石墨炉原子吸收法测定大米中铅镉
- 格式:docx
- 大小:18.86 KB
- 文档页数:3
石墨炉原子吸收光谱法测定大米中铅、镉、铬作者:徐惠群陈欣来源:《农家科技下旬刊》2014年第02期摘要:采用微波消解、干法灰化石墨炉原子吸收光谱法测定大米中的重金属铅、镉、铬的含量。
结果表明,采用微波消解法,回收率为92.0-108.0%,精密度为3.52-4.03% ;采用干法灰化,回收率为82.0-94.0%,精密度为3.56-4.88%。
两种方法都能满足日常监测需求,但两种方法结果存在显著性差别。
关键词:大米;铅;镉;铬;微波消解;干法灰化;石墨炉近年来,产品质量安全问题已成为政府有关部门乃至普通百姓关注的焦点之一,其中有毒重金属超标和污染问题不容乐观。
大米作为我们的主食之一,尤其要注重质量安全。
本实验运用微波消解和干法灰化两种方法进行样品前处理,然后用石墨炉原子吸收光谱法测定大米中的重金属铅、镉、铬的含量,比较两种方法结果。
一、材料与方法1.仪器与试剂原子吸收分光光度计AASzenit700(德国耶拿分析仪器股份公司);微波消解仪WX-8000(上海屹尧仪器科技发展有限公司);箱式电阻炉SX2-4-10(上海实验电炉厂);可调电炉;摩尔实验超纯水器1810D(重庆摩尔水处理有限公司);智能控温电加热器DKQ-1000(上海屹尧仪器科技发展有限公司);电子天平JD200-3(0.001g)(沈阳龙腾电子有限公司)。
硝酸、高氯酸为优级纯;其他试剂均为分析纯以上。
1000μg/ml的铅、镉、铬标准溶液均购于国家标准物质研究中心,根据实验需要将标准溶液稀释成所需浓度;实验用水为实验规定的一级水。
2.样品前处理方法2.1微波消解法称取0.5g(精确到0.001g)大米于消解罐中,加入5ml优级纯硝酸。
密封加盖,放置在微波消解仪中,程序升温消解。
消解之后溶液澄清。
消解完毕后待温度降至80℃后开罐,将消解液放于智能控温电加热器上赶酸。
用水将消解液转移至10-50ml容量瓶中,定容。
同时做空白试剂。
表1 微波消解升温程序2.2干法灰化称取1g(精确到0.001g)于瓷坩埚中,加入1mL优级纯硝酸,浸泡1h以上,小心蒸干,炭化至不再冒烟,移入马弗炉500℃灰化6h,冷却。
89粮食科技与经济Grain science and technology and economyVOL.45,No.08 August.2020石墨炉原子吸收法测定大米和面粉中的铅和镉李崇江,魏洪敏,炼晓璐,董 宾,林建奇(北京海光仪器有限公司,北京 101318)[摘要]本试验建立了石墨炉原子吸收测定大米和面粉中铅和镉的分析方法。
样品经湿法消解定容后直接进样测定。
试验结果表明,铅和镉分别在0~20μg/L和0~3.0μg/L浓度范围内线性关系良好,相关系数分别为0.999 7和0.999 5,方法检出限为0.008 7mg/kg和0.001 7mg/kg。
铅的加标回收率为95%~103%,7次重复测定的RSD为2.15%;镉的加标回收率为92%~105%,7次重复测定的RSD为1.78%。
利用该方法分析测定大米粉和小麦粉的国家标准物质,其结果满足证书中的不确定度要求,且该方法操作简单、快速、准确,因此可用于大米和面粉中铅和镉的测定。
[关键词]石墨炉原子吸收法;大米;面粉;铅;镉中图分类号:O657.31;TS210.7 文献标识码:A DOI:10.16465/431252ts.20200822近年来由于“工业三废”的排放,使得水质和土壤环境受到铅、镉的污染,水稻、小麦等农作物在生长过程中会将这些重金属元素吸收并蓄积于体内。
尤其“镉大米”近年来在国内引起高度关注,人们更加关心大米、面粉及其制品等传统主食的安全[1-2]。
铅和镉的含量是食品卫生检验的重要卫生指标之一,在大米和面粉中其含量受到严格的限制。
《食品安全国家标准 食品中污染物限量》(GB 2762—2017)中规定,大米中镉的限量要求为0.2mg/kg,面粉中镉的限量要求为0.1mg/kg;二者中铅的限量要求均为0.2mg/kg[3]。
石墨炉原子吸收法具有较高的灵敏度,在食品中重金属元素的分析中应用广泛。
本文结合食品安全国家标准中铅、镉的检测方法[4-5],使用湿式消解-石墨炉原子吸收法,对市售大米和面粉中的铅和镉元素进行分析测定。
石墨炉原子吸收光谱法测大米中的镉
石墨炉原子吸收光谱法是一种常用于金属元素分析的方法,适用于大米中镉的测定。
具体步骤如下:
1. 样品制备:将大米样品洗净、研磨成细粉,并取适量样品称重。
2. 溶解样品:将样品加入适量的酸(如硝酸、盐酸等),进行溶解。
可以选择加热溶解,以加快反应速度。
3. 石墨炉条件设置:将溶解后的样品稀释到合适的浓度,然后通过尖底容器或吸入器将样品注入石墨炉中。
根据实际情况,设置合适的石墨炉温度和程序。
4. 校正和标准曲线:使用标准品溶液,按照相同程序和条件进行测量,绘制标准曲线。
5. 吸收测定:依次将待测样品注入石墨炉中,记录吸收峰的吸光度值。
6. 计算浓度:使用标准曲线,根据吸光度值计算待测样品中镉的浓度。
需要注意的是,在进行石墨炉原子吸收光谱法测定时,需要严格控制实验条件和仪器的质量,以确保准确性和可靠性。
同时,为了提高样品测定的准确性,可以进行多次测定,计算平均值。
不同消化方法-石墨炉原子吸收法测定大米中镉的比较秦品芝1摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。
试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。
关键词镉;微波消解;湿法消解;干法灰化镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。
石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。
所以,本次实验采用石墨炉原子吸收法测定大米中的镉。
前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。
微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。
其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。
1.实验原理试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。
2.实验材料2.1仪器原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。
2.2试剂1硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。
3.实验方法3.1样品前处理3.1.1干灰化法首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。
湿法消解法石墨炉原子吸收光谱法测定大米中镉含量 罗芳 沅江市市场监督管理局 首先,对待测大米进行实验前处理,通过湿法消化处理大米,通过石墨原子吸收光谱法测定大米中镉的含量。
同时,检测了水稻中镉含量的最佳测量时间,重复性,回收率和精密度。
材料与方法主要仪器。
原子吸收分光光度计石墨炉,可调热板,镉空心阴极灯,电子天平(传感量为0.1毫克),50毫升高烧杯,50毫升容量瓶,滴管,移液管,小手柄漏斗; 高速多功能粉碎机; 电沙浴锅; 可调式电热板;明澈–D24UV超纯水机;将所用的玻璃器皿全部浸入硝酸(20%)中过夜,并用去离子水冲洗。
实验材料主要包括硝酸、铅、镉标准溶液,去离子水等;样品的主要来源为实验地周边市场销售的大米。
试剂与配制。
(1)镉的标准使用液。
准确称取2.0g磷酸铵、2.0g硫酸铵和2.0g磷酸二氢铵,分别以水溶解稀释至100mL,制得20g/L磷酸铵溶液、20g/L硫酸铵溶液和20g/L磷酸二氢铵溶液。
(2)消解剂的配置。
硝酸∶双氧水 =7∶3;混合酸 2:硝酸∶高氯酸 =6∶1;混合酸 3:硝酸∶高氯酸 =4:1;混合酸 4:硝酸∶高氯∶双氧水 =7∶1∶2。
实验方法。
(1)试样前处理。
去除米杂后,将其研磨并过筛使用。
在小三角烧瓶中称取0.5000~1.0000g样品,加入10mL消化剂,盖上盖子浸泡过夜。
第二天,加入一个小漏斗溶解在电动沙浴上,直至消化液无色,透明或略带黄色,样品完全消化。
然后排出热板上的残留酸,冷却后再次向酸中加入少量去离子水,直至白烟耗尽且溶液干燥。
除去冷,将样品消化物用去离子水转移到25mL容量瓶中,并进行试剂空白试验,记录消化时间。
(2)湿法消解法。
用量瓶称取10.0g的大米样品,将其放置到250mL的锥形瓶当中,利用少量的去离子水对其进行滋润后,将8-10mL的硝酸加入其中,放置片刻,将样品放入到瓶中使其中大多数有机物得以完全消解,再将其进行冷却处理,将10mL的混合酸放入到可调节电炉中进行低温消煮。
石墨炉原子吸收法测定大米中的镉大米中镉的检测根据食品安全国家标准食品中镉的测定(GB 5009.15-2014)要求,采用石墨炉原子吸收光谱测定方法。
根据食品安全国家标准食品中污染物限量(GB2762-2017)规定,大米中镉的限量为0.2mg/kg。
应用方案本文参照该国标,使用海光GGX-920塞曼石墨炉原子吸收分光光度计,对市售大米中的镉进行了分析测定。
一、主要仪器与试剂GGX-920塞曼石墨炉原子吸收分光光度计EG20A可调恒温电热板硝酸(优级纯)高氯酸(优级纯)镉标准溶液(含量为100μg/mL)镉标准曲线的配制:准确吸取100ng/mL镉标准使用液0,0.25,0.5,1.0,2.0,3.0于100 mL容量瓶中,用1%硝酸溶液定容至刻度,即得到含镉量分别为0,0.25,0.5,1.0,2.0,3.0 ng/mL的标准系列溶液。
二、样品前处理将大米样品磨碎成粉末,过40目筛(颗粒度不大于0.425mm),储于洁净的塑料瓶中,于室温下保存备用。
大米样品及标准物质采用湿法消解,具体处理流程为:称取试样0.3g~0.5g(精确至0.0001g)于锥形瓶中,加10mL硝酸-高氯酸混合溶液(9+1),加盖浸泡过夜,加一小漏斗在电热板上消化,若试样变棕黑色,再补加硝酸,直至冒白烟,消化液呈略带微黄色或无色透明,放冷后将消化液转移至25mL容量瓶中,用少量1%硝酸溶液分3次洗涤锥形瓶,洗液合并于容量瓶中,并用1%硝酸溶液定容,混匀备用。
同时做试剂空白试验。
三、仪器分析条件四、测定结果1、标准曲线2、样品测定结果对市售的大米样品和大米粉标准物质进行了分析。
大米粉成分分析国家标准物质GBW(E)080684a的测定结果在证书要求的不确定度范围内,具体数据见下表。
所选取的样品的测定结果表明,3个样品均未超出食品中污染物限量标准GB 2762-2017中规定的大米中镉的限量要求,即0.2mg/kg。
大米粉国家标准物质中Cd的测定结果大米样品中Cd的测定结果3、精密度与回收率对上述大米样品进行了加标回收实验,添加水平为0.125 mg/kg,加标样品的测试结果和加标回收率如下表。
石墨炉原子吸收法测定镉、铜和铅1.方法原理将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形成原子蒸气,对来自光源的特征电磁辐射产生吸收。
将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。
2.干扰及消除石墨炉原子吸收分光光度法的基体效应比较显著和复杂。
在原子化过程中,样品基体蒸发,在短波长范围出现分子吸收或光散射,产生背景吸收。
可以用连续光源背景校正法,或塞曼偏振光校正法、自吸收法进行校正,也可采用邻近的非特征吸收线校正法,或通过样品稀释降低样品中的基体浓度。
另一类基体效应是样品中基体参加原子化过程中的气相反应,使被测元素的原子对特征辐射的吸收增强或减弱,产生正干扰或负干扰。
如氯化钠对镉、铜、铅的测定,硫酸钠对铅的测定均产生负干扰。
在一定的条件下,采用标准加入法可部分补偿这类干扰。
此外,也可使用基体改良剂。
测铜时,20μl水样加入40%硝酸铵溶液10μl;测铅时,20μl水样加入15%钼酸铵溶液10μl;测镉时,20μl水样加入5%磷酸钠溶液10μl。
以上基体改良剂对于抑制基体干扰均有一定作用,1%磷酸溶液也可作为镉、铅测定的基体改良剂。
而硝酸钯是用于镉、铜、铅最好的基体改进剂,同时使用La、W、Mo、Zn等金属碳化物涂层石墨管测定,既可提高灵敏度,也能克服基体干扰。
3.方法的适用范围本法适用于地下水和清洁地表水。
分析样品前要检查是否存在基体干扰并采取相应的校正措施。
测定浓度范围与仪器的特性有关,表3-4-23列出一般仪器的测定浓度范围。
4.仪器原子吸收分光光度计,石墨炉装置、背景校正装置及其他有关附件。
表3-4-23 分析线波长和适用浓度范镉 228.8 0.1~2铜 324.7 1~50铅 283.3 1~55.试剂①硝酸,优级纯。
②硝酸(1+1),0.2%。
③去离子水:金属含量应尽可能低,最好用石英蒸馏器制备的蒸馏水。
④硝酸钯溶液:称取硝酸钯0.108g溶于10ml(1+1)硝酸,用水定容至500ml,则含Pd10μg/ml。
优化检测方法准确检测大米中铅镉含量作者:吕舟博来源:《中国食品》2020年第21期大米在我国居民日常饮食中占有非常重要的地位,是我国居民最主要的食物之一,南方人基本上每天都会食用大米。
大米重金属污染对大米的安全性具有严重威胁,如果含有铅与镉的大米被消费者食用,其中的铅和镉就会进入人体,并在人体逐渐聚集,最终导致人体发生癌变、畸形等病变。
基于此,必须科学检测大米中的铅镉含量,确保大米的安全性。
目前针对大米中铅与镉的检测,最常见的方法就是原子吸收法。
在检测大米中铅与镉含量的过程中,很重要的一个环节就是对大米的前期处理,这个环节会直接影响到大米检测的准确性和有效性。
本次研究使用微波消解法对大米样本进行前期处理,在此基础上采用石墨炉原子吸收法进行检测。
一、方法1.仪器。
AA-7000原子吸收仪(岛津)及配套的石墨炉、铅、镉空心阴极灯;电子天平;粉碎机;纯水器;电热板等。
2.试剂。
硝酸、盐酸(优级纯);双氧水(分析纯);100mg/L铅、镉标准储备液(选购自国家标准物质研究中心);GSB一22大米标准样品。
3.样品前处理。
精确称取0.50g经粉碎过20目筛的大米样品,加入微波消解罐中,再倒入6mL硝酸、2mL盐酸和3mL双氧水。
将内盖盖紧实,外保护层拧紧,小心、轻微地放入消解仪中。
按说明进行操作,待消解完后不要急于下一步操作,待其冷却至室温后再移至电热板上加热以去除氮氧化物,观察溶液待其澄清,白烟完全消失后移至容量瓶中。
用2%硝酸溶液定容至50mL摇匀后待测,同时做样品空白。
4.测定。
将处理好的样品加入AA-7000原子吸收仪中测定,相关参数按需设定。
铅、镉标准液浓度为0.1ug/ml(配备方法:将浓度为1000mg/L的铅、镉储备液用硝酸稀释而成)。
标准吸取0.1ug/ml铅0.0、10.0、20.0、40.0ml于容量瓶中稀释定容,同样吸取0.1ug/ml镉0.0、0.5、1.0、2.0、3.0ml于容量瓶中稀释定容。
微波消解-石墨炉原子吸收法对大米中铅镉的测定作者:方宏兵,王德强来源:《现代食品》 2018年第12期摘要:目的:选取微波消解- 石墨炉原子吸收法测定大米中含有的铅镉量。
方法:经微波消解预处理的样品,在石墨炉原子吸收法的使用下测定含有的铅镉量。
结果:大米中含有0.080 mg/kg 的铅和0.092 mg/kg 的镉,加标回收率98% ~ 101%,相对标准偏差未超过2.5%,该方法有较佳的精密度、准确度。
结论:在测定大米中含有的铅镉量时,选用微波消解- 石墨炉原子吸收法能得到准确、可靠的结果,十分适用。
关键词:微波消解;石墨炉原子吸收法;大米;铅镉含量Abstract:Objective: To determine the amount of lead and cadmium in rice by microwave digestion- graphite furnace atomic absorption spectrometry. Methods: The content of lead and cadmium in thesamples prepared by microwave digestion was determined by graphite furnace atomic absorption method.Results the rice contained 0.080mg/kg of lead and 0.092mg/kg of cadmium, with a standard recovery rateof98% ~ 101%, and a standard deviation of less than 2.5%. Conclusion: Microwave digestion-graphite furnaceatomic absorption method can be used to obtain accurate and reliable results in the determination of lead andcadmium in rice.Key words:Microwave digestion; Graphite furnace atomic absorption method; Rice; Lead and cadmiumcontent中图分类号:TS212.7微波消解技术是一项全新的试样消解技术,置于密闭消解罐内的样品在高温高压环境下通过硝酸、过氧化氢进行消化处理,该方法操作简单、试剂用量少,具有较快的消解速度和一定的安全性,可减少样品所受污染,具有良好的灵敏度、准确度[1]。
石墨炉原子吸收光谱法检测大米中铅和镉含量的研究作者:***来源:《粮食问题研究》2022年第01期摘要:本文通过湿法消解,硝酸和高氯酸混合酸作为消解液,可调电热板加热处理大米样品,石墨炉原子吸收光谱法测定大米中重金属铅和镉的含量。
结果表明铅和镉分别在0-20.0μg/L和0-2.0μg/L范围内线性较好,相关系数R2分别为0.9988和0.9978,方法检出限分别为0.0158 mg/kg、0.0009 mg/kg,7次重复测定的相对标准偏差分别为5.51%和3.49%,加标回收率均在92.4%—102.4%范围内,本方法易于操作、简便、结果稳定可靠,可用于大米样品中铅和镉含量的检测。
关键词:湿法消解原子吸收光谱法大米铅镉大米作为人类日常饮食的重要主食之一,是糖类、蛋白质等营养物质的主要来源,它富含铁、钙、锌和维生素等重要微量营养物质[1]。
近些年来,随着生活水平的提高,人们对粮食问题日益关注,不仅注重营养价值,更注重安全问题[2],而大米中的铅和镉是食品安全中重点监督的两种有毒重金属。
食用铅、镉含量超标的大米将会严重威胁人类健康,重金属将富集于人体内,不易被代谢,严重时引起基因突变、致畸形、致癌症等潜伏危害[3-4]。
因此,对大米中的铅、镉含量的监督检测有着非常重要的意义。
目前,原子吸收光谱法是测定样品中铅和镉含量的常用的分析手段之一,主要分为火焰法和石墨炉法,而石墨炉原子吸收法操作简单、灵敏度高、检出限低和准确性好,因此被广泛应用于食品中重金属元素含量的测定[5-6]。
本实验采用湿法消解,硝酸和高氯酸混合酸作为消解液,可调电热板加热处理样品,石墨炉原子光谱法检测大米中铅和镉的含量,结果准确可靠,可用于大米的重金属含量安全检测工作。
一、实验部分(一)仪器设备与试剂德国耶拿ZEEnit 700P原子吸收光谱仪,铅空心阴极灯和镉空心阴极灯;METTLER TOLEDO MS204S/01型电子天平。
石墨炉原子吸收光谱法测定食品中铅镉和铬的方法确认石墨炉原子吸收光谱法是一种常用的快速、精确、灵敏度高的分析方法,特别适用于测定微量的重金属元素。
在食品中,铅、镉和铬常常是重金属残留的污染物,对人体健康带来潜在风险。
确定食品中铅、镉和铬的含量对食品安全具有重要意义。
石墨炉原子吸收光谱法测定食品中铅、镉和铬的方法,通常包括样品的前处理、仪器操作和数据处理等步骤。
下面将详细介绍这一方法的操作步骤和注意事项。
1. 样品的前处理需要准备好食品样品。
通常情况下,可以将样品加热处理或采用酸溶解方法将样品转化为容易测定的形式。
对于不同种类的食品样品,前处理方法可能会有所不同,因此需要根据实际情况进行选择。
2. 仪器操作将经过前处理的样品放入石墨炉原子吸收光谱仪中进行测定。
在操作过程中,需要注意以下几点:a. 选择合适的光谱仪参数,包括光源电流、石墨管温度、镜片位置等。
b. 根据样品的特点和测定元素的性质选择合适的分光器和灵敏度等参数。
c. 在测定前进行零点校准和标定,确保仪器的准确性和稳定性。
d. 将样品装入石墨炉中,并进行适当的温度程序,使样品中的元素转化为原子状态。
e. 测定样品吸收光谱,获取吸光度信号。
3. 数据处理对于测得的吸收光谱信号,需要进行数据处理和结果计算。
主要包括以下步骤:a. 利用标准溶液进行标定曲线的绘制,确定吸收峰的位置和强度。
b. 根据标定曲线和样品吸收峰的信号强度计算样品中铅、镉和铬的含量。
c. 对结果进行统计分析和质量控制,确保结果的准确性和可靠性。
在进行石墨炉原子吸收光谱法测定食品中铅、镉和铬的过程中,需要注意以下几点:1. 样品的前处理方法应根据不同食品的特点进行选取,并在前处理过程中避免污染和损失元素。
2. 在仪器操作过程中,注意操作规范,避免仪器的故障和误差。
3. 数据处理过程中,应注意标定曲线的准确性和样品测定结果的可靠性,对结果进行质量控制和验证。
石墨炉原子吸收光谱法是一种有效的测定食品中铅、镉和铬含量的方法,通过合理的样品前处理、仪器操作和数据处理,可以得到准确可靠的分析结果,并为食品安全监测和控制提供重要依据。
石墨炉原子吸收法测定大米中的镉大米中镉的检测根据食品安全国家标准食品中镉的测定(GB 5009.15-2014)要求,采用石墨炉原子吸收光谱测定方法。
根据食品安全国家标准食品中污染物限量(GB2762-2017)规定,大米中镉的限量为0.2mg/kg。
应用方案本文参照该国标,使用海光GGX-920塞曼石墨炉原子吸收分光光度计,对市售大米中的镉进行了分析测定。
一、主要仪器与试剂GGX-920塞曼石墨炉原子吸收分光光度计EG20A可调恒温电热板硝酸(优级纯)高氯酸(优级纯)镉标准溶液(含量为100μg/mL)镉标准曲线的配制:准确吸取100ng/mL镉标准使用液0,0.25,0.5,1.0,2.0,3.0于100 mL容量瓶中,用1%硝酸溶液定容至刻度,即得到含镉量分别为0,0.25,0.5,1.0,2.0,3.0 ng/mL的标准系列溶液。
二、样品前处理将大米样品磨碎成粉末,过40目筛(颗粒度不大于0.425mm),储于洁净的塑料瓶中,于室温下保存备用。
大米样品及标准物质采用湿法消解,具体处理流程为:称取试样0.3g~0.5g(精确至0.0001g)于锥形瓶中,加10mL硝酸-高氯酸混合溶液(9+1),加盖浸泡过夜,加一小漏斗在电热板上消化,若试样变棕黑色,再补加硝酸,直至冒白烟,消化液呈略带微黄色或无色透明,放冷后将消化液转移至25mL容量瓶中,用少量1%硝酸溶液分3次洗涤锥形瓶,洗液合并于容量瓶中,并用1%硝酸溶液定容,混匀备用。
同时做试剂空白试验。
三、仪器分析条件四、测定结果1、标准曲线2、样品测定结果对市售的大米样品和大米粉标准物质进行了分析。
大米粉成分分析国家标准物质GBW(E)080684a的测定结果在证书要求的不确定度范围内,具体数据见下表。
所选取的样品的测定结果表明,3个样品均未超出食品中污染物限量标准GB 2762-2017中规定的大米中镉的限量要求,即0.2mg/kg。
大米粉国家标准物质中Cd的测定结果大米样品中Cd的测定结果3、精密度与回收率对上述大米样品进行了加标回收实验,添加水平为0.125 mg/kg,加标样品的测试结果和加标回收率如下表。
2018 年第 9 期(下半月)农民致富之友 Nong Min Zhi Fu Zhi You130科研◎试验报告镉是有毒的重金属之一,镉元素会通过食物、水等方式被人体所吸收,在人吸收镉元素之后其会在人体内不断积累,当摄入一定含量的镉元素之后就会对人体造成较为严重的危害,从而引发一系列的疾病发生。
随着全球经济和科技的发展,农产品中重金属元素的质控和超标问题已引起人们的重视。
粮食中的镉主要源于生态环境和生产过程,测定其中的镉是国家食品卫生检验重要项目之一。
粮食和植物样品中镉的含量很低,通常采用石墨炉原子吸收光谱法检测大米中的镉。
本文采用全密封的聚四氟乙烯消化罐高温高压消化,利用压力提高酸的沸点和浸透力,具有样品消解快、实际消耗少、空白值低、无容器吸附(聚四氟乙烯是化学惰性材料)、消化过程无玷污、回收完全等优点,酸雾保持在容器内,避免对环境的污染1 材料与方法1.1 试验材料1.1.1 仪器:试验所需相关的试验仪器见表1。
高压消解——石墨炉原子吸收光谱法测定大米中镉成颜君 张小俊表1 检测所需的仪器及试剂仪器名称石墨炉原子吸收光谱仪(附:镉空心阴极灯)电子分析天平微控数显电热板电热鼓风干燥箱聚四氟乙烯高压消解罐纯水机型号240ZAA MSE224S-CE EG20Aplus DHG-9140A LTG-60Milli-QA10厂家安捷伦赛多利斯莱伯泰科上海一恒上海隆拓密理博1.1.2 试剂:硝酸(天津风船、优级纯)、基体改进剂:10g/LNH 4H 2PO 4(国药集团、优级纯)。
标准物质:镉标准液100mg/L (GSB07-1276-2000)购自环境保护部标准样品研究所,逐级稀释至100μg/L 使用;国家标准物质大米粉GBW (E )100359、100360、100362均购自国家标准物质研究中心。
所有玻璃器皿及聚四氟乙烯消化罐均在30%~40%的硝酸溶液中进行浸泡24小时以上,用去离子水进行清洗晾干。
石墨炉原子吸收光谱法测定食品中铅镉和铬的方法确认石墨炉原子吸收光谱法是一种常用的分析方法,适用于测定食品中微量的重金属元素。
铅、镉和铬是常见的食品中的重金属污染元素,其对人体健康有害,因此需要对其进行监测和分析。
石墨炉原子吸收光谱法的原理是利用原子在特定波长下对光的吸收来定量测定溶液中的目标元素。
其分析步骤主要包括样品的预处理、仪器的调试和校准、样品的加热和原子吸收测量。
样品的预处理是为了提取出铅、镉和铬等金属元素,常用的方法有酸溶解、微波消解和溶剂萃取等。
以酸溶解为例,可以将食品样品加入适量的酸中,经过搅拌和加热使其完全溶解,得到含有目标元素的溶液。
仪器的调试和校准是确保仪器能正常工作并准确测定目标元素。
需要调整石墨炉的温度程序、气体流速和电流等参数,并使用标准溶液进行校准。
标准溶液的浓度应覆盖待测样品中铅、镉和铬的浓度范围,通常可以选择多个浓度分别进行校准,以得到浓度与吸光度之间的标准曲线。
然后,样品的加热和原子吸收测量是进行实际分析的步骤。
将预处理得到的样品溶液加入石墨炉中,通过升温程序使样品发生干燥、焙烧和原子化过程,使得目标元素以原子形式进入气相,然后在特定波长下进行吸收测量。
根据标准曲线和待测样品的吸光度,可以通过插值或外推得到样品中铅、镉和铬的浓度。
为了提高测定的准确性,通常会进行多次测量并取平均值,同时进行空白试验和添加标准品验证结果的可靠性。
石墨炉原子吸收光谱法是一种准确、灵敏和可靠的方法,常用于食品中铅、镉和铬等重金属元素的测定。
其操作简便,但需要注意样品的预处理和仪器的调试和校准等步骤,以确保结果的准确性和可靠性。
不同消化方法-石墨炉原子吸收法测定大米中镉的比较
秦品芝1
摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。
试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。
关键词镉;微波消解;湿法消解;干法灰化
镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。
石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。
所以,本次实验采用石墨炉原子吸收法测定大米中的镉。
前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。
微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。
其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。
实验原理
试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。
2.实验材料
2.1仪器
原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。
2.2试剂
硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。
3.实验方法
3.1样品前处理
3.1.1干灰化法
首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。
然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。
3.1.2湿消解法
准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。
3.1.3微波消解法
准确称取已粉碎的大米样品0.400g置于消解内罐中,加入8mL硝酸和2mL过氧化氢,盖紧内盖,并拧紧外保护层,然后放入微波消解仪中,按照选定的微波消解程序进行操作,微波消解完全后冷却至室温,将微波消解内罐放在电热板上加热去除氮氧化物,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。
3.2测定
将经样品前处理后的样品放入石墨炉原子吸收光谱仪测定,同时做试剂空白。
讨论与注意事项
4.1前处理注意
在样品前处理时一方面由于使用工具不当,取样方法不合理或处理方法不妥造成取样的不均匀和样品的人为污染,从而使测定结果出现误差;另外样品的消化方案选择不当,忽视了基本干扰现象,使测定结果出现偏差,这些问题引起足够的重视。
4.2原子吸收测定中注意
在原子吸收分析中,谱线重叠的几率较小,因此在测定时,可使用较宽的狭缝以增加测定的灵敏度。
石墨炉原子吸收分光光度法的基体效应比较显著和复杂。
在原子化过程中,样品基体蒸发,在短波长范围出现分子吸收或光散射,产生背景吸收,可通过样品稀释降低样品中的基体浓度。
石墨炉原子吸收法中原子在吸收区停留时间较长,样品原子化效率高,检出限为0.1/kg,具有灵敏度高、选择性好的优点,不足之处在于石墨管耗价昂贵,背景干扰大,需采用标准添加法,费时费力[7,8]。
5.危害
镉是一种对人有害的金属元素,摄入人体内部被吸收后,排出非常缓慢,在人体生物半衰期约为16~38年,镉在人体的肾脏和肝脏中蓄积,造成积累性中毒,可使骨骼疼痛、骨折,甚至引发癌症[9]。
大米是人们生活中最普遍的主食来源。
由此可见,准确测定大米中镉的含量无论是对动物营养学研究,还是人体代谢疾病防治和诊断,以及环境监测都有重大意义。
因此,快速准确地测定粮食中的镉含量将有利于对食品卫生安全的控制。
6.防治措施
可补充锌和铜,以抑制镉的吸收,而铁和钙的摄入,则可以缓解镉引起的贫血和脱钙症状。
当务之急是在监测基础上及时公布不合格大米信息,并严格对不合格产品的处理;在查清污染源的基础上,重点做好高镉污染区大米的管理;对已查清的重点污染农田,开展源头控制。
镉污染地区的治理也是相当重要的。
加大研究镉污染地区环境治理办法,避免在镉污染地区种植农作物。
参考文献
[1]郁庆福·现代卫生微生物学[M]·北京·人民卫生出版社·19951642-6441
[2]高芹,邵劲松,余云飞·农产品中重金属痕量分析样品制备的质量控制[J]·农业环境与发展,2007(5):102-104
[3]于峰,金秀华,白梅,等·炉原子吸收法测定食品中铅和镉[J]·理化检验——化学分册,1996,32(1):34-35
[4]王爱月,李永利·微波消解法测定食品中砷、汞元素研究[J]·河南预防医学杂志,2002,13(2):106-108
[5]孙玉岭,刘景振·微波溶样在元素检测方面的应用研究[J]·中国公共卫生,2002,18(2):231-232
[6]牟仁祥,陈铭学,朱智伟,等·微波消解—氢化物—原子荧光光谱法测定大米中痕量汞[J]·光谱学与光谱分析,2004,24(2):236-237
[7]食品中镉的测定. GB/ T 5009.15-2003
[8]胡敏,王菊芳,李志勇,梁世中·农产品中镉分析方法的研究进展[J]·食品工业科技,2007,,28(3):233-236。