概率论与数理统计第四版_习题答案_第四版_盛骤__浙江大学
- 格式:pdf
- 大小:732.66 KB
- 文档页数:74
完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为: C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。
表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。
概率论与数理统计复习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念P25 第三题:3.(1)设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- (2)已知P (A )=1/2,P (B )=1/3,P (C )=1/5,P (AB )=1/10,P (AC )=1/15,P (BC )=1/20,P (ABC )=1/30,求C B A C B A C B A C B A B A B A ⋃⋃⋃⋃,,,,,的概率。
(3)已知P (A )=1/2,(i )若A ,B 互不相容,求)(B A P ,(ii )若P (AB )=1/8,求)(B A P 。
例五:某电子设备制造厂所用的元件是由三家元件制造厂提供的.根据以往的记又有以下的数据:设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志. (1)在仓库中随机地取一只元件,求它是次品的概率;(2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少。
试求这些概率。
解:设A 表示“取到的是一只次品”,B i (i= 1,2,3)表示“所取到的产品是由第i 家工厂提供的”.易知,B 1,B 2,B 3:是样本空间S 的一个划分,且有P(B1)=0.15,P(B2)=0.80,P(B3)= 0.05, P(A|B 1)=0.02,P(A|B 2)= 0.01,P(A|B 3)=0.03.(1) 由全概率公式P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+ P(A|B3)P(B3)=0.0125. (2)由贝叶斯公式.12.0)|(,64.0)|(24.00125.015.002.0)()()|()|(32111===⨯==A B P A B P A P B P B A P A B P .以上结果表明,这只次品来自第2家工厂的可能性最大.P26第六题6.病树的主人 外出.委托邻居浇水,设已知如果不浇水,树死去的概率为0.8.若浇水则树死去的概率为0.15.有0.9的把握确定邻居会记得浇水. (1)求主人回来树还活着的概率.(2)若主人回来树已死去,求邻居忘记浇水的概率.例2一个元件(或系统)能正常工作的概率称为元件(或系统)的可靠性,如图1-8.设有4个独立工作的元件1,2,3,4按先串联再并联的方式连接(称为串并联系统).设第i个元件的可靠性为P i(i=1,2,3,4),试求系统的可靠性。
第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。
解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。
2.[二]设X 1,X 1,…,X n 为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。
(5)()p p m x p px X P x m xmx ,10,,,2,1,0,)1()(<<=-==- 为未知参数。
解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X ,解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数 1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 11211ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθn θL d 121)ln (ˆ,0ln 2112)(ln 。
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S ={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A ﻩ或A- (A B+AC )或A- (B ∪C ) (2)A ,B都发生,而C不发生。
表示为:C AB ﻩ或AB -ABC 或AB-C(3)A,B,C 中至少有一个发生ﻩﻩ表示为:A+B+C (4)A ,B ,C 都发生,ﻩ表示为:A BC(5)A,B ,C 都不发生,ﻩﻩ表示为:C B A 或S- (A+B+C)或C B A ⋃⋃ (6)A ,B,C中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A,B,C中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计浙大第四版答案【篇一:概率论与数理统计答案第四版第2章(浙大)】死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。
解:设x为公司的赔付金额,x=0,5,20p(x=0)=1-0.0002-0.0010=0.9988 p(x=5)=0.00102.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以x表示取出的三只中的最大号码,写出随机变量的分布律.3解:方法一: 考虑到5个球取3个一共有c5 =10种取法,数量不多可以枚举来解此题。
设样本空间为ss={123,124,125,134,135,145,234,235,245,345 }易得,p{x=3}=10p{x=4}=10p{x=5}=10;136方法二:x的取值为3,4,5当x=3时,1与2必然存在,p{x=3}=c22c5=;10c23c51当x=4时,1,2,3中必然存在2个, p{x=4}= =;103当x=5时,1,2,3,4中必然存在2个, p{x=5}=c24c5=;106(2)将一颗骰子抛掷两次,以x表示两次中得到的小的点数,试求x 的分布律. 解:p{x=1}= p (第一次为1点)+p(第二次为1点)- p (两次都为一点)= +?6611136=;361114141715151966661313136=36566661212136=3631111113.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样.以x表示取出的次品的只数.(1)求x的分布律. 解:p{x=0}= c133515c322p{x=1}= p{x=2}=1c213 c212c1535;1352c113c2c15;(2)画出分布律的图形.4、进行独立重复试验,设每次试验的成功率为p,失败概率为q=1-p(0p1)(1)将试验进行到出现一次成功为止,以x表示所需的试验次数,求x的分布律。
第一章 概率论的基本概念2、设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
故 表示为:AB +BC +AC 3、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P , 81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 16、据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=,P (B |A )=P {母亲得病|孩子得病}=,P (C |AB )=P {父亲得病|母亲及孩子得病}=。
求母亲及孩子得病但父亲未得病的概率。
解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.17、已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。
完全版概率论与数理统计习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为:A或A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。
表示为:AB或AB-ABC或AB-C(3)A,B,C中至少有一个发生(4)A,B,C都发生,表示为:A+B+C 表示为:ABC表示为:或S-(A+B+C)或(5)A,B,C都不发生,(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于,,中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:,,中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A)=0.6,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB)=0.6+0.7-1=0.3 。