ansys优化桁架
- 格式:ppt
- 大小:1.98 MB
- 文档页数:25
(1) 进入ANSYS(设定工作目录和工作文件)1) 进入ANSYS菜单路径“程序>ANSYS >ANSYS10.0”2) 设置工作文件名菜单路径“file > Change Jobname”,弹出“Change Jobname”对话框,输入“CYKLink”,单击【OK】确定并关闭对话框。
(2) 设置计算类型菜单路径“ANSYS Main Menu: Preferences…”,在弹出的对话框中选择“Structural”,单击【OK】确定并关闭对话框。
(3) 选择单元类型菜单路径“ANSYS Main Menu: Preprocessor >Element Type>Add/Edit/Delete…”,在弹出“Library of Element Types”对话框中按照如图1所示参数选择,单击【OK】确定并关闭对话框。
图1 “Library of Element Types”对话框(4) 定义实常数菜单路径“ANSYS Main Menu: Preprocessor >Real Constants…>Add/Edit/Delete ”,在弹出的对话框中单击“Add > OK”,弹出如图2所示“Real Constant …”对话框,参数设置“AREA 0.000416”,单击【OK】确定并关闭对话框。
图2 “Real Constant …”对话框(5) 定义材料参数菜单路径“ANSYS Main Menu: Preprocessor > Material Props > Material Models”,在弹出的菜单中打开“Structural > Linear > Elastic > Isotropic”,弹出如图3所示“Linear Isotropic Material…”对话框,并设置如下参数。
图3 “Linear Isotropic Material…”对话框图4 “Beam Tool”对话框(6) 定义梁的截面菜单路径“ANSYS Main Menu: Preprocessor > Sections > Beam > Common Sections”,弹出如图4所示“Beam Tool”对话框,并按照图4设置,单击【OK】确定关闭对话框。
文章编号:1009-6825(2007)20-0054-03基于ANSYS 分析的平面桁架结构优化设计收稿日期:2007-01-29作者简介:李炳宏(1982-),男,后勤工程学院军事建筑工程系硕士研究生,重庆 400041李 新(1981-),男,后勤工程学院军事建筑工程系硕士研究生,重庆 400041李炳宏 李 新摘 要:以六杆平面桁架结构为例,利用大型有限元分析软件A NSYS5.7对其按照重量最轻的原则进行了优化分析,实现了利用AN SY S5.7进行结构优化设计的全过程,得到了重量最轻的优化分析结果,在满足工程要求的前提下,节约了大量的工程材料。
关键词:AN SY S,有限元分析,平面桁架结构,优化设计中图分类号:T U 323.4文献标识码:A1 概述在工程实践中,结构优化设计的方法一直是科学工作者和工程技术人员最为关注的问题之一。
从已有工程经验看,与传统设计相比,优化设计可以使土建工程降低造价5%~30%。
20世纪60年代以来,随着计算机计算能力的不断提高,人们把有限元分析的方法和各种数学规划方法相结合,并逐步发展成为一种系统和成熟的方法,使得结构优化的技术得到了更快的发展。
文中以六杆平面桁架为例,利用AN SY S 的优化分析功能对其按照重量最轻的原则进行了优化设计,方便快捷地得到了较好的优化结果(重量最轻),实现了利用AN SY S 的优化分析功能进行平面桁架结构优化设计的全过程。
2 有关ANSYS 优化分析的基本概念A NSYS 优化分析中包括的基本概念有设计变量、状态变量、目标函数、分析文件等。
1)设计变量是作为自变量,通过改变设计变量的数值来实现结果的优化,设计变量的上下限决定了设计变量的变化范围。
坏可能引起结构的连续倒塌和整体破坏。
研究火灾高温下,不同结构的性能变化规律;研究火灾高温下,结构连续倒塌和整体破坏的机理,是结构抗火研究的主要内容。
3.3 混凝土结构抗火设计方法的研究设想混凝土结构的抗火设计可从两个途径进行研究:1)把火灾的高温作用等效为一种荷载,与结构上的其他荷载(恒载、活载、风载、地震作用等)一起参与荷载效应组合,按概率极限状态设计方法进行设计,即建立考虑火灾高温作用的统一的结构设计方法。
ansys三根杆桁架优化问题命令流问题描述:⼀个由三根杆组成的桁架承受纵向和横向载荷,桁架的重量在最⼤应⼒不超过400PSI最⼩化(因此重量为⽬标函数)。
三根梁的横截⾯⾯积和基本尺⼨B在指定范围内变化。
结构的重量初始设计为109.10磅。
缺省允差(由程序计算)为初始重量的1%(11磅)。
分析中使⽤如下材料特性:E=2.1E6psiRHO=2.85E-41b/in3 (⽐重)最⼤许⽤应⼒=400psi分析中使⽤如下⼏何特性:横截⾯⾯积变化范围=1到1000in2(初始值为1000)基本尺⼨B变化范围=400到1000in(初始值为1000)命令流如下:/filnam,truss/title, optimization of a three-bar truss!初始化设计变量参数B=1000 !基本尺⼨A1=1000 !第⼀个⾯积A2=1000 !第⼆个⾯积A3=1000 !第三个⾯积!!进⼊PREP7并建模/prepet,1,link1 !⼆维单元r,1,A1 !以参数形式的实参r,2,A2r,3,A3mp,ex,1,2.1E6 !杨⽒模量n,1,-B,0,0n,2,0,0,0n,3,B,0,0n,4,0,-1000,0e,1,4real,2e,2,4real,3e,3,4finish!!进⼊求解器,定义载荷和求解/solud,1,all,0,,3f,4,fx,200000f,4,fy,-20000solvefinish!!进⼊POST1并读出状态变量数值/post1set,lastetable,evol,volu !将每个单元的体积放⼊ETABLE ssum !将单元表格内数据求和*get,vtot,ssum,,item,evol !VTOT=总体积rho=2.85e-4wt=tho*vtot !计算总体积etable,sig,ls,1 !将轴向应⼒放⼊ETABLE!*get,sig,elem,1,etab,sig !SIG1=第⼀个单元的轴向应⼒*get,sig,elem,2,etab,sig !SIG2=⼆单元的轴向应⼒*get,sig,elem,3,etab,sig !SIG3=三单元的轴向应⼒!sig1=abs(sig1) !计算轴向应⼒的绝值sig2=abs(sig2)sig3=abs(sig3)!/eshape,2 !以实体单元模式显⽰壳单元/view,1,1,1,1 !轴测视图eplot!/opt !进⼊优化处理器opanl,truss,lgw !指定分析⽂件(批处理⽅式中不⽤这个命令)!opvar,B,dv,400,2000 !定义设计变量opvar,A1,dv,1,1000opvar,A2,dv,1,1000opvar,A3,dv,1,1000opvar,sig1,sv,,400 !定义状态变量opvar,sig2,sv,,400opvar,sig3,sv,,400!opsave,trussvar,opt !存储数据!opvar,wt,obj,,,2, !定义⽬标函数!optype,first !定义⼀阶⽅法opfrst,45 !最⼤45次迭代opexs !开始优化分析!oplist,16 !列出最佳设计序列,号为16oplist,all!/view,1,,,1 !前视图!/axlab,x,iteration number !画重量对迭代数图形/axlab,y,structure weightplvaropt,wt!/axlab,y,base dimension !画B对迭代数图形plvaropt,B!/axlab,y,max stress !画最⼤应⼒对迭代图形plvaropt,sig1,sig2,sig3!/axlab,y,cross-sectional area !画⾯积对迭代图形plavaropt,A1,A2,A3!finish/exit。
桁架ansys课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握桁架的基本概念、设计和分析方法;技能目标要求学生能够运用ANSYS软件进行桁架的建模、分析和优化;情感态度价值观目标要求学生培养创新意识、团队合作能力和工程责任感。
通过本课程的学习,学生将能够理解桁架的结构特点和设计原则,掌握ANSYS 软件的基本操作和应用技巧,培养解决实际工程问题的能力。
同时,学生将能够培养团队合作意识,提高创新思维和工程责任感,为未来的工程师职业生涯打下坚实基础。
二、教学内容教学内容将根据课程目标进行选择和,确保内容的科学性和系统性。
教学大纲将明确教学内容的安排和进度,指出教材的章节和列举内容。
第1周:桁架的基本概念和设计原理•介绍桁架的结构特点和应用领域•讲解桁架的设计原则和方法第2周:ANSYS软件的基本操作和应用•介绍ANSYS软件的功能和界面•讲解ANSYS软件的基本操作和应用技巧第3周:桁架建模与分析•讲解桁架建模的方法和步骤•分析桁架的受力情况和应力分布第4周:桁架优化设计•介绍桁架优化设计的方法和步骤•运用ANSYS软件进行桁架优化设计第5周:案例分析和实践操作•分析实际工程中的桁架案例•进行实践操作,解决实际工程问题三、教学方法教学方法将多样化,以激发学生的学习兴趣和主动性。
将采用讲授法、讨论法、案例分析法和实验法等多种教学方法。
讲授法将用于讲解桁架的基本概念、设计原理和ANSYS软件的操作方法。
讨论法将用于引导学生进行思考和交流,培养团队合作能力和创新思维。
案例分析法将用于分析实际工程中的桁架案例,培养学生解决实际问题的能力。
实验法将用于进行实践操作,提高学生的操作技能和应用能力。
四、教学资源教学资源将包括教材、参考书、多媒体资料和实验设备等。
教材将提供理论知识的学习支持,参考书将提供更多的案例和实践经验,多媒体资料将提供图像、动画和视频等丰富的学习资源,实验设备将用于实践操作和验证。
基于ANSYS的空间桁架优化研究的开题报告一、选题背景空间桁架作为载荷传递和支撑结构,广泛应用于空间工程领域。
现代空间科学技术的发展使得掌握其设计优化技术显得非常重要。
而ANSYS软件作为一种常用的有限元分析软件,可以模拟和分析空间桁架结构的力学、热学等各种特性,因此在空间桁架结构优化方面有着广泛的应用。
本文将通过基于ANSYS的空间桁架优化研究,探讨其建模、分析和优化方法。
二、研究目的和意义本研究的目的是在ANSYS软件平台下,通过建立空间桁架的有限元模型,分析其应力与变形分布情况,通过对不同参数的优化,实现桁架结构强度与重量的最优化设计。
这将有助于提高空间桁架结构的设计精度和设计优化效率,为实现更高效率的航天技术提供指导。
三、研究内容和方法1. 空间桁架建模在ANSYS中利用空间桁架的结构图进行几何建模,并进行材料、截面属性和节点约束的设定。
2. 空间桁架分析运用ANSYS进行空间桁架分析,包括载荷变形分析、应力分析和振动分析等,并对分析结果进行对比和评估。
3. 基于遗传算法的优化分析选取适宜的优化算法,如遗传算法等,对空间桁架的重量和强度进行优化,使其达到最佳的设计效果。
通过对比不同的优化参数组合,得到同时满足强度和重量最小的空间桁架优化设计。
四、进度安排第一阶段:研究空间桁架建模方法,完成有限元分析;第二阶段:研究遗传算法并实现优化分析;第三阶段:对结果进行分析和评估,并撰写毕业论文。
五、预期结果通过本研究,预期达到以下目标:1. 实现ANSYS建模和优化算法的应用;2. 对空间桁架结构的强度和重量进行优化,得到最优设计方案;3. 丰富空间工程领域的设计优化方法。
三杆桁架的优化设计问题描述如图所示为一个具有三根杆组成的桁架结构,它承受纵向和横向载荷,载荷值F=200000N,求该桁架的最小重量。
结构的初始设计为109.10磅。
默认允差(由程序计算)为初始重量的1%(11磅)。
但是,为了便于收敛,一阶方法的优化分析中将目标函数的允差定为2.0.已知桁架的材料特性为:E=2.1E6psi;RHO=2.85E-4 lb/in^3(比重);最大需用应力=400psi;分析中使用如下集合特性:横截面面积变化范围=1-1000in^2(初始值为1000);基本尺寸B变化范围=400-1000in (初始值为1000)根据分析问题的性质,选择三根杆的横截面积A1、A2、A3以及基本尺寸B为设计变量,状态变量为杆内的应力值,目标函数为桁架的最小重量,综上所述,该问题的优化数学模型为:[][]inf()1,2,3,41,2,3, :11000,1,2,340010000m ax()400,1,2,3jM xX x x x x A A A B st Ai iBjσ⎧⎪==⎪⎪≤≤=⎨⎪≤≤⎪≤≤=⎪⎩2前处理(1)定义工作文件名:utility menu-file-change jobname,在弹出的change jobname对话框中输入文件名为truss单击ok按钮。
(2)定义工作标题:utility menu-file-change tile,在弹出的change tile对话框中输入the optimization of a three-bar truss,单击ok按钮。
(3)关闭坐标符号的显示:utility menu-plotctrls-window controls-window options命令,弹出window options对话框。
在location of triad下拉式选择no shown,单击ok按钮。
(4)定义参数的初始值:utility menu-parameters-scalar parameters命令,弹出对话框,在selection下的文本框中输入b=1000,按下enter键;A1=1000, 按下enter键;A2=1000, 按下enter键;A3=1000, 单击ok按钮。
下图所示为一个有3根杆组成的桁架,承受纵向和横向载荷,杆件的横截面面积和基本尺寸B在指定范围内变化,要求桁架的每根杆件承受的最大应力小于(800+学号最后两位数)MPa,试对该结构进行优化设计,使得桁架重量最少。
弹性模量E=220GPa;泊松比:0.3;密度ρ=7800kg/m3材料最大许用应力:σ=855MPa横截面面积变化范围:0.01~10cm2(初始值为10)基本尺寸B变化范围:1~2m(初始值为2)要求:写出操作步骤和命令流,定义工作文件名和工作标题为你的姓名拼音。
GUI操作方式:(1) 定义工作文件名和工作标题:1)定义工作文件名:Utility Menu- File-Change Jobname,输入文件名“litao”,单击“OK”。
2)定义工作标题:Utility Menu- File-Change Title,输入工作标题“litao”,单击“OK”。
(2) 定义参数和材料属性:1)定义参数初始值:Utility Menu-Parameters-Scaler Parameters, 分别在“Selection”’下面的输入栏中输入:B=2,A1=0.001,A2=0.001,A3=0.001。
”所得结果如图所示,单击”close”。
(变量B、A1、A2、A3即为设计变量)2)设置材料属性:Main Menu-Preprocessor-Material Props-Material Models,设置材料属性“EX=2.2e11,PRXY=0.3”,单击“OK”,设置如图所示,完成对材料属性的设置。
3)(3)定义单元类型及属性1)定义单元类型:Main Menu-Preprocessor-Element Type-Add/Edit/Delete,在“Library of Element Type”左面的列表栏选择Structural Link”,右边的为“2D spar 1”如图所示,完成单元类型设置。
iSIGHT集成ANSYS在桁架优化设计中的应用摘要:利用大型有限元分析软件ANSYS对三维桁架进行参数化建模,采用iSIGHT优化设计平台构建了三维桁架优化设计系统,对该结构进行了优化分析,得到了最合理的结构形式和尺寸,在满足工程要求的情况下进行重量最轻优化设计,节省了大量的工程材料。
优化结果表明该方法应用于结构优化设计是有效可行的。
关键词:ANSYS;三杆桁架;iSIGHT;优化设计1.引言在工程实践中经常会遇到桁架问题,三杆桁架结构式一种较为常见的结构,而桁架优化问题常是关注的焦点。
优化设计是一种寻找确定最优化设计方案的技术。
所谓最优设计,指的是一种方案可以满足所有的设计要求,并且所需的支出(如重量、体积、面积、应力、费用等)最小[1]。
最优化设计方案是一个最有效的方案。
设计方案的任何方面都可以优化,即所有可以参数化的选项都可以做优化设计。
工程上优化问题一般是采用数学规划并借助计算机编程来实现,但随着工程化优化设计的应用越来越广,计算机不能解决所有的问题。
本文采用大型有限元分析软件ANSYS对三杆桁架实现参数化建模,并采用iSIGHT软件对其集成优化,使其得到最优的设计尺寸,节省了大量的工程材料,并缩短了计算时间。
2.基本思路优化设计就是根据具体的实际问题建立其优化设计的数学模型[2],然后根据数学模型的特性,并采用一定的最优化方法,寻找既能满足约束条件又能使目标函数最优的设计方案。
文中通过选用ANSYS作为主流分析软件对其进行分析,并在iSIGHT软件平台上将ANSYS集成起来的方法进行优化分析。
iSIGHT作为一种优化设计的工具,具有丰富的优化算法和多种代理模型方法,是一个开放的集成平台,它提供的过程集成界面可以方便地将各种工具(如商业CAD 软件、各种有限元计算分析软件及用户自行开发的程序等)集成在一起[3]。
ANSYS参数化设计过程中的关键部分是生成分析文件并保证其正确性,在分析文件中,模型的建立必须是参数化的,结果也必须用参数来提取,分析文件应当覆盖整个分析过程并且是简练的。
用ANSYS解决下列问题:1、、平面九杆桁架,如下图所示,其材料特性为:弹性模量E=2.0×1011Pa,质量密度ρ=7860kg/m3,所有单元横截面为矩形0.05m×0.05m,如下图所示的节点上施加竖直向下大小为500N的集中力,求:(1)不施加集中力时,桁架结构的前六阶自由振动频率;(2)在施加集中力时,桁架结构各点的竖直位移;(3)当集中力为阶跃载荷(阶跃载荷即:突然施加500N的载荷,持续时间为2s)时,,求集中力施加点的竖直位移历程曲线。
程序:前两个问题的答案/PREP7!*ET,1,BEAM188!*!*MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2E11MPDATA,PRXY,1,,0.3MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7860SECTYPE, 1, BEAM, RECT, , 0SECOFFSET, CENTSECDATA,0.05,0.05,0,0,0,0,0,0,0,0,0,0N,1,,,,,,,N,2,2,,,,,,N,3,4,,,,,,N,4,6,,,,,,N,5,4,2,,,,,N,6,2,2,,,,,NDELE, 1 NDELE, 2 NDELE, 3 NDELE, 4 NDELE, 6 NDELE, 5K,1,,,,K,2,2,,,K,3,4,,,K,4,6,,,K,5,4,2,,K,6,2,2,,LSTR, 1, 2 LSTR, 2, 3 LSTR, 3, 4 LSTR, 4, 5 LSTR, 5, 3 LSTR, 3, 6 LSTR, 6, 2 LSTR, 1, 6 LSTR, 6, 5 FINISH/PREP7SMRT,6SMRT,1ESIZE,0,100,FLST,2,9,4,ORDE,2 FITEM,2,1FITEM,2,-9LMESH,P51XFINISH/PREP7/UI,MESH,OFFFINISH/SOLFLST,2,1,3,ORDE,1 FITEM,2,1!*/GODK,P51X, , , ,0,UX,UY, , , , , FLST,2,1,3,ORDE,1 FITEM,2,4/GODK,P51X, , , ,0,UY, , , , , ,!*ANTYPE,2!*!*MODOPT,LANB,6EQSLV,SPARMXPAND,0, , ,0LUMPM,0PSTRES,0!*MODOPT,LANB,6,0,10000, ,OFF /STA TUS,SOLUSOLVE/SHOW,JPEG,,0JPEG,QUAL,75,JPEG,ORIENT,HORIZJPEG,COLOR,2JPEG,TMOD,1/GFILE,2400,!*/CMAP,_TEMPCMAP_,CMP,,SA VE /RGB,INDEX,100,100,100,0/RGB,INDEX,0,0,0,15/REPLOT/CMAP,_TEMPCMAP_,CMP/DELETE,_TEMPCMAP_,CMP/SHOW,CLOSE/DEVICE,VECTOR,0!*FINISH/POST1SET,LISTFINISH/SOL!*ANTYPE,0!*ANTYPE,0FLST,2,1,3,ORDE,1FITEM,2,3!*FK,P51X,FY,-500ANTYPE,0NLGEOM,1OUTRES,ERASEOUTRES,ALL,1/STA TUS,SOLUSOLVEFINISH/POST1!*/EFACET,1PLNSOL, U,Y, 0,1.0/SHOW,JPEG,,0JPEG,QUAL,75,JPEG,ORIENT,HORIZJPEG,COLOR,2JPEG,TMOD,1/GFILE,2400,!*/CMAP,_TEMPCMAP_,CMP,,SA VE /RGB,INDEX,100,100,100,0/RGB,INDEX,0,0,0,15/REPLOT/CMAP,_TEMPCMAP_,CMP/DELETE,_TEMPCMAP_,CMP/SHOW,CLOSE/DEVICE,VECTOR,0!*SA VEFINISH! /EXIT,NOSAV集中力点的位移图6阶振动频率。
基于ANSYS的桁架结构优化【摘要】空间桁架结构广泛应用于工程各种领域,其结构的力学分析及优化,是桁架结构设计中的关键技术难题。
本文利用ansys 软件,采用apdl语言编制用户程序,对混凝土运输系统的桁架结构进行在四种不同设计方案进行优化比选,最终选择既满足工程实际又经济的桁架结构。
【关键词】 ansys 桁架结构优化选型1 工程概况混凝土运输系统是大体积混凝土工程顺利实施的关键。
混凝土熟料从拌和系统出来后经水平运输和垂直运输到浇筑作业面,施工中,根据地形、工程量、混凝土性质和企业能力等采用不同的运输方式。
对于水平运输,中小型工程一般采用斗车或罐车,大型工程一般采用罐车、自卸汽车或皮带机运输;对于垂直运输,中小型工程一般采用溜槽、人工翻仓、汽车吊、输送泵等,大型工程一般采用塔式起重机、门式起重机、塔带机和缆机等。
某水库是一座大(2)型水库,其进水塔为2级建筑物,相邻的两个进水塔高度分别为102m和86m,均为岸坡式建筑物,混凝土工程量13.2万m3,塔体采用限裂设计。
[1]结合两个进水塔均为岸坡式建筑物,根据现场地形确定了以下运输方案。
在施工道路旁架设皮带机(简称1#机)进行水平运输,通过铅直布设的box管进行垂直运输,box管的下端再架设一条皮带机(简称2#机)把混凝土输送给仓面布料机,360°旋转的仓面布料机两端挂直径420mm的象鼻溜管进行仓面布料,当完成2~3个浇筑层(一般每层3m)需要上升布料机时,用900tm塔式起重机把2#皮带机和布料机提升布设,进行下一循环的作业。
该方案虽然能够满足施工强度要求,资金投入相对较少,但亟待解决混凝土输送桁架结构选型这一技术问题。
2 桁架结构的有限元模型有限元模型建立是否恰当会直接影响到工程计算结果的可靠性。
所谓建立模型,就是结构的离散化,对结构施加约束条件和荷载,然后进行计算分析。
因此,选择合适的计算模型和单元模型是十分重要的。
本文中,在建立ansys模型时采用杆单元link8来模拟二力杆,可用梁单元beam4来模拟可承受拉、压、弯、扭的受力单元。
试论基于ANSYS的空间桁架结构拓扑优化设计摘要:随着大跨度的建筑结构设计形式应用越来越广泛,空间结构的设计方式在不断的实践中得到了很大的发展。
由于空间桁架结构在应用中具有多种优良特点,如质轻、刚性大、成本较低,更重要的是施工较为简便,因而在现代社会发展中的多项工程中都有着极为广泛的应用,包括航空航天、公路桥梁、水利工程、工业机械等多个领域。
而在实际的工程应用中,如果能够对空间桁架结构进行进一步的优化设计,就能够更好的实现大跨度空间结构的效果,并且也可以节省施工材料和成本,实现经济节能的建筑设计方案。
本文中,笔者就以基于ansys的拓扑优化的方式来对空间桁架结构设计的优化进行探讨。
关键词:ansys软件;空间桁架结构;拓扑优化;设计方案就目前的建筑技术而言,空间桁架结构的优化设计一般都是采用拓扑优化或者采用尺寸优化。
本文中主要论述了采用拓扑优化的设计方法,。
所谓拓扑优化,也可以称之为轮廓优化,再往广义范围里讲,也可以称之为形状优化。
拓扑优化大概可以分为离散体与连续体两种形式,但在实际的使用中,一般都是采用离散体的拓扑优化方法。
这种优化方法表现在现代建筑的空间桁架结构中,主要是通过相关测量和调查,以掌握每个杆件之间的距离大小,然后再使用通过拓扑优化的方法来确认是否有杆件的存在。
而对于连续体的方法来讲,现有的技术水平已经能够通过一定的软件技术来分析边界等基础信息,以得出最优的设计方案,这种技术的发展对于空间桁架结构的初期设计有着重大的意义。
以下本文就以连续体的拓扑优化方式,通过采用ansys软件来对空间桁架结构的设计进行优化处理。
1、分析空间桁架结构拓扑优化设计的意义空间桁架结构作为大跨度建筑结构设计中较常采用的结构形式,其具有材质轻、施工简便以及通透性好等特点,在体育馆、海洋馆等有着大跨度要求的建筑结构中有着广泛的应用,因此提高其结构设计水平、优化结构设计方法对于保证空间桁架结构的施工质量,提高桁架结构的稳定性与安全性来讲都有着很重要的意义。
基于ANSYS的桁架等截面优化设计摘要:在对工程上常用的三杆桁架结构的设计中,利用大型有限元分桁软件ANSYS对该结构进行了等截面优化分桁,得到了最合理的结构形式和尺寸,在满足工程要求的情况下,节省了大量的工程材料。
关键词:三杆桁架;等截面;优化设计;ANSYS1 引言桁架结构由于具有自重轻、造价较低和施工简单等诸多优点,在包括大型工业厂房在内的工程领域得到了广泛的应用[1].随着对设计质量要求的不断提高,人们一直在探索如何在保证桁架结构安全的前提下,减少材料用量,降低成本,以满足经济性的要求;桁架结构的优化设计思想从MICHELL [2]桁架理论的出现至今已有近百年历史,BENDSOE等[3]提出的多工况拓扑优化方法标志着对优化设训一研究进入了新的阶段。
国内学者也在该领域进行了大量的研究,如隋允康等对桁架结构离散变量的优化问题进行了研究,通过函数变换找到了满应力的映射解,并结合桁架拓扑优化特点提出了ICM(独立、连续、映射)方法[4]。
随着计算机技术的发展,人们开始利用ANSYS等软件对工程结构进行有限元分桁和优化设计。
APDL是ANSYS参数化设计语言,它是一种通过参数化变量方式建立分桁模型的脚本语言[5-6], ANSYS提供了两种优化方法即零阶方法和一阶方法。
除此之外,用户还可以利用自己开发的优化算法替代ANSYS本身的优化方法进行优化设计。
本文利用APDL优化设计模块编制用户程序,对一个实际析架进行了结构优化。
结果表明运用ANSYS进行析架结构优化设训一可以有效提高设计质量,具有广泛的运用前景。
2 析架有限元模型的简化和假设在工程应用中,实际的析架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对析架的实际工作情况和对析架进行结构实验的结果表明,由于大多数的常用析架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其他杆件传到节点上,这就使得析架节点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
桁架结构优化的MATLAB和ANSYS联合仿真
马学莉;杨海霞
【期刊名称】《低温建筑技术》
【年(卷),期】2014(036)012
【摘要】采用基本粒子群优化算法,对桁架结构在满足位移约束及应力约束条件下进行重量最轻优化设计.桁架杆件的应力和节点位移由ANSYS求得并传递给MATLAB编写的优化程序,经过MATLAB优化得到的杆件面积再返回给ANSYS,如此反复直至结果满足精度要求.数值算例表明将MATLAB和ANSYS联合优化应用于桁架结构优化设计是有效可行的.
【总页数】3页(P69-71)
【作者】马学莉;杨海霞
【作者单位】河海大学工程力学系,南京210098;河海大学工程力学系,南京210098
【正文语种】中文
【中图分类】TU311.41
【相关文献】
1.基于Matlab和ANSYS的钢管桁架结构优化设计 [J], 秦林肖;潘颖
2.基于Matlab与Ansys联合仿真平台的空气压缩机减振分析 [J], 杜帅妹;周劲松;凌太波
3.联合Ansys与Matlab进行钢箱梁顶推施工过程仿真优化 [J], 李传习;王俊;董创文;张玉平
4.基于Ansys Workbench有限元分析的桁架结构优化设计分析 [J], 褚帅;张春光;李上青;张俊峰;安磊;杨煜兵;刘佳慧
5.基于MATLAB和ANSYS联合仿真的罐车寿命预测 [J], 辛天佐;李守成
因版权原因,仅展示原文概要,查看原文内容请购买。