捕捉输出比较中断输入触发事件(开始、停止、内部/外部触发初始化或计数)20.3.1时间单元定时器时基单元包括:●16位可逆计数器时钟源是内部时钟(fsysclk)它由预分频器计数器的时钟ck_cnt驱动,预分频器计数器直接连接到ck_psc时钟馈送分频器分频器的实现如下:7位计数器(在timx_pscr寄存器中)由基于低预分频器的3位寄存器控制它可以控制飞行中寄存器缓冲区的变化。
它可以将计数器的时钟频率转换为1、2、4、8、16、32、64或128计数器的时钟频率计算如下:fCk _ CNT = fck _ PSC/2(PSCR[2:0)计数器操作请参考第19.3.4页:上部288,模式部分19.3.5:在第290页向下计数,模式19.3.6:中心对齐(向上/向下计数)29220.3.2时钟/触发控制器参见第296页第19.4节:TIM1时钟/触发控制器20.3.3采集/比较通道输入级参见第310页第19.5节:TIM1采集/比较通道有两个输入通道,如图122:输入级框图通道2内部连接到比较器输出级参见第19.5.4页:315,输出级19.5.5:强制输出模式在第316页,第19.5.7页:脉宽调制模式在第318页如图124所示。
STM32HAL库学习系列第4篇定时器TIM-----开始定时器与PWM输出配置基本流程:1.配置定时器2.开启定时器3.动态改变pwm输出,改变值HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);函数总结:1 __HAL_TIM_SET_COMPARE()// 是设置CCRx,⼀般是⽤在PWM输出的,控制PWM占空⽐2 __HAL_TIM_GET_COMPARE // 是⽤来读取CCRx的,⼀般⽤于捕获处理PWM输出配置:频率设置:1static void MX_TIM2_Init(void)2 {3 TIM_MasterConfigTypeDef sMasterConfig;4 TIM_IC_InitTypeDef sConfigIC;5 TIM_OC_InitTypeDef sConfigOC;6 htim2.Instance = TIM2;7 htim2.Init.Prescaler = (36-1); //实际时钟频率为 72M/36=2MHz /40000=50H,-----490HZ,改变观察电机输出状态定时器预分频器8 htim2.Init.CounterMode = TIM_COUNTERMODE_UP;9 htim2.Init.Period = (4082-1); //定时器周期配置 PWM频率为 490KHz 定义定时器周期,PWM频率为:168MHz/ (L298N_TIMx_PRESCALER+1)/ (L298N_TIM_PERIOD+1)10//⾼级定时器重复计数寄存器值11 **⾼级才有12// 定义⾼级定时器重复计数寄存器值13//实际PWM频率为:72MHz/(L298N_TIMx_PRESCALER+1)/(L298N_TIM_PERIOD+1)/(L298N_TIM_REPETITIONCOUNTER+1)14#define L298N_TIM_REPETITIONCOUNTER 015 **刹车和死区配置:1/* 刹车和死区时间配置 */2 sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;3 sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;4 sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;5 sBreakDeadTimeConfig.DeadTime = 0;6 sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;7 sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;8 sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;9 HAL_TIMEx_ConfigBreakDeadTime(&htimx_L298N, &sBreakDeadTimeConfig);基于通信的pwm频率和脉宽的更新控制算法:1/*2** pwm是否需要更新,⽐较上⼀次的频率和脉宽值,如果不同,则更新3*/4void pwm_update_loop( void )5 {6/*1,第⼀路判断: 频率或占空⽐发⽣变化 */7if( (HLM_SOKO_I_FREQ != HLM_SOKO_I_FREQ_LAST ) ||8 HLM_SOKO_I_DUTY != HLM_SOKO_I_DUTY_LAST )9 {10/* 更新频率和占空⽐的记录值 */11 HLM_SOKO_I_FREQ_LAST = HLM_SOKO_I_FREQ;12 HLM_SOKO_I_DUTY_LAST = HLM_SOKO_I_DUTY;13/* 更新当前通道的PWM波形 */14 pwm_update( PWM_I,HLM_SOKO_I_FREQ, HLM_SOKO_I_DUTY );15 }1617/*2,第⼆路判断 */18if( (HLM_SOKO_II_FREQ != HLM_SOKO_II_FREQ_LAST ) ||19 HLM_SOKO_II_DUTY != HLM_SOKO_II_DUTY_LAST )20 {21/* 更新频率和占空⽐的记录值 */22 HLM_SOKO_II_FREQ_LAST = HLM_SOKO_II_FREQ;23 HLM_SOKO_II_DUTY_LAST = HLM_SOKO_II_DUTY;24/* 更新当前通道的PWM波形 */25 pwm_update( PWM_II,HLM_SOKO_II_FREQ, HLM_SOKO_II_DUTY );26 }2728/*3,第三路判断 */29if( (HLM_SOKO_III_FREQ != HLM_SOKO_III_FREQ_LAST ) ||30 HLM_SOKO_III_DUTY != HLM_SOKO_III_DUTY_LAST )31 {32/* 更新频率和占空⽐的记录值 */33 HLM_SOKO_III_FREQ_LAST = HLM_SOKO_III_FREQ;34 HLM_SOKO_III_DUTY_LAST = HLM_SOKO_III_DUTY;35/* 更新当前通道的PWM波形 */36 pwm_update( PWM_III,HLM_SOKO_III_FREQ, HLM_SOKO_III_DUTY );37 }38 }补充:开起定时器功能只要在相应的定时器下开始内部时钟源即可使⽤定时器功能定时器内部动能:定时器时钟配置:M是10的6次⽅微秒是10的-6次⽅内部时钟设置为不分频(CKD),则CK_PSC的时钟频率等于APB1的时钟频率108MHz,即108000 000Hz。
说实话我能够使用的单片机不多,我总是以为无论什么单片机都能开发出好的产品。
前些年用51,总是向各位大大学习,无休止的索取,在网上狂览一通。
心里感激的同时也想奉献一些,可是我会什么?后来使用avr(公司要求)还是向大大们学习,我又想奉献,可是我会什么?我会的大大们都写了,我不会的大大们也写了。
一个星期前花项目经费买了阿莫的kit三合一板,最近几天闲了下来,便动手调试一下。
算是有点心得,我又想奉献,可是我会什么?我只是想和大大们交流一下,哪怕是对的或者是错的,大大们满足我的一点心愿吧。
唠叨了这么多,现在开始吧。
配置:stvd ,cosmic我学单片机开门三砖总是要砸的。
第一砖:电源系统,这没什么好说的,只是它是stm8工作的基础总是要提一下第二砖:时钟系统,这等下再说。
第三砖:复位系统,stm8只需要一只104电容从reset脚到地就可以了。
现在说说时钟系统,学习单片机无论8位的还是32位的,都要从时钟开始,下面是我一开始的时钟切换程序。
1 CLK_ECKR |=0X1; //开启外部时钟2 while(!(CLK_ECKR&0X2)); //等待外部时钟rdy3 CLK_CKDIVR &= 0XF8; //CPU无分频4 CLK_SWR = 0XB4; //选择外部时钟5 CLK_SWCR |=0X2; //使能外部时钟上面的代码看起来没什么问题,可在调试过程中出现了有时能切换,有时有不能的情况,后来发现只要在第5行设上断点就能切换,我就想是不是得让cpu等一下,我又仔细的翻看下rm0016的时钟部分,发现得等待CLK_SWCR的标志位置位才能切换。
就变成了下面的代码CLK_ECKR |=0X1; //开启外部时钟while(!(CLK_ECKR&0X2)); //等待外部时钟rdyCLK_CKDIVR &= 0XF8; //CPU无分频CLK_SWR = 0XB4; //选择外部时钟while(!(CLK_SWCR&0X8)); //这里要等CLK_SWCR |=0X2; //使能外部时钟现在一切ok,是不是觉得看东西要仔细一下~~。
TIM定时器配置参数说明1、使能TIM时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM*,ENABLE);2、基础设置TIM_TimeBaseStructure.TIM_Period 计数值TIM_TimeBaseStructure.TIM_Prescaler 预分频,此值+1为分频的除数TIM_TimeBaseStructure.TIM_ClockDivision = 0 时钟因⼦待做进⼀步说明TIM_TimeBaseStructure.TIM_RepetitionCounter = 0 待做进⼀步说明TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up 向上计数 TIM_CounterMode_Dowm 向下计数 TIM_CounterMode_CenterAligned1 中⼼对齐⽅式1 TIM_CounterMode_CenterAligned2 中⼼对齐⽅式2 TIM_CounterMode_CenterAligned3 中⼼对齐⽅式3TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);3、通道设置----------------------------------------------------------------------------------------------输出⽐较 & PWM通道TIM_OCInitStructure.TIM_OCMode =TIM_OCMode_Timing 输出⽐较时间模式 (输出引脚冻结⽆效)TIM_OCMode_Active 输出⽐较主动模式 (匹配时设置输出引脚为有效电平,当计数值为⽐较/捕获寄存器值相同时,强制输出为⾼电平)TIM_OCMode_Inactive;输出⽐较⾮主动模式 (匹配时设置输出引脚为⽆效电平,当计数值为⽐较/捕获寄存器值相同时,强制输出为低电平)TIM_OCMode_Toggle 输出⽐较触发模式 (翻转。
STM8L探索套件学习笔记-TIM定时器(五)
STM8L 的定时器分:高级定时器TIM1,通用定时器TIM2/3/5,基础定时器TIM4。
其中高级定时器和通用定时器都是16 位定时器,不同之处高级定时器有DMA 功能,基础定时器是8 位定时器,它们的更详细功能可以参考说明
手册。
今天我们使用基础定时器TIM4 做一个延时的任务,采用两种方式实现:查
询和中断的方法。
1 查询的方法就是查询状态寄存器中的UIF 位(update interrupt flag)是否置位,主要代码:
void delay_ms(u16 n_ms)
{
/* Init TIMER 4 */
CLK_PeripheralClockConfig(CLK_Peripheral_TIM4, ENABLE);
/* Init TIMER 4 prescaler: / (2)= /64 */
TIM4->PSCR = 6;
/* HSI div by 1 --> Auto-Reload value: 16M / 64 = 1/4M, 1/4M / 1k = 250*/ TIM4->ARR = 250;
/* Counter value: 2, to compensate the initialization of TIMER*/
TIM4->CNTR = 2;
/* clear update flag */。