概率论与数理统计-4.5 矩
- 格式:ppt
- 大小:265.00 KB
- 文档页数:12
, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=12.设A ,B 为两个随机事件,且P(AB)>0,则P (A|AB)=( ) A .P (A ) B .P (AB) C .P (A |B) D .13.设随机变量X 在区间[2,4]上服从均匀分布,则P{2〈X<3}=( )A .P{3。
5<X 〈4。
5}B .P {1。
5<X 〈2.5}C .P{2.5<X<3.5}D .P{4。
5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( )A .—1B .21-C .21D .15则P {X=Y}=( )A .0。
3B .0.5C .0.7D .0。
86.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( ) A .E (X )=0。
5,D (X )=0.25 B .E(X )=2,D (X )=2 C .E (X)=0.5,D (X)=0。
5 D .E (X )=2,D (X)=47.设随机变量X 服从参数为3的泊松分布,Y~B(8,31),且X ,Y 相互独立,则D (X-3Y—4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0。
4,则D (X-Y)=( ) A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率10.设总体X 服从[0,2θ]上的均匀分布(θ〉0),x 1, x 2, …, x n 是来自该总体的样本,x为样本均值,则θ的矩估计θˆ=( )A .x 2B .xC .2xD .x 21 1A 2。
第六章习题1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。
2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,求3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。
5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。
6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。
7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。
8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。
9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。
10.试证第8题中的最大似然估计是的无偏估计。
11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。
12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。
13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中一种商品的月销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。
15.随机地取某种子弹9发作试验,测得子弹速度的,设子弹速度服从正态分布,求这种子弹速度的标准差和方差的双侧0.95置信区间。
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.现习题91.2 随机事件的概率1.3 古典概型现习题3现习题4现习题5 现习题6现习题7现习题8现习题9现习题101.4 条件概率习题3空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题6.习题7 习题8习题9 习题10习题11 现习题12习题14 习题15习题17习题19 习题20习题21 习题22现习题23现习题24第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大,写出随机变量X的分布律.习题4(空)习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:X 10 20 30 40pi 0.15 0.25 0.45 0.15求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ断头的概率为0.005,在τ这段时间断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布习题1习题2习题3习题4习题5习题6总习题二1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、第三章多维随机变量及其分布3.1 二维随机变量及其分布1、2、⑴⑵⑶3、⑴⑵⑶5、6、8、9、。
概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
实用文档04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X PB .21)1(=≤+Y X P实用文档C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。
第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--, 11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为^394(3)34322X X p -----==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂pp L ,求得到θ的极大似然估计值:n n n n p 22210^++=6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。
复制过来让大家都能下载哈第五章数理统计的基础知识5.1 数理统计的基本概念习题1已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表求样本容量n,样本均值X¯,样本方差S2.解答:对于抽到的每个居民户调查均收入,可见n=200.这里,没有给出原始数据,而是给出了整理过的资料(频率分布),我们首先计算各组的“组中值”,然后计算X¯和S2的近似值:分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.5.3 抽样分布(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。